•  
  •  
 

Abstract

In this paper, we carried out the bifurcation analysis for a Lotka-Volterra prey-predator model with Holling type III functional response incorporating prey refuge protecting a constant proportion of the preys. We study the local bifurcation considering the refuge constant as a parameter. From the center manifold equation, we establish a transcritical bifurcation for the boundary equilibrium. In addition, we prove the occurrence of Hopf bifurcation for the homogeneous equilibrium. Moreover, we give the radius and period of the unique limit cycle for our system

Share

COinS