Date of Award

5-1951

Document Type

Thesis

Degree Name

Master of Science

Degree Discipline

Biology

Abstract

Substances which prevent polymerization or oxidative reactions from occurring are well known. Such substances have been termed "antioxidants" or "inhibitors". A considerable amount of research has been devoted to the study of these "inhibitors" of reactions or "negative catalysts" during the past 30 years. It is pointed out that certain substances susceptible to polymerization or oxidation must be protected. Leather oils, rubber, fats, unsaturated hydrocarbons, aldehydes, and some vitamins and their precursors are substances which are either easily oxidized or are subject to polymerization. Consequently, if their usefulness to man is to be retained they must be protected from oxidative deterioration or polymerization into unwanted substances.

Some aromatic amines are known to protect rubber and oils from aging. The polymerization of acrolein may be diminished by the addition of small quantities of resorcinol or other phenolic substances. Tetraethyl lead prevents the oxidation of benzaldehyde in motor fuels, and vitamin S is a well-known antioxygenic substance for fats.

Much of the research done on antioxidants has been in the test tube with homogeneous systems. However, in biological systems one is not dealing with homogeneous conditions, thus the study of biological antioxidants becomes complicated. In addition, most metabolic processes cannot be controlled in living organisms as one may regulate the temperature of a test tube reaction, or control the concentration of the reacting substances therein.

It has "been demonstrated in the test tube that antioxidants can function by breaking chain reactions involving free radicals and by being reversibly oxidized and reduced very easily. Some evidence seems to point to these phenomena taking place with biological antioxidants. The question of how biological antioxidants function in living organisms remains unanswered.

Committee Chair/Advisor

E. G. High

Committee Member

E. G. High

Committee Member

E. G. High

Publisher

Prairie View Agricultural and Mechanical College

Rights

© 2021 Prairie View A & M University

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Date of Digitization

1/20/2022

Contributing Institution

John B Coleman Library

City of Publication

Prairie View

MIME Type

Application/PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.