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Abstract

This paper examines the numerical solution of the nonlinear Fisher equation that is used to find the
growth of tumour cells in the brain. By employing new methods that transform nonlinear partial
differential equations (PDE) into nonlinear ordinary differential equations (ODE) through spatial
discretization. The stability of the resulting nonlinear system is evaluated using Lyapunov’s crite-
ria. Implicit stiff solvers, including various orders of backward differentiation formulas, are used to
address the ODE system. The efficiency of these numerical methods is demonstrated through two
examples, and a comparison with existing methods from the literature is conducted. Compared
to traditional methods, the proposed numerical techniques are distinguished by their simplicity,
precision, and remarkable efficiency.

Keywords: Method of lines; Fisher equation; Stability analysis; Backward differentiation for-
mula
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2 V. Vimal et al.

1. Introduction

The Fisher equation, formulated in Fisher (1937), is discussed in Section 2. Equation (1) has
been explained in more detail in the paper by Kolmogorov et al. (1937). This equation is also
known as the Fisher-Kolmogorov-Petrovsky-Piscunov (Fisher-KPP) equation. The exact solu-
tion of the Fisher equation was initially discovered by Ablowitz and Zeppetella (1979). Fisher’s
equation (1) has broad applications, including nuclear chemistry, chemical kinetics (Malfliet
(1992)), and a multitude of scientific and engineering fields. In this chapter, a wide range of
topics has been investigated, including population growth models, flame propagation, neuro-
physiology, autocatalytic reactions, and branching Brownian motion, as cited in the references
Frank-Kamenetskii (1969), Ammerman and Cavalli-Sforza (1971), and Bramson (1978); Canosa
(1969). These various applications emphasize its role in understanding physical, chemical, biolog-
ical, and medical phenomena (Vimal et al. (2024a); Wang (1988); Polyanin and Zaitsev (2003);
Sherratt (1998)).

Many researchers have explored the theory behind Fisher’s equation, and computational methods
have been widely used to study its traveling wave solutions. This has resulted in extensive discus-
sions and the publication of valuable research. Significantly, Tyson and Brazhnik (2000), Kawahara
and Tanaka (1983), Larson (1978), and Vimal et al. (2024b) provide in-depth overviews of Fisher’s
equation. Ablowitz and Zeppetella (1979) offers explicit solutions for specific wave speeds, and
Chandraker et al. (2015) introduces a semi-implicit difference scheme. Hussan and Mebrate (2022)
presents semi-implicit time discretization methods, such as Crank-Nicolson schemes.

Mickens (1994) proposes an optimized finite-difference scheme tailored for Fisher’s equation.
Moreover, modified versions of Fisher’s reaction-diffusion equation have been addressed using
radial basis functions in conjunction with the differential quadrature method (Hanaç et al. (2022)).
Fisher’s equation’s applicability extends to bounded domains through Faedo-Galerkin’s method
(Hamrouni et al. (2021)), and it has been solved using an extended homogeneous balance method
for various nonlinear equations, including Fisher’s (Fares et al. (2021)). Additionally, symmetries
of the generalized Fisher equation have been explored (Rosa et al. (2020)), and Fisher’s equation
has been extended to the fuzzy fractional Fisher equation in a Caputo sense (Ahmad et al. (2021)).
In the numerical domain, Qiu and Sloan (1998) have utilized a moving mesh method to provide
solutions for Fisher’s equation. These thorough investigations and applications highlight the broad
importance and flexibility of Fisher’s equation in scientific research and problem-solving across
multiple disciplines.

This research paper presents a systematic and innovative approach by directly applying the method
of lines (MOL) to tackle nonlinear time-dependent Fisher’s equations. In Section 2, the mathemat-
ical formulation of the Fisher equation is described. In Section 3, the derivatives along the X-
direction are approximated by finite differences in the method of lines. The suggested approach,
the method of lines (MOL), involves converting the nonlinear PDEs into a system of nonlinear
ODEs. In Section 4, the stability of this nonlinear system is evaluated through Lyapunov’s indi-
rect method. In Section 5, the nonlinear system is linearized using Taylor series expansion and
subsequently solved with three different schemes of backward differentiation formulas. In Section
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6, comparison with other existing numerical methods, two test problems have been successfully
solved and their numerical solutions have been thoroughly discussed. The results are presented
through an error table, as well as two- and three-dimensional figures. In Section 7, the conclusion
is given.

2. Mathematical Formulation

The Fisher equation is expressed as:

∂u

∂t
=

∂2u

∂x2
+ αu(1− u), 0 ≤ x ≤ 1, t > 0, (1)

with initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ 1.

