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ABSTRACT 
 
 
Performance Analysis of Attention Based Deep Learning Models on Named Entity 

Recognition in Electronic Health Records 

(May 2023) 

Tariq Abdul-Quddoos 

Chair of Advisory Committee:  

Dr. Lijun Qian 

Mining Clinical Notes for relevant information has attracted a lot of 

interest in Natural Language Processing (NLP). Medical documents 

contain language whose distributions vary from that of the general 

domain and have a vocabulary that evolves with time. Recently, attention 

based deep learning language models have become the new state-of-the-art 

in language modeling capturing strong representations of language with 

respect to the context it is in, improving on classic clinical NLP task such 

as medication detection, and medication classification. 

In this thesis research, the Harvard Medical School’s 2022 National 

Clinical NLP Challenges (n2c2) is considered where the Contextualized 

Medication Event Dataset (CMED) has been given for the challenge. 

CMED is a dataset of unstructured Electronic Health Records (EHRs) 

and annotated notes that contain task relevant information about the
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EHRs. The goal of the challenge is to develop effective solutions for 

extracting contextual information related to medications from EHRs using 

data driven methods. In this thesis, variations of Google’s attention-based 

Bert architecture have been applied for this challenge, namely, Bert Base, 

BioBert, and two variations of Bio+Clinical Bert, that are pre-trained on 

general domain, biomedical domain, and clinical domain corpora, 

respectively. They are used to perform named entity recognition (NER) 

for medication extraction and medical event detection. Pre-processing 

methods have     been developed for breaking down EHRs for compatibility 

with the Bert model on NER task, and the variations of Bert are fine-

tuned with CMED for the n2c2 task. Performance analysis has been 

carried out using a script based on constructing medical terms from the 

evaluation portion of CMED with metrics including recall, precision, and 

F1-Score. The results demonstrate that Bio+Clinical Bert outperforms 

Bert Base and BioBert, as well as three of the top ten performers in the 

challenge. 

Index terms: Bi-directional encoder representations from 

transformers, electronic health records, natural language processing, 

transformer  
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CHAPTER 1 

 
INTRODUCTION 

 
 

The digitization of medical information sources has become 

widely adopted allowing for multiple data sources to be integrated 

together and ease of data sharing amongst multiple parties. An EHR is 

one of these digitized sources and is defined as a longitudinal electronic 

record of patient health information generated by encounters in any 

care delivery setting, including information on patient demographics, 

progress notes, problem lists, medications, vital signs, past medical 

history, immunizations, laboratory data, and radiology reports [6]. A 

2017 survey of patient registries in the United States by the National 

Quality Registry Network found that 68 percent of registries extract 

some data from EHRs [7], with the increased use of EHR’s data driven 

methods have become of interest amongst researchers for extracting 

relevant information from them. 

Natural Language Processing (NLP) is a field where data driven 

methods meet linguistics and NLP researchers have sought to utilize 

machine learning to model and mine EHRs. Machine learning serves 

to enhance the use of EHRs placing the burden of information 

extraction on models rather than people. Models have shown success 



2  

  
  
   

 

in extracting information from EHRs with classic tasks such as entity 

recognition, question answering, and context classification. NLP is also 

a field that is quickly progressing giving researchers access to more 

powerful tools for application on EHRs. 

In this work, information extraction tools on EHRs are advanced 

by applying variations of Bert, an attention based deep learning 

architecture for medication detection and medication context 

classification as part of Track 1 of the 2022 National Clinical NLP 

Challenges(N2C2). For this challenge the Contextualized Medication 

Event Dataset (CMED) had been released and is a dataset capturing 

relevant context needed to understand medication changes in clinical 

narrative [8], containing EHRs and annotated notes on the EHRs with 

task relevant information. 

1.1 National Clinical NLP Challenges 2022 

The N2C2 focuses on the study of applying data driven 

approaches to mining clinical information. Track 1 of the 2022 N2C2  

tasked researchers with developing solutions for generating information 

related to the context of medication mentions in EHRs using data 

driven methods. A description of each challenge is shown in Section 

1.1, with this work covering both task 1 and 2. Track 1 of the 2022 

National Natural Language Processing Clinical Challenges (N2C2) 
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focused on data driven approaches to identifying timelines relating to 

medication changes. There were 32 teams from 19 countries with a 

total of 211 submissions for this track. 

1.1.1 Task 1: Medication Detection. Task 1 for the 2022 

N2C2 tasked researchers with identifying medication mentions in 

EHRs. This task has been well studied by NLP researchers with it also 

being a task in the 2018 N2C2. Knowing what medications and where 

they are in EHRs are an essential step with unstructured EHRs for 

further medication related information extraction. 

1.1.2 Task 2: Medication Event Classification. Task 2 for 

2022 N2C2 tasked researchers with classifying identified medication 

mentions from task 1 as having events associated with them. An event 

refers to any change that has to do with a particular mediation within 

its context. The three classes for this task are given as disposition, no 

disposition, and undetermined. Disposition refers to an event 

occurring with the associated medication, no disposition refers to no 

event occurring for the associated medication, and undetermined 

refers to if annotators cannot determine if an event has occurred or not 

[9]. 
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1.1.3 Task 3: Multi-dimensional Context Classification. 

Task 3 for 2022 N2C2 is not covered in this work but is discussed for 

a full view of the goal of the competition and its relevance to future 

work. Researchers are tasked with classifying the context of 

medications that have been labeled with disposition in task 2. The 

context is classified across 4 dimensions, those dimensions being 

action, temporality, certainty, and actor. Action refers to type of 

change being discussed, temporality refers to when the change 

occurred, certainty refers to if a change was implemented or just 

discussed, and actor refers to who initiated the change [9]. 

1.2 Problem Statement 

The utilization of deep learning for EHR language modeling has 

been of interest among researchers for some time, with the N2C2 

holding numerous challenges around applied data driven approaches 

to clinical text mining. Capturing a machine understanding of EHR 

language is a complex problem due to the vocabulary distribution, 

numerous language syntax structures, and evolving vocabulary meanings 

in medical domain text. Language models have shown strong 

performance on classic task in EHRs such as entity recognition, entity 

classification, and question answering by capturing contextual 

information and including domain specific knowledge in word 
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embedding and modeling methods. Recurrent Neural Network (RNN) 

based architectures have been a popular method in the past for modeling 

EHR due to their auto-regressive nature or in the case of the RNN 

variant Bi-LSTM, their ability to capture bi-directional context, but 

suffer from loss of information as input examples increase with length. 

