Date of Award

8-2023

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Discipline

Electrical Engineering

Abstract

The amount of Internet-of-things (IoT) devices is rapidly expanding. This also triggered the necessity of smart IoT devices which are capable of conducting any task by itself. Deep learning techniques are also booming due to the increased computing power and refined algorithms. The advantage of deep learning is that it can be tuned into any application without the manual feature extraction process. Now, the combination of deep learning with smart IoT devices/edge devices can result in any application that can be used in machine vision, vision inspection, autonomous vehicle, and many more. These applications can be automated which requires human operation. Now, combining deep learning and edge device together and running the application can be a difficult task. The main reason is that deep learning requires large computation power and edge devices does not have that capability. This study focused on this problem. Ie used techniques to encrypt and compress data which is essential for the edge devices. In addition, we developed novel methods to protect user privacy for data collection and learning on edge devices. Also, we conducted a study to evaluate different edge devices for different application purposes with certain compression technique of the models. Lastly, we conducted a real life experiment of collecting data, creating different models and evaluating it on different edge devices.

index terms - IoT, computer vision, deep learning, machine learning, quantization, autoencoder, mobilenet v1, mobilenet v2, inception v3, face mask detection

Committee Chair/Advisor

Xishuang Dong

Committee Co-Chair:

John Fuller

Committee Member

Xiangfang Li

Committee Member

Lijun Qian

Publisher

Prairie View A&M University

Rights

© 2021 Prairie View A & M University

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Date of Digitization

9/26/2023

Contributing Institution

J. B Coleman Library

MIME Type

Application/PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.