•  
  •  
 

Abstract

In this paper, we considered the non-uniformly distributed zeros on the unit circle, which are obtained by projecting vertically the zeros of the derivative of Legendre polynomial together with x=1 and x=-1 onto the unit circle. We prescribed the function on the above said nodes, while its second derivative at all nodes except at x=1 and x=-1 with suitable weight function and obtained the existence, explicit forms and establish a convergence theorem for such interpolatory polynomial. We call such interpolation as weighted Lacunary interpolation on the unit circle.

Share

COinS