Fabrication and evaluation of polycaprolactone/gelatin-based electrospun nanofibers with antibacterial properties

Document Type


Publication Date



Nanofibrous scaffolds were fabricated through blending of a synthetic polymer, polycaprolactone (PCL), and a natural polymer, gelatin (GE), using an electrospinning technique. Processing and solution parameters were optimized to determine the suitable properties of PCL/GE-based nanofibers. Several characterizations were conducted to determine surface morphology by scanning electron microscopy (SEM), wettability using water contact angle measurement, and chemical bonding analysis using attenuated total reflectance (ATR) of PCL/GE-based nanofibers. Experimental results showed that 14% (w/v) PCL/GE with a flow rate of 0.5 mL/h and 18 kV demonstrated suitable properties. This nanofiber was then further investigated for its in vitro degradation, drug loading (using a model drug, tetracycline hydrochloride), and antibacterial testing (using zone inhibition method).

This document is currently not available here.