Additionally, consider the boundary conditions,

u(0, t) = f1(t), 0 ≤ t ≤ T,

u(1, t) = f2(t), 0 ≤ t ≤ T.

In this framework, the symbol α represents a factor affecting reactions, while T denotes the final
time in our mathematical analysis. Additionally, the functions u0(x), f1, and f2 are used to define
initial and boundary conditions for the model.

3. Proposed Scheme

In this paper, we present an effective solution approach for time-dependent nonlinear Fisher equa-
tions through creative schemes we have developed. Our approach begins with the discretization
of the X-direction using the method of lines technique. To achieve this goal, we can partition the
spatial dimension into K + 1 evenly spaced points using a uniform interval of h = 1

K
. As clearly

illustrated, partial derivatives are estimated using the central difference method, as shown below:

∂u

∂x
(xj, t) =

uj+1(t)− uj−1(t)

2h
, j = 1, 2, . . . , K − 1,

∂2u

∂t2
(xj, t) =

uj−1(t)− 2uj(t) + uj+1(t)

(h)2
, j = 1, 2, . . . , K − 1.

Upon substituting the boundary conditions u0(t) = 0 and uK(t) = 0 into Fisher’s equation (1),
we effectively convert it into a system of nonlinear ordinary differential equations (ODEs). These
ODEs are defined by their initial conditions, shaping the system’s behavior and evolution over
time:

duj(t)

dt
=

uj−1(t)− 2uj(t) + uj+1(t)

(h)2
+ αuj(1− uj),

uj(0) = u0(xj), j = 1, 2, . . . , K − 1.

3
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4 V. Vimal et al.

Here, with uj(t) = u(xj, t) representing the system’s variables, this set of (K − 1) × (K − 1)
nonlinear differential equations can be efficiently expressed in matrix form as follows:

dU

dt
= F (U, t), (2)

U(0) = U0.

In our formulation, we define the state vector as U(t) = [u1(t), u2(t), ..., uK−1(t)]
T , and the non-

linear function F consists of elements fj given by the equation:

fj(u1, u2, ..., uN−1, t) = λuj−1(t) + uj(α− αuj − 2λ) + λuj+1(t). (3)

Here, λ represents a constant calculated as 1
(∆x)2

, and the index j ranges from 1 to K − 1. As
part of our research, we will thoroughly examine this nonlinear system of ordinary differential
equations (referred to as Equation (3)) with specific emphasis on its stability, uniqueness, and
existence characteristics. This analysis will yield valuable insights into the behavior and attributes
of the system under investigation.

Theorem 3.1.

Investigating the initial value problem (IVP) involves treating F(U, t) as a continuous function
and exploring it in the following manner:

dU

dt
= F (U, t), U(t0) = a,

allows for the existence of a solution denoted as U = f(t) within the interval |(t− t0)| ≤ δ, where
δ > 0.

Proof:

Consider the functions defined as follows:

fj(u1, u2, ..., uK−1,t) = λuj−1(t) + uj(α− αuj − 2λ) + λuj+1(t).

Given that j ranges from 1 to K − 1, and recognizing that the functions are clearly continuous, we
can confidently assert the existence of a solution for this initial value problem (IVP). ■

Theorem 3.2.

Let C1 denote the set of functions that are differentiable and have continuous first derivatives.

If F(U, t) ∈ C1, then a unique solution exists for the initial value problem (IVP).

4
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Proof:

The partial derivatives of the functions described in Equation (4) can be expressed as follows:

∂fj
∂uj

= α− 2αuj − 2λ, j = 1, 2, ..., K − 1, (4)

∂fj
∂uj+1

= λ, j = 1, 2, ..., K − 1, (5)

∂fj
∂uj−1

= λ, j = 1, 2, ..., K − 1, (6)

∂fj
∂ui

= 0, j = 1, 2, ..., K − 1, i ̸= j − 1, j, j + 1. (7)

Every partial derivative of the function is in existence and remains continuous across the entire do-
main, thereby confirming that F(U, t) ∈ C1. Consequently, the IVP possesses a distinct solution.
The forthcoming section will explore an examination of the stability of the nonlinear system. ■

4. Stability Analysis

In the context of nonlinear stability analysis, Lyapunov’s stability theory stands out as a funda-
mental mathematical instrument. To assess stability, a significant approach involves determining
the eigenvalues of the Jacobian matrix at the equilibrium point of a nonlinear autonomous system.

