•  
  •  
 

Abstract

This paper deals with a theoretical investigation of heat and mass transfer effects of peristaltic transport of a nanofluid in peripheral layer. By using appropriate methods, the velocity in the core region as well as in the peripheral region, pressure drop, time averaged flux, frictional force, temperature profile, nanoparticle phenomenon, heat transfer coefficient and mass transfer coefficient of the fluid are investigated, using lubrication theory. Effects of different physical parameters like viscosity ratio, mean radius of the central layer, Brownian motion parameter, thermophoresis parameter, local temperature Grashof number as well as local nanoparticle Grashof number on pressure rise characteristics, frictional force, heat transfer coefficient, mass transfer coefficient, velocity profiles and streamline patterns of the fluid are studied. The computational results are presented in graphical form.

Share

COinS