This has been overcome by attention-based language models such as 

GPT and BERT. Attention based models have become the state-of-the-

art in language modeling due to their ability to capture full contextual 

information without the restriction on context length. Strategies have 

also been developed for pre-training these models, so they are able to 

capture general representations of language distributions and then be 

fine-tuned for a given downstream task. In this work variations of the 

Bert model were applied to accomplish task 1 and task 2 as listed in 

Sections 1.1.1 and 1.1.2. Variations of Bert pre-trained on general, 

biomedical, and clinical domain corpora were applied to CMED, 

using Named Entity Recognition (NER) on both task. This study 

explored the performance of attention-based models on EHR data 

along with the differences in performance with regard to pre-training 

corpora. Pre- and post- processing methods were also of interest in this 

study given the wide range of syntactic structures used in EHRs, it can 

be difficult to judge how best the process an entire record. 
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1.3 Contributions 

The contributions of this research are as itemized below: 

1. Apply Bert model on EHR dataset for medication 

related information extraction, with pre-trained variations of 

Bert applied to see significance of pre-training corpora on fine-

tuning task. 

2. A challenge with unstructured electronic health 

records is that they hold a large variation of language syntax, 

making data cleaning and structuring a challenge. Processing 

methods were developed for structuring EHRs in formats 

compatible and effective with the Bert model and required 

competition evaluation formats. 

3. Named Entity Recognition is a popular method for 

extracting names of entities such as a city, car, or in the case of 

task 1 medications from text. This method is also extended to 

task 2, where medications are recognized by their event classes 

listed in section 1.1.2. 
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1.4 Outline of the Thesis 

The remaining part of this study is structured as follows: 

Chapter 2 contains the Literature review where relevant research 

works in the recent past are discussed. The methods used in this 

study are described in Chapter 3. The data used is also described in 

this chapter. Chapter 4 provides a description of all the experiments 

carried out in this research, along with a comparison between the 

results in this work and the top performing teams from the 2022 N2C2 

competition. Chapter 5 concludes this study by summarizing the 

contributions of this work and highlighting potential research to 

further build on this work.
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Background 

 
Understanding medication events in clinical narratives is 

essential to achieve a complete picture of a patient’s medication 

history. A complete picture of medication history is important for 

health care providers to decide on the proper steps for treatment, 

identify medication related symptoms, and plan for future 

treatments [9]. Track 1 of the 2022 National Natural Language 

Processing Clinical Challenges(N2C2) focused on data driven 

approaches to identifying timelines relating to medication changes. 

There were 32 teams from 19 countries with a total of 211 submissions 

for this track [5], including some of the results shown in this work. The 

N2C2 focuses on the study of applying data driven approaches to 

mining clinical information. The two previous challenges were held 

in 2018 and 2019, the first in 2018, focused on Cohort Selection for 

Clinical Trials(Track 1) [10] and Adverse Drug Events and 

Medication Extraction in EHR’s(Track 2) [11]. The second in 2019 

focusing on Clinical Semantic Textual Similarity(Track 1), Family 

History Extraction(Track 2), Clinical Concept Normalization(Track 

3), and Novel Data Use(Track 4). The N2C2 is an outgrowth of the 

Informatics for Integrating Biology(i2b2) center which also held 

clinical related data driven challenges from 2004-2014. The clinical 

notes dataset CMED used in this study are a portion of the data 
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from the 2014 i2b2/UTHealth Natural Language Processing shared 

task [12].The 2014 i2b2 corpus is longitudinal corpus of 1304 records 

representing 296 diabetic patients. The corpus contains three 

cohorts: patients who have a diagnosis of coronary artery disease 

(CAD) in their first record and continued to have it in subsequent 

records; patients who did not have a diagnosis of CAD in the first 

record, but developed it by the last record and patients who did not 

have a diagnosis of CAD in any record [12]. Other popular clinical 

corpora are the Mimic II [13] and Mimic III [14] clinical databases 

which are collections of nursing notes and discharge summaries 

gathered from ICUs in the Beth Israel Deconess Medical Center. 

Another corpora is the THYME corpus and it is a collection of over 

1200 notes from the Mayo Clinic, representing patients from the 

oncology department, specifically those with brain or colon cancer 

[15]. 

2.2 Electronic Health Records Language Modeling 
 

Language modeling of unstructured electronic health records has 

become a topic of interest amongst NLP researchers. EHRs contain 

language whose distribution varies from that of the general domain 

and have a vocabulary that evolves as the medical field evolves, 

making language modeling a challenge. A combination of word 

embedding methods and modeling choices have shown to overcome 

this challenge and achieve strong results on EHR text mining task. In 

the past recurrent neural networks (RNN) were a popular choice for 

modeling EHRs and a general choice for many language modeling task. 

RNNs are a class of neural networks used for modeling sequential data 
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that share parameters across the model [16], making them ideal for 

language modeling due to the sequential nature of language. 

Track 2 of the 2018 N2C2 like track 1 of the 2022 N2C2 

involved medication related information extraction and the RNN 

variant Bidirectional long short-term memory with Condition Random 

Fields (BiLSTM CRF’s), shown in Fig. 2.1 was a popular modeling 

choice, with 9 of the top teams incorporating them in their system. 

Conditional random fields (CRF’s) in general were extremely popular, 

with every top-performing team incorporating them in their system [17]. 

BiLSTM-CRFs use a BiLSTM to create a series of state representations 

that are then used as in- put into a CRF for labeling [17]. The typical 

modeling methods used named entity recognition (NER) for labeling 

and structuring data, where NER is a sub-problem of information 

extraction and involves processing structured and unstructured doc- 

uments and identifying expressions that refer to peoples, places, 

organizations, companies [18] or in this case, medications. A popular 

method for doing supervised learning with NER is classifying words 

using the BIO tag format. For each entity class of interest, B-

classname would be the label for the beginning of an entity name, I-

classname is a label for any word inside the entity class name after 

the first. O, standing for outside of entity, is the label for any words 

that do not fit into an entity class of interest. 
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Fig. 2.1. Bi-LSTM CRF Example. Adapted from [1]. 
 
