•  
  •  
 

Abstract

In this paper, we prove a Meir-Keeler type common fixed point theorem for two mappings for which the range set of the first one is a family of soft sets, called soft set-valued map and the second is a point-to-point mapping. In addition, it is also shown that under some suitable conditions, a soft set-valued map admits a selection having a unique fixed point. In support of the obtained result, nontrivial examples are provided. The novelty of the presented idea herein is that it extends the Meir-Keeler fixed point theorem and the theory of selections for multivalued mappings from the case of crisp mappings to the frame of soft set-valued maps. Finally, an application of soft setvalued maps in decision making problems is considered.

Share

COinS