•  
  •  
 

Abstract

In this paper, a Holling-Tanner predator-prey model with ratio-dependent functional response and non-linear prey harvesting is analyzed. The mathematical analysis of the model includes existence, uniqueness and boundedness of positive solutions. It also includes the permanence, local stability and bifurcation analysis of the model. The ratio-dependent model always has complex dynamics in the vicinity of the origin; the dynamical behaviors of the system in the vicinity of the origin have been studied by means of blow up transformation. The parametric conditions under which bionomic equilibrium point exist have been derived. Further, an optimal harvesting policy has been discussed by using Pontryagin maximum principle. The numerical simulations have been presented in support of the analytical findings.

Share

COinS