 

For embedding methods most of the top-ranked teams in the 

2018 N2C2 utilized the entire MIMIC-III dataset to create pre-trained 

word embeddings with the Word2Vec package [11]. The Word2Vec 

package uses methods that are efficient for obtaining dense static 

embeddings using self-supervised methods, with code and pre-trained 

embeddings available online [19]. One Word2Vec method for comput- 

ing embeddings is the skip-gram algorithm and another is fast text. 

Dai et al. [11] applied a number of different embeddings methods in 

the 2018 N2C2, with two being the Word2Vec methods. Two more 

embedding methods used were variations of GloVe embeddings another 
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supervised learning method, the first being ConcatedVec, a concated 

version of GloVe embeddings and the other being PurifiedVec, which 

are GloVe embeddings encoded using principal component analysis 

[11]. 

Recently attention based models have found wide success in 

EHR language modeling with architectures such as Generative Pre-

Trained Tranformers (GPT) and Bi-directional Encoder 

Representations from Transformers (BERT). Libbi et al. [20] had 

applied the GPT varaint GPT2 for generating synthetic EHR data as 

a solution to overcoming privacy concerns with EHRs [20]. Laws 

pertaining to patient privacy make releasing clinical notes difficult, 

and as a result there are relatively few datasets of these notes available 

to researchers who are not affiliated with medical facilities [12]. EHR’s 

static embeddings such as Word2Vec methods find limitation with 

evolving vocabulary due to new words being Out of Vocabulary (OOV) 

or old words adopting an evolved meaning. Attention models such as 

Bert, solve this using wordpiece embeddings, where any word can be 

represented as an appended sum of wordpieces and where each 

wordpiece has a single numerical ID.  Attention models and wordpiece 

embeddings have become the state-of-the art in EHR language 

modeling and are further examined in depth in the next section. 

2.3 Attention Enhanced Language Models 
 

Attention based models have become a standard tool in the deep 

learning toolkit and the new state-of-the art in language modeling. An 

attention function can be described as mapping a query and a set of 

key-value pairs to an output, where the query, keys, values, and 
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output are all vectors, the output is computed as a weighted sum of 

the values, where the weight assigned to each value is computed by a 

compatibility function of the query with the corresponding key [2]. A 

standard neural network consist of a series of non-linear 

transformation layers, where each layer produces a fixed-dimensional 

hidden representation, for tasks with large input spaces. This paradigm 

makes it hard to control the interaction between components [21]. In 

the case of language modeling with RNNs, they suffer from a loss of 

information when input sequence lengths become too long. The 

transformer is a model architecture eschewing recurrence and instead 

relying entirely on an attention mechanism to draw global 

dependencies between input and output [2]. The transformer 

architecture is shown in Fig. 2.2, originally applied in language 

translation, consisting of an encoder and decoder. 
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Fig. 2.2. Transformer Architecture. Adapted from [2]. 
 
 
 

Transformers utilize an attention method called Self-attention, 

also called intra- attention which is an attention mechanism relating 

different positions of a single sequence in order to compute a 

representation of the sequence [2]. This attention mechanism is carried 

mathematically using a dot-product attention method shown in Fig. 2.3, 

where Q stands for the query, K for the key, and V for the value. When 

multiple of these intra-attention computations are done on separate 

linear transformations of the same input sequence, this is called 
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multi-head attention where the number of heads correspond to the 

number of intra-attentions done. 

 
 
 
 

 
 

Fig. 2.3. Dot Product Attention. Adapted from  [2]. 
 
 
 

An example of the outcome of a trained multi-head attention with 2 

attention heads on a sentence is shown in Fig. 2.4. The darker purple 

lines indicate that the attention mechanism recognizes a stronger 

connection between the words in the context they are in. 
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Fig. 2.5. Bert Model Architecture. Adapted from [3]. 
 
 
 
 

Bert is also a pre-trained model that can be easily fine-tuned by 

switching the output layer once Bert weights are initialized in pre-

training to one suitable for the applied task. This pre-training allows 

Bert to capture language distributions, significantly reducing training 

time for researchers and increasing performance on various tasks. The 

first task Bert is pre-trained on is Masked Language Modeling (MLM) 

also called the Cloze task. The Cloze procedure may be defined as a 

method of mutilating language patterns by deleting parts, and 

administering it to ”receivers” (readers or listeners) with them 

attempting to make the patterns whole again [23]. For the use of MLM 

on Bert some percentages of the input tokens are masked at random, 

and then those masked tokens are predicted [3]. The second task Bert 
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is pre-trained on is next sentence prediction. This is done because 

many important downstream tasks such as Question Answering (QA) 

and Natural Language Inference (NLI) are based on understanding the 

relationship between two sentences, which is not directly captured by 

language modeling [3]. 

The applied embedding method for Bert is wordpiece 

embeddings where words are split into wordpieces based on a pre-

defined vocabulary and those wordpieces are converted to a 

representative numerical ids for modeling. Wordpiece models are 

generated using a data-driven approach to maximize the language-model 

likelihood of the training data, given an evolving word definition [24]. 

Given a training corpus and a number of desired tokens D, the 

optimization problem is to select D word- pieces such that the resulting 

corpus is minimal in the number of wordpieces when segmented 

according to the chosen wordpiece model [24]. An example of wordpiece 

tokenization and embeddings are shown below: 

• Words: Jet makers fued with big orders at stake 

• Wordpieces: J ##et makers fe ##ud with big orders at stake 

• Embedding Array: [[13784, 10293] [12525] [175, 17226] [1114] [1992] 

[3791] [1120] [8219]] 

Pre-trained Bert models also incorporate special tokens into their 

embedding vocabulary for making it easier to accomplish a number of 

downstream tasks. The first token of every sequence is always a special 
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classification token ([CLS]), the final hidden state of Bert corresponding 

to this token is used as the aggregate sequence representation for 

classification tasks [3]. Another token is the [SEP] token, used to 

identify the boundary between two sentences in the same input 

example. Some other special tokens used are the [MASK], [UNK], and 

[PAD] tokens. 
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       CHAPTER 3                 

METHODOLOGIES 

 
The machine learning pipeline consists primarily of a text pre-

processing stage, a modeling stage, and a prediction post-processing 

stage. During pre-processing the EHR text is tagged with a BIO 

scheme for NER and processed to a form compatible with the Bert 

architecture. In the modeling stage, the model gives tag probabilities 

for words in the EHR text. In the post-processing state, predictions are 

processed in a format compatible with the evaluation methods used. 

Pipelines were done with both Tensorflow 1 and PyTorch with their 

processing slightly differing so the following section will focus on the 

PyTorch pipeline, since both tasks are implemented with PyTorch 

and only task 1 with TensorFlow. 

