Finite clusters of fast-rotating spinless bosons in a harmonic trap

Document Type


Publication Date



Rapidly rotating two-dimensional ultracold Bose-Einstein condensates of spinless bosons in a harmonic trap have attracted considerable interest during the recent years. It is expected that, in the fast-rotation limit, the system of bosons will exhibit collective behavior similar to that of two-dimensional electrons in the fractional quantum Hall effect regime. It is predicted that the most robust correlated bosonic state in this regime will be the Bose Laughlin state at a half filling factor. An exact treatment of such a state is generally a formidable task due to the inherent many-particle nature of the wave function. We report in this work that a transformation to Jacobi coordinates allows one to obtain much desirable exact analytic closed-form expressions for various quantities of interest corresponding to a Bose Laughlin wave function for various finite systems of particles. © 2014 Elsevier Ltd.

This document is currently not available here.