Title
Interactions of Cellulose Model Compound D-Cellobiose with Selected Metal Chlorides in Water: Identification of Chelating Oxygen Atoms
Document Type
Article
Publication Date
9-21-2021
Abstract
Understanding interactions of metal ions with cellulose is an important step in the development of efficient catalytic methods for processing cellulose. In this study, density functional theory methods were used to identify oxygen atoms interacting or chelating with selected metal chlorides of Li+, K+, Mg2+, Ca2+, Sn2+, Zn2+ and La3+ with cellulose model compound D-cellobiose. Calculated metal-oxygen distances of energy minimized D-cellobiose : metal chloride 1 : 2 mixtures revealed that the metal ions approach between the two glucose rings in α/β-D-cellobiose, and O4, O9 are the preferred interaction/chelation points. DFT study supported a previous 13C NMR chemical shift change based experiments. ZnCl2 showing the shortest metal-oxygen distances in approach to α/β D-cellobiose is known to produce the largest 13C NMR chemical shift changes in D-cellobiose. In α-anomer, average closest metal-oxygen distances and NMR shift changes co-related at 95 % confidence interval with liner regression R2=0.8582 and Sy.x=0.5722.
Recommended Citation
Fernando, H., & Amarasekara, A. (2021). Interactions of Cellulose Model Compound D-Cellobiose with Selected Metal Chlorides in Water: Identification of Chelating Oxygen Atoms. Retrieved from https://digitalcommons.pvamu.edu/chemistry-physics-facpubs/27