3.1 Pre-Processing 

The pre-processing pipeline is shown in figure 3.1 and in the 

following order consist of annotation parsing, EHR tagging, EHR 

sentence/section segmentation, word tokenization, and wordpiece 

tokenization. All pre-processing is done with Python and is largely 

rule-based with the exception of sentence segmentation, word 

tokenization, and wordpiece tokenization being done using libraries with 

pre-trained models. 
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Fig. 3.1. Pre-Processing Pipeline. 
 
 

Each EHR is accompanied by an annotated file with task 

relevant information such as medication names, medication character 

position, and medication event class. For both task 1 and 2 the 

annotations have the following format: 

• (Term Number), (Event Tag), (First Char Index), (Last Char Index), 

(Medication) 

Annotation parsing is done to create an ordered numpy array of all 

medications     from a single EHR with each row of the array in the 

following format: 

• (First Char Index, Last Char Index), (Event Tag), (Medication) 

All punctuation and spaces in a medication are replaced by the ”_” 

character. The numpy array is placed in order of largest first char 

index to smallest first char index for ease of tagging in the EHR. EHR 

tagging is done by placing the entity tag directly in the unstructured 
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EHR. The medication in the EHR are replaced by tagged medications 

in the following format: tag TAG Medication, where tag refers to the 

actual entity tag (Example: Drug for task 1 or Disposition for task 2) 

and the string ” TAG ” is used as a flag to indicate that this word is an 

entity of interest from the annotation, an example is shown below: 

• EHR /w No Tag: Patient placed on Antibiotics for the next 2 months. 

• EHR /w Tag: Patient placed on Drug TAG Antibiotics for the next 2 

months. 

The parsed annotation is contained in a numpy array ordered from 

largest to smallest character index so medications that appear last in 

the EHR are tagged first, that way character positions of other 

medications that need to be tagged in the EHR are not changed. 

When tagging medications in the order they appear in the EHR, a 

count is needed for how many extra characters have been added to 

the EHR after tagging, starting from the last medications eliminates 

that need. The tagged EHRs are then segmented using a combination 

of rules and models from the Punkt package. The EHR is first separated 

into sections based on three or more new line characters. The Punkt 

sentence tokenizer is then applied on the sections, which uses a 

language-independent, unsupervised approach to sentence boundary 

detection. It is based on the assumption that a large number of 

ambiguities in the determination of sentence boundaries can be 

eliminated once abbreviations have been identified [25]. Although 
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functioning for this work, the punkt tokenizer applied is a general 

domain tokenizer, not capturing all the different syntax structures 

held in an EHR. Each sentence returned by the tokenizer is an input 

example for modeling. For each EHR an additional input example is 

added to the beginning of each list of examples containing information 

on the EHR record id, this record id is used during post-processing and 

will be further discussed in the post-processing section (3.3). Each 

sentence is then tokenized using the Punkt word tokenizer and all 

punctuation is filtered out. All stop words are kept due to the 

embedding method being wordpiece embeddings, where most stop 

words are only representedby a single numerical ID and in the interest 

of keeping all sentence context for the attention mechanism applied in 

the model. All words are then tagged using the BIO format for NER, 

with this method being applied for both task 1 and task 2. The tags for 

task 1 after  applying the BIO tagging were B-Drug, I-Drug, and O. For 

task 2 the BIO tags were B-Disposition, I-Disposition, B-

NoDisposition, I-NoDisposition, B-Undetermined, I-Undetermined, 

and O. All word tokens were further tokenized into wordpieces, with 

each applied variation of Bert having its own pre-trained wordpiece 

tokenizer. A [CLS] token (Classification token) is added to the 

beginning of each sequence and a [SEP] (Sentence separator token) 

is added to the end of each sequence. [PAD] tokens are then added to 

each after the [SEP] token to meet the desired embedding length, for 
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this work all embedding lengths are set to 512. 

3.2 Modeling 
 

The Bert architecture captures strong representations of text 

using a self-attention based deep learning approach. This approach has 

shown to overcome the limitations of RNN based architectures that have 

a harder time capturing dependencies when they are too far apart. The 

modeling pipeline for both tasks can be seen in Fig. 3.2, consisting of 

the Bert input layer from Fig. 3.3, a Bert encoder, a feed-forward 

network, and a softmax layer. 

 

 
 

Fig. 3.2. Modeling Pipeline. 
 
 
 

The modeling pipeline for all three tasks consist of a pre-

trained Bert encoder with a feed-forward network or in the case of 

task 3 a Support Vector Machine for decoding into predictions. All 

Bert encoders follow the Bert Base architecture containing a total of 

110M parameters, made up of 12 transformer blocks each with 12 self-

attention heads and hidden size for all layers in the model is 768 [3]. 
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All wordpiece sequences are encoded to their input ids, where the input 

ids are a single numerical id for each wordpiece. The input ids (token 

embeddings) are summed together with segment embeddings, and 

positional embeddings. The segment embeddings are used to separate 

different sentences in the same sequence where each sentence would 

have a different segment embedding, in the case of this work all 

segment embeddings are the same. The positional embeddings are 

used since the Bert model contains no recurrence and no convolution, 

in order for the model to make use of the order of the sequence, some 

information must be injected about the relative or absolute position of 

the tokens in the sequence [2]. A linear layer is also applied before the 

Bert encoder for the models hidden size of 768 to be met. 
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Fig. 3.3. Bert Input Layer. Adapted from [3]. 
 
 

The hidden layers consist of only the Bert encoder and output 

layer consist of a feed-forward neural network. The Bert encoder for a 

single training example gives a matrix with dimensions: (embedding 

length x 768). The feed-forward network consists of two layers, the first 

with a hidden size of 256 and the second with a hidden size equivalent to 

the number of tags for the task. The feed-forward network’s output 

goes into a SoftMax layer for tag probabilities, with the SoftMax 

returning 3 probabilities for task 1 and 7 probabilities for task 2, the 

tag with the highest probability is used as the prediction. 

3.2.1 Bert Base. The Bert base model applied is pre-trained on 

general domain corpora keeping the case of all words so casing is kept 

for the fine-tuning done with CMED. The model was pre-trained on 

the following general domain corpora: 

• BooksCorpus [26] - 800M Words 
• English Wikipedia [27] - 2.5M Words 

Input 
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Pre-training was done on 4 cloud TPU’s in pod configurations (16 TPU 

chips total) over 4 days [3]. 

