Title

Evaluating cover crops (sudex, sunn hemp, oats) for use as vegetative filters to control sediment and nutrient loading from agricultural runoff in a Hawaiian watershed

Document Type

Article

Publication Title

Journal of the American Water Resources Association

Abstract

A study was conducted to determine the effects of three land covers (sunn hemp -Crotalaria juncea, sudex, a sorghum-sudangrass hybrid -Sorghum bicolor x S. bicolor var. sudanese, and common oats -Avena sativa) planted as vegetative filter strips on the reduction of sediment and nutrient loading of surface runoff within the Kaika-Waialua watershed on the island of Oahu, Hawaii. Runoff samples were collected and analyzed for total suspended solids (TSS), total dissolved solids (TDS), phosphorous, and three forms of nitrogen (nitrate, ammonium, total nitrogen). Study results show that during seven out of 10 runoff events, the three cover crop treatments significantly reduced TSS as compared to the fallow treatment. Average removal efficiencies were 85, 77, and 73% for oats, sunn hemp, and sudex, respectively, as compared to the fallow treatment. Nutrient concentrations were low with phosphorous concentrations, lower than 1 (μg/ml) for all treatments, and total nitrogen (TN) concentrations below 7 (μg/ml) except in the sunn hemp treatment, where TN concentrations were less than 10 (μg/ml). Results of analysis of TDS showed that the cover crop treatments did not decrease dissolved solids concentrations in comparison with the fallow treatment. Analysis of nutrient concentrations in runoff samples did not detect any significant decreases in phosphorous, nitrogen, ammonium, or TN concentrations in comparison to the fallow treatment. However, a significant increase in TN concentrations in the sunn hemp treatment was detected and showed the nitrogen fixing capacity of sunn hemp. No treatment effects on runoff volume were detected, and runoff volumes were directly correlated with rainfall amounts showing no crops significantly impacted soil infiltration rates. These results were attributed to extremely low soil hydraulic conductivities (0.0001-7 cm/day at the soil surface, 15 and 30 cm below the soil surface). This study showed that cover crops planted as vegetative filters can effectively reduce sediment loads coming from idle and fallow fields on moderately steep volcanically derived highly weathered soils. © 2008 American Water Resources Association.

First Page

640

Last Page

653

DOI

10.1111/j.1752-1688.2008.00189.x

Publication Date

6-1-2008

This document is currently not available here.

Share

COinS