•  
  •  
 

Abstract

By using the WTC method and symbolic computation, we apply the Painlevé test for a (2+1)-dimensional variable-coefficient Kortweg-de Vries (KdV) equation, and the considered equation is found to possess the Painlevé property without any parametric constraints. The auto-Bǎcklund transformation and several types of exact solutions are obtained by using the Painlevé truncated expansion method. Finally, the Hirota’s bilinear form is presented and multi-soliton solutions are also constructed.

Share

COinS