3.2.2 BioBert. BioBERT is the first domain-specific Bert based 

model pre- trained on biomedical data [4]. The applied model is pre-

trained with all lower case words so fine-tuning on CMED is done the 

same way. BioBert uses the previously explained Bert base model 

weights and does additionally pre-training on the following biomedical 

corpora: 

• PubMed Abstracts [4] - (4.5B Words) 
 

• PMC Full-text articles [4] - (13.5B Words) 
 

 

 
 

Fig. 3.4. BioBERT Pre-training. Adapted from [4]. 
 
 

 
3.2.3 Bio+Clinical Bert. Bio+Clinical Bert [28] is another 
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domain specific Bert base model pre-trained on clinical notes. The 

applied model is pre-trained with all lower case words so fine-tuning on 

CMED is done the same way. Bio+Clinical Bert uses the previously 

explained BioBert model weights and undergoes further pre-training 

on the following clinical corpus. 

• MIMIC-III [14] v1.4 database (2M Clinical Notes) 
 

There are two variations of Bio+Clinical Bert, one trained on all 

MIMIC-III notes and another only on MIMIC-III discharge 

summaries. These will be referred to as Bio+Clinical Bert All Notes 

and Bio+Clinical Bert Discharge Notes. Pre-training was done on a 

single GeForce GTX TITAN X 12 GB GPU over 18 days [28]. 

3.3 Post-Processing 
 

The post-processing pipeline is shown in Fig. 3.5 and consist of 

word reconstruction from word pieces and placing predictions in an 

annotated format for compatibility with an evaluation script released 

for the 2022 N2C2 competition. 
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Fig. 3.5. Post Processing Pipeline. 
 

Word reconstruction was done by identifying wordpieces with 

a ”##” string at the beginning of them and appending them to the 

previous wordpiece, that string is the identifier for a wordpiece that 

comes after the first wordpiece in a single word. Only the prediction 

from the first wordpieces was used to classify the entire word but 

strategies for using all wordpieces for prediction is of interest. 

Evaluation was done with on the predicted NER tags and an official 

evaluation script was provided by the 2022 N2C2 that evaluates 

predictions with respect to their character positions in the EHRs. NER 

evaluation was done for a view of model performance from only the tag 

perspective, before additional post-processing was done to construct 

entire medication names. For NER evaluation on the test data only 

word reconstruction was needed, and their respective predicted tags 

are compared with the ground truth tags. For evaluation on the test 
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data using the script provided by the 2022 N2C2 each detected 

medications is placed in the same annotated format as the training 

annotation files are in: 

• (Term Number), (Event Tag), (First Char Index), (Last Char Index), 

(Medication) 

For task 1 instead of an event tag the word Drug would be in its place. 

All words are in the order they are in as they appear in their respective 

EHRs so they are all placed into a list, along with their predicted tags. 

First the record ID token is searched for to identify what EHR the 

following words belong to and an .ann file is created for that specific 

EHR. The list is then searched through, looking for the B- tag for the 

beginning of an entity and if an I- tag follows than the word with that 

tag is appended to the previous word with a space in between. The 

EHR is then searched through to find the first and last character 

positions of the identified medication. For avoidance of giving 

medications with the same names the same character position’s, after 

a medication is found in the EHR, the next search will begin one 

character after that medications last character position. This process is 

continued until another record ID token is found, which will prompt 

the system to close the current annotation file and begin a new one. 

A flaw in this system is that there is no method for recovering 

punctuation as all are removed during pre-processing. Moreover, if a 

word is the same as a medications but not considered a medication, -
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its character position could be used if it appears before the actual 

medication and after the previously found medication. This is 

troublesome because the evaluation script evaluates based on 

character positions and not entity name by itself. 
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CHAPTER 4 
 

EXPERIMENTAL RESULTS & PERFORMANCE ANALYSIS 
 
 
 

4.1 Experimental Setup 
 

The Contextualized Medication Event Dataset (CMED) was 

released for track 1 of the 2022 N2C2 and is a dataset that captures 

relevant context of medication changes documented in clinical notes 

[9]. CMED consist of 500 clinical notes and annotated notes with task 

relevant information, with 9,012 medication mentions across all the 

notes. The class distributions of CMED for task 1 and task 2 of the 

2022 n2c2 are shown in Table I. 

 
 

TABLE I 

 CMED TASK 1 AND TASK 2 DISTRIBUTION. ADAPTED FROM [5] 

 
 

Task 1 Label Train Test Total 

Drug 7229 1783 9012 

Task 2 Label Train Test Total 

Disposition 1412 335 1747 

                  NoDisposition 5260 1326 6586 

                  Undetermined 557 122 679 
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The notes are split into 400 for training and 100 for testing. The training 

set sets contain 7,229 medication mentions and the testing set contains 

1,783 medication mentions. For task 2 there is a total of 1,747 entities 

labeled Disposition, 6,586 labeled NoDisposition, and 679 labeled 

Undetermined. The tags for task 1 after applying the BIO tagging 

explained in section 3.1 and their distributions are show in table II. 

 
 

TABLE II 

TASK 1 NER TAG COUNTS 

 
 

Tags B-Drug I-Drug O 

Training Count 7135 1222 260808 

Test Count 1764 280 68379 

Total Count 8899 1502 329187 

 
 
 
 

Something to point out is that the pre-processing methods are not 

capturing all the medications. The number of B-Drug tags should be 

equivalent to the Drug label in Table 4.1. For the training set there are 

94 missing and in the test set there are 19 missing. There is also a large 

class imbalance between all 3 tags with this being due to the 

combination of BIO tagging and the nature of unstructured real-

world data. The O tag is several orders larger than other tags as it 
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represents all words not part of a medication mentioned. Also, the B-

drug is much larger than I-Drug, with most medications being single 

word entities. 

