•  
  •  
 

Abstract

Pulsatile flow of blood through an artery in presence of a mild stenosis has been investigated in this paper assuming the body fluid blood as a two-fluid model with the suspension of all the erythrocytes in the core region as Bingham Plastic and the peripheral region of plasma as a Newtonian fluid. This model has been used to study the influence of body acceleration, non- Newtonian nature of blood and a velocity slip at wall, in blood flow through stenosed arteries. By employing a perturbation analysis, analytic expressions for the velocity profile, Plug-core radius, flow rate, wall shear stress and effective viscosity, are derived. The variations of flow variables with different parameters are shown diagrammatically and discussed. It is noticed that velocity and flow rate increase but effective viscosity decreases, due to a wall slip. Flow rates and speed are enhanced further due to the influence of body acceleration.

Share

COinS