Title
From Wires to Cables: Attempted Synthesis of 1,3,5-Trifluorenylcyclohexane as a Platform for Molecular Cables
Document Type
Article
Publication Date
2-19-2016
Abstract
Multiple molecular wires braided together in a single assembly, termed as molecular cable, are promising next-generation materials for effective long-range charge transport. As an example of the platform for constructing molecular cables, 1,3,5-trifluorenylcyclohexane (TFC) and its difluorenyl analogues (DFCs) were systematically investigated both experimentally (X-ray crystallography) and theoretically (DFT calculations). Although the syntheses of DFCs were successfully achieved, the synthesis of TFC, which involved a similar intramolecular Friedel-Crafts cyclization as the last step, was unsuccessful. An exhaustive study of the conformational landscape of cyclohexane ring of TFC and DFCs revealed that TFC is a moderately strained molecule (∼17 kcal/mol), and computational studies of the reaction profile show that this steric strain, present in the transition state, is responsible for the unusually high (∼5 years) reaction half-life. A successful synthesis of TFC will require that the steric strain is introduced in multiple steps, and such alternative strategies are being currently explored. (Chemical Equation Presented).
Recommended Citation
Talipov, M., Abdelwahed, S., Thakur, K., Reid, S., & Rathore, R. (2016). From Wires to Cables: Attempted Synthesis of 1,3,5-Trifluorenylcyclohexane as a Platform for Molecular Cables. Retrieved from https://digitalcommons.pvamu.edu/chemistry-physics-facpubs/6