The tags for task 2 after applying the BIO tagging explained in 

Section 3.1 and their distributions are show in Tables III and IV 

  

TABLE III 

TASK 2 NER TAG COUNTS 
 
 
Tags B-Disposition I-Disposition B-NoDisposition I-NoDisposition 

Train Count 1318 154 5260 1010 

Test Count 316 24 1326 255 

Total Count 1634 178 6586 1265 

 
 
 
 

TABLE IV 

TASK 2 NER TAG DISTRIBUTION CONT 

 
 
 
 
 
 
 
 
 

Like task 1, all entities for task 2 are not captured in pre-

processing, with entities missing from Disposition. Disposition has a 

total of 113 entities missing with 96 from the training set and 19 

Tags B-Undetermined I-Undetermined O 

Train Count 557 58 260808 

Test Count 122 1 68379 

Total Count 679 59 329187 
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missing from the test set. Also, like task 1, a class imbalance exist with 

O being several times larger than other classes and B-NoDisposition 

being much larger than other classes also. Although strong results are 

achieved with the current pre-processing methods, it is of interest for 

future work to recover the missing medication mentioned and applying 

methods for balancing classes.  

Fine-tuning is done over 10 epochs on CMED, with a batch size 

of 100 in sequences and a distributed strategy over four Nvidia V100 

Tensor Core GPUs is used. Each GPU creates a copy of the model, and 

the input batch is split equally amongst the copies. The primary 

machine learning pipeline is implemented with PyTorch version 1.2.0 

and another pipeline has been implemented using TensorFlow 1 and all 

models along with their wordpiece tokenizers used are from their 

Hugging- Face implementations accessible through the transformers 

library. Transformers is a library dedicated to supporting Transformer-

based architectures and facilitating the distribution of pre-trained 

models, it is an ongoing effort maintained by the team of engineers 

and researchers at Hugging Face with support from a community of over 

400 external contributors [29]. 

4.2 Evaluation Metrics 
 

For training the loss metric used in cross-entropy loss and is 

defined as a non-symmetric measure of the difference between two 

probability distributions [30] and is shown in Equation 4.1. 
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CrossEntropyLoss = −y true ∗ log(y predict) (4.1) 

 
 

For testing the metrics used are precision, recall, and F-score, with only 

F1-scores being recorded in this section. Precision is defined as the 

probability that an object is relevant given that it is returned by the 

system [31] or as the number of true positives (correct labels) for a 

particular label out of all entities returned by a system and is shown in 

Equation 4.2. 

 
Precision = TruePositive/(TruePositive + FalsePositive) (4.2) 

 
 

Recall is defined as the probability that a relevant object is returned by a 

system [31] or the number of true positives(correct labels) for a 

particular label out of all the entities that actually have that been 

returned by a system and is shown in Equation 4.3. 

 
Recall = TruePositive/(TruePositive + FalseNegative) (4.3) 

 
 

An F1-Score is a measure of a models accuracy on a dataset and is 

defined as the harmonic mean between precision and recall and is 

shown in Equation 4.4, in this work both micro and macro F1-Scores 

are used. The micro score is defined as weighted harmonic mean of 

the precision and recall for all tags and is the one shown in Equation 

4.4. 
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         MicroF 1Score = 2(Precicion ∗ Recall)/(Precision + Recall) (4.4) 

 
 

The macro score is defined as the average micro F1-Score for each tag 

and is shown in Equation 4.5. 

 
MacroF 1Score = sum(F 1Score)/NumTags (4.5) 

 
 

Evaluation is done on both NER tagged predictions and reconstructed 

annotated predictions. For the annotated predictions, each metric is 

evaluated using lenient and strict scores, meaning that if a medication 

is partially detected then it counts in lenient scores where with strict 

the entire medication will need to be detected. 

4.3 Task 1 Results 
 

Results shown for task 1 are the training results, NER test 

results, and annotated predictions test results. All results are based 

on PyTorch implementation, with TensorFlow implementation results 

included in the annotation results. The results are then analyzed in 

relation to the 2022 N2C2 results statistics and compared with the 

competition’s top performing teams. Training loss results for all 

applied PyTorch models can be seen in Fig. 4.1. The training loss 

shown is the average cross entropy per-step, with a total of 2150 steps. 

All models show convergence at a similar rate, with Bert showing the 

slowest, which is an expected result due to Bert being pre-trained on 
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only general domain corpora. Both BioBert and Bio+Clinical Bert 

Discharge showing convergence around 0.008, where Bert converges 

around 0.012 and Bio+Clinical Bert All Notes showing convergence 

around 0.015. 

 
 

 
 

Fig. 4.1. Task 1 Training Loss. 
 
 

 

NER results for task 1 are shown in Table V for each word tag. 

Overall, Bio+Clinical Bert Discharge Notes show the best 

performance with an average F1-score across all tags of 0.895, with 

BioBert following closely behind with an average score of 0.89. Bert 

shows the worst performance with an average score of 0.86. All models 

.1.2 • 

LO · 

'.?-f Q,B· 
11 
e ..., 
C. 
l1.j O 6-"' ' 
fl' u 

0 .,4 -

0.2 • 

(t0 -

0 500 

Tas.k:1 - Training Loss 

8Ei\1r 
l3IOIJERT 

BIO+-Cl)fl(t'ol BEf\T •AII Notes 
etotClimc.al BEF\'f Dl&charge Notes 

1000 
Steps-

' 
1500 2000 



39  

  
  
   

 

show good performance for both tags with the models making the best 

predictions for B-Drug entities with an average of 0.957, where I-Drug 

has an average of 0.8. 

TABLE V 

TASK 1 NER F1 SCORES (PYTORCH IMPLEMENTATIONS ONLY) 
 
 

Model B-Drug I-Drug 

Bert Base 0.94 0.78 

BioBert 0.96 0.82 

Bio+Clincial Bert All Notes 0.96 0.78 

Bio+Clinical Bert Discharge Notes 0.97 0.82 

 

The task 1 results with annotated medication predictions are shown 

in Table VI. The TensorFlow implementation of Bio+Clinical Bert 

Discharge Notes shows the best lenient score of 0.969 and the 

PyTorch implementation of Bio+Clinical Bert All Notes shows the 

best strict score of 0.937. The worst results are shown by Bert Base 

with a lenient score of 0.946 and a strict score of 0.910. On average 

models have a lenient score of 0.963 and strict score of 0.926. 
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TABLE VI  

TASK 1 ANNOTATED PREDICTIONS F1 SCORES 

 

Model Lenient F1 Strict F1 
 
 

Bert Base(PyTorch) 0.946 0.910 

BioBert(TF1) 0.963 0.924 

BioBert(PyTorch) 0.961 0.925 

Bio+Clinical Bert All Notes (TF1) 0.966 0.926 

Bio+Clinical Bert All Notes (PyTorch) 0.968 0.937 

Bio+Clinical Bert Discharge Notes (TF1) 0.969 0.931 

Bio+Clinical Bert Discharge Notes (PyTorch) 0.968 0.932 
 
 
 
 

 
The aggregate performance stats for task 1 can be seen in Table 

VII, with the TensorFlow implementations included in the 

distributions. For this task there were 28 participating teams with a 

total of 76 unique systems [5]. The average lenient and strict scores for 

our systems are higher than the competition average with every system 

outperforming the average lenient score and 3 outperforming the 

average strict score. 
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TABLE VII 

 2022 N2C2 TRACK 1 TASK 1 AGGREGATE STATS. ADAPTED FROM [5]. 

 
Metric Max Min Mean StdDev 

Strict F1 0.9716 0.0913 0.9238 0.1437 

Lenient F1 0.9846 0.0945 0.9586 0.1429 

 
 
 

The results for the top performing teams can be seen in Fig. 

