Abstract
In this paper, we study M[X1] , M[X2] /G1 ,G2 /1 retrial queueing system with discretionary priority services. There are two stages of service for the ordinary units. During the first stage of service of the ordinary unit, arriving priority units can have an option to interrupt the service, but, in the second stage of service it cannot interrupt. When ordinary units enter the system, they may get the service even if the server is busy with the first stage of service of an ordinary unit or may enter into the orbit or leave the system. Also, the system may breakdown at any point of time when the server is in regular service period. During the breakdown period, the interrupted priority unit will get the fresh service at a slower rate but the ordinary unit can not get the service and the server will go for repair immediately. During the ordinary unit service period, the arrival of negative unit will interrupt the service and it may enter into an orbit or leave the system. After completion of each priority unit’s service, the server goes for a vacation with a certain probability. We allow reneging to happen during repair and vacation periods. Using the supplementary variable technique, the Laplace transforms of time-dependent probabilities of system state are derived. From this, we deduce the steady-state results. Also, the expected number of units in the respective queues and the expected waiting times, are computed. Finally, the numerical results are graphically expressed.
Recommended Citation
Ayyappan, G. and Somasundaram, B.
(2019).
Analysis of Two Stage M[X1],M[X2]/G1,G2/1 Retrial G-queue with Discretionary Priority Services, Working Breakdown, Bernoulli Vacation, Preferred and Impatient Units,
Applications and Applied Mathematics: An International Journal (AAM), Vol. 14,
Iss.
2, Article 2.
Available at:
https://digitalcommons.pvamu.edu/aam/vol14/iss2/2
Included in
Computer Sciences Commons, Numerical Analysis and Computation Commons, Statistics and Probability Commons