Biodegradable PHBV polymer-based scaffolds for bone tissue engineering

Document Type


Publication Date



This chapter reports the emulsion freezing/freeze-drying technique for the formation of three-dimensional porous scaffolds for bone tissue engineering applications. Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), which is a natural, biodegradable polymer, was used as the main polymer for fabricating various tissue engineering scaffolds. Nano-sized hydroxyapatite (HA), a widely used bioceramic, was incorporated in the scaffolds in order to obtain bioactive (i.e., osteoconductive) composite scaffolds. The chapter focused in two areas: (1) investigations into scaffold fabrication using the emulsion freezing/freeze-drying technique and the influence of processing parameters on the formation of PHBV polymer scaffolds, HA/PHBV composite scaffolds and HA-containing PHBV/PLLA blend-based composite scaffolds; (2) evaluation of different scaffolds in terms of their porous structure, porosity, pore size, polymer crystallinity, compressive mechanical properties, in vitro biodegradation behavior and in vitro biological performance.

This document is currently not available here.