4.2. The top performing team is the Toyota Technological Institute 

Nagoya with a lenient score of 0.9846 and a strict score of 0.9716. The 

Bio+Clinical Bert Discharge (TensorFlow) outperforms 3 of the top 10 

teams in lenient scores and Bio+Clinical Bert All Notes (PyTorch) 

outperforms 2 of the top 10 teams in strict scores. 
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Fig. 4.2. Top Teams Results for Task 1. Adapted from [5]. 
 
 
 
 

4.4 Task 2 Results 
 

Results shown for task 2 are the training results, NER test 

results, and annotated predictions test results. All results are based 

on PyTorch implementation, with no TensorFlow implementation done 

for this task. The lenient (micro & macro) results are then analyzed in 

relation to the 2022 N2C2 results statistics and com- pared with the 

competitions top performing teams. 

Training loss results for all applied PyTorch models can be seen 
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in Fig. 4.3. The training loss shown is the average cross entropy per step, 

with a total of 2150 steps. All models show convergence at a similar 

rate, with Bio+Clinical Bert Discharge Notes showing the slowest 

convergence, which is an unexpected result as it pre-trained already on 

clinical data on top of the training corpus that all other models are pre-

trained on. Both BioBert and Bio+Clinical Bert All Notes show 

convergence around 0.02. Where Bert converges around 0.027,  

Bio+Clinical Bert Discharge Notes showing convergence around 0.035. 

All convergence values are also much higher than those of task 1 

although both being trained with the same NER strategy, this is 

expected due to task 2 having 7 tags as opposed to task 1 having 3 tags. 
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Fig. 4.3. Task 2 Training Loss. 

 
 
 
 

NER results for task 2 are shown in Tables VIII and IX for each 

word tag. Overall Bio+Clinical Bert All Notes show the best 

performance with an average score of 0.62, with Bio+Clinical Bert 

Discharge Notes following closely behind with an average score of 

0.615. BioBert shows the worst performance with an average score of 

0.59 with Bert close behind with an average score of 0.60. Although 

BioBert on average is outperformed by Bert, this is largely due to the I-

Unknown tag, with this tag only containing one example and Bert 

being the only applied model making the correct prediction on that 
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tag. For each tag on average models have scores of 0.75 for B-Disp, 

0.60 for I-Disp, 0.91 for B-NoDisp, 0.81 for I-NoDisp, 0.51 for B-

Undetermined, and 0.07 for I-Undetermined. 

 
 

TABLE VIII 

TASK 2 NER F1 SCORES (PYTORCH IMPLEMENTATIONS ONLY) 

 
 
 

TABLE IX 

TASK 2 NER F1 SCORES CONT. (PYTORCH IMPLIMENTATIONS ONLY) 

 
 
 
 
 
 
 

Model B-Disp I-Disp B-NoDisp I-NoDisp 

Bert Base 0.71 0.55 0.89 0.76 

BioBert 0.73 0.60 0.90 0.84 

Bio+Clinical Bert All Notes 0.78 0.67 0.93 0.80 

Bio+Clinical Bert Discharge Notes 0.78 0.59 0.92 0.85 

Model B-Undetermined I-Undetermined 

Bert Base 0.45 0.29 

BioBert 0.49 0.00 

Bio+Clinical Bert All Notes 0.55 0.00 

Bio+Clinical Bert Discharge Notes 0.55 0.00 
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The task 2 results with annotated medication predictions are 

shown in Tables X and XI. Bio+Clinical Bert All Notes show the best 

results for micro lenient scores of 0.875 and Bio+Clinical Bert 

Discharge for micro strict with a score of 0.825. The worst results are 

shown by Bert with a micro lenient score of 0.828 and a micro strict 

score of 0.792. The same trend is shown for macro scores with the 

Bio+Clinical Bert’s showing the best performance and Bert having the 

worst performance. For micro scores models show an average lenient 

score of 0.856 and average strict score of 0.825. For macro scores models 

show an average lenient score of 0.721 and average strict score of 

0.704. 

 

TABLE X 

 ANNOTATED MEDICATION TASK 2 MICRO F1 SCORES 

 
 
 
 
 
 
 
 

Model Micro Lenient F1 Micro Strict F1 

Bert 0.828 0.792 

BioBert 0.846 0.819 

Bio+Clinical Bert All Notes 0.875 0.840 

Bio+Clinical Bert Discharge Notes 0.873 0.848 
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TABLE XI 

 ANNOTATED MEDICATION TASK 2 MACRO F1 SCORES 
 
 

Model Macro Lenient F1 Macro Strict F1 

Bert 0.681 0.661 

BioBert 0.705 0.689 

Bio+Clinical Bert All Notes 0.752 0.731 

Bio+Clinical Bert Discharge Notes 0.749 0.734 

 

The aggregate performance stats for task 2 can be seen in Table 

XII the models in this work are not in the distribution. For this task 

there were 19 participating teams with a total of 52 unique systems 

[5]. The average for all systems in this work outperformed the average 

macro and micro lenient scores in the competition, with all systems 

outperforming the average for micro and the same for the macro 

scores except for Bert. 

 
TABLE XII 

2022 N2C2 TRACK 1 TASK 2 AGGREGATE STATS. ADAPTED FROM [5]. 

 
 
 
 

 

 

The results for the top performing teams can be seen in Fig. 

4.4. The top performing team is the Toyota Technological Institute 

Metric Max Min Mean StdDev 

Lenient micro F1 0.9225 0.2170 0.8232 0.1249 

Lenient macro F1 0.8348 0.2666 0.6928 0.1347 
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Nagoya with a micro lenient score of 0.9225. Bio+Clinical Bert All 

Notes outperforms 3 of the top 10 teams in micro lenient scores and 

Bio+Clinical Bert Discharge Notes outperforms 1 of the top 10 teams 

in macro lenient scores. 

 
 
 
 

 
Fig. 4.4. Top Teams Results for Task 2. Adapted from [5]. 

 
 
 
 

4.5 Discussion 
 

The models in this show performance comparable to teams in the 

top 10 ranking for task 1 and task 2 of the 2022 N2C2 competition. For 

task 1 all models showed comparable results for lenient and strict scores 
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but slightly differed between the same model with different 

implementations. This is thought to be due to differences in processing 

methods used to accommodate the respective framework requirements. 

The TensorFlow implementation is applied with the use of scripts 

from Google research, where in the PyTorch implementation all 

processing scripts is created by researchers, with the Bert variation 

imported as a model layer from the transformers library. 

The NER results for task 1 in Table 4.5 show that the PyTorch 

implementation did not perform as well on I-Drug tag, with all scores 

.8+-.2. This looks to be a primary cause for lower strict scores as strict 

scores require the character position of an entire medication. The 

confusion matrix for Bio+Clinical Bert Discharge Notes for task 1 is 

shown in 4.5, out of the 280 entities with the ground-truth I-Drug 65 

or 23% are mislabeled, bringing down the recall score, with this 

looking to be a strong factor reducing the F1-score. 
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Fig. 4.5. Task 1 Confusion Matrix. 
 
 

The NER results for task 2 shown in Table 4.5 show moderate 

performance for all tags, with the worst performance on I-

Disposition and B-Undetermined, I-Undetermined not included 

because only 1 entity with label in test set. For Bio+Clinical Bert All 

Notes, I-Disposition has a score of .67 which looks to be a result of 

sample size for entities with the tag, as the test set has a total of 24 

with 13 labeled correctly as shown in Fig. 4.6. As for B-Undetermined 

as shown in Fig. 4.6, 32 of out 122 entities with the ground truth B-

Undetermined are given B-NoDisposition. Some thoughts on why 

this score is lower is that the nature of B-Undetermined entities is 

ambiguous meaning that they lie somewhere between between 

Disposition and NoDisposition. 

 
 
 
 

Task 1 Confusion Matrix 
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Fig. 4.6. Task 2 Confusion Matrix. 
 
 
 
 

An issue observed from the evaluation data is that the models 

do not detect well on short sequences. Often medications are missed for 

sequences of word length 3 or less. This is also thought to be an issue 

when using a general tokenizer like the Punkt tokenizer as previously 

mentioned in section 3.1. The Punkt tokenizer does not capture all the 

different language syntax structures in an EHR when tokenizing and 

often splitting sections up based on appearance of sentence ending 

punctuation. This can be a problem due to periods showing up in 

different contexts such as lists not necessarily indicating the end of a 

sentence, making many input sequences shorter than they may need to 

be. Tools specific to breaking down clinical text such as Medspacy 

[32] are available and of interest for how they affect system performance 
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in comparison to the Punkt tools. There can also be medications 

names such as “insulin” where in one context, can be a medication and 

in another context would not be a medication, models have shown to 

have trouble with these kinds or words. Punctuation removal also shows 

some risk for strict scores where some medications include punctuation 

such as “/” or “-”. 



53  

  
  
   

 

CHAPTER 5  

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 
 

Researchers had been tasked with identifying medication 

mentions and events regarding changes in medication for Track 1 of 

the 2022 National Clinical NLP Challenges. The Contextualized 

Medication Event Dataset (CMED) has been pro- vided to accomplish 

these tasks. In this research work, the Variations of the Bert model, 

namely, Bert base, BioBert, Bio+Clinical Bert with MIMIC III 

Discharge notes, and Bio+Clinical Bert with all MIMIC III notes were 

fine-tuned on CMED and applied for identifying medication mentions 

in clinical notes and identifying if an event is associated with the 

medication. Both tasks were formulated as an NER task with a BIO 

tag scheme for entities of interest. Results for task 1 showed that the 

best performance achieved were from the TensorFlow 

implementation of Bio+Clinical Bert with Discharge MIMIC III notes 

with a lenient F1-score of 0.969 and the PyTorch implementation of 

Bio+Clinical Bert with all MIMIC III notes with a strict F1-score of 

0.937. As far as the overall competition, these models outperform 3 

of the top 10 teams for lenient scores and 2 out of the top 10 for strict 

scores. On average the proposed models had a lenient score of 0.963 and 

0.926 for this task. Results for task 2 showed the best results from 
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Bio+Clinical Bert with All MIMIC III notes with a micro lenient F1-

score of 0.875 and Bio+Clinical Bert with MIMIC III Discharge Notes 

with a micro strict F1-score of 0.848. For the overall competition this 

model outperforms 3 out of the top 10 teams for micro lenient scores. 

On average the proposed models have a micro lenint score of 0.856 and 

a micro strict score of 0.825 for task 2. 

 
5.2 Future Work 

 
Although models achieve results comparable to those in the 

top 10 ranking of the competition, further work is of interest to make 

the proposed approach perform better. Class imbalance has been 

noted as an issue for both tasks, with this reflected in the results 

achieved for labels. Methods for dealing with the class imbalance are 

of interest. In the 2018 N2C2 class imbalance was tackled using 

different sampling methods, cost-sensitive learning, ensemble 

learning, and one-class classification [33]. Applying a clinical 

tokenizer such as Medspacy is of interest as a replacement for the 

Punkt tokenizer. It has been mentioned that a general tokenizer such 

as Punkt’s does not capture all of the syntax structures in EHRs. 

Medspacy combines statistical and symbolic methods and is created 

by a team of practitioners at the Veterans Health Administration and 

University of Utah and is a Spacy-based [34] based library containing 

components targeting medical text [32]. Another variation of the Bert 
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model, MedBert is of interest. MedBert is trained on similar sources of 

all other applied variations of Bert with the addition of previously 

released N2C2 clinical data [35]. Other further work of interest is 

reconstruction of entire medications with their punctuation to increase 

strict scores as punctuation is removed during pre-processing, developing 

methods for better medication detection in short sequences to increase 

recall, utilizing filtering methods such as pos-tagging to filter out mis-

tagged words to increase precision, and developing pipeline for task 3 of 

the 2022 N2C2 competition. 
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