When we look at the nonlinear system described in Equation (3), because it operates on its own
without external influences, we observe the following:

dU

dt
= F (U),

U(0) = U0.

Where F represents a nonlinear function of U , the elements fj can be expressed as follows:

fj(u1, u2, ..., uK−1,t) = λuj−1(t) + uj(α− αuj − 2λ) + λuj+1(t).

For j = 1, 2, . . . , K− 1, we can expand F as a Taylor series centered around the equilibrium point
U∗ = 0,

F (U) ≈ F (U∗) + F (U∗)(U − U∗)

≈ f ′(U∗)U.

We will investigate the system’s stability as described in Equation (5) by employing Lyapunov’s
Indirect Method.

5
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6 V. Vimal et al.

4.1. Lyapunov’s Indirect Method

Consider the equilibrium point at x = 0 for the equation ẋ = f(x). Here, f : D −→ Rk is a
continuously differentiable function, and D represents a neighborhood around the origin. Let

A =
∂f

∂x
|x=0.

Then,
1. The origin exhibits asymptotic stability when the real part of each eigenvalue λi of matrix A
satisfies Re(λi) ≤ 0,
2. The origin is deemed unstable if there exists at least one eigenvalue Ai of matrix A such that
Re(λi) > 0.

For the nonlinear system described in Equation (5), we can provide the Jacobian matrix as follows:

F (U (k+1)) = F (U (k)) + J
(k)
F (U (k+1) − Uk) +O(∆t2), (8)

where

J
(k)
F =

 ( ∂f1
∂u1

)(k) ( ∂f1
∂u2

)(k) . . . ( ∂f1
∂uK−1

)(k)

...
(∂fK−1

∂u1
)(k) (∂fK−1

∂u2
)(k) . . . ( ∂fK−1

∂uK−1
)(k)

 .

The Jacobian matrix, denoted as matrix ‘A’ and evaluated at the equilibrium point, can be repre-
sented as a tridiagonal matrix, and its specific form is

A =


R1 λ
λ R2 λ

. . . . . . . . .
λ RK−2 λ

λ RK−1

 ,

given that Rj = α− 2αuj − 2λ, where j = 1, 2, ..., K − 1.

The eigenvalues of the matrix are expressed as:

µs = −2λ+ 2λ cos

(
sπ

n+ 1

)
, for s = 1, 2, . . . , n.

Given that

−1 < cos

(
sπ

n+ 1

)
< 1,

it follows that

2λ cos

(
sπ

n+ 1

)
< 2λ.

6
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Thus, we have:

−2λ+ 2λ cos

(
sπ

n+ 1

)
< 0.

This implies that all eigenvalues of the Jacobian matrix lie in the open left half of the complex
plane. Consequently, the origin is asymptotically stable for the nonlinear system.

5. Numerical Integration

Partition the time span [0, T ] into M + 1 equidistant intervals, each with a time step of ∆t =
T/M . Then, employ backward differentiation formulas (BDFs) for implicit time integration, such
as BDF1 (backward Euler), BDF2, or BDF3, to approximate the solution iteratively at each time
step.

5.1. Backward Differentiation Formula of order one (BDF1)

Uk+1 = Uk + (∆t)F (Uk+1, tk+1), k = 0, 1, ...,M − 1, (9)

we denote the initial condition as U0, and for the purpose of iterative solution, the nonlinear system
(7) can be linearized by employing a Taylor series expansion centered at the vector U (k).

F (Uk+1) = F (U (k)) + J
(k)
F (U (k+1) − U (k)) +O(∆t)2, (10)

J
(k)
F denotes the Jacobian matrix corresponding to the system at the kth time step.

By substituting Equation (10) into Equation (9), we obtain:

Uk+1 = Uk + (∆t)[F (U (k)) + J
(k)
F (U (k+1) − U (k))],

Uk+1 = Uk + (1−∆tJ
(k)
F )−1∆t[F (U (k))]. (11)

5.2. Backward Differentiation Formula of order two (BDF2)

Uk+1 =
4

3
Uk − 1

3
Uk−1 +

2

3
(∆t)F (Uk+1, tk+1), k = 0, 1, ...,M − 1, (12)

U1 is obtained using BDF1, and for linearization, we employ a Taylor series expansion

F (Uk+1) = F (U (k)) + J
(k)
F (U (k+1) − U (k)) +O(∆t)2, (13)

7
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8 V. Vimal et al.

given that J (k)
F represents the Jacobian matrix at the kth time level. When we insert Equation (13)

into Equation (12), we get

U (k+1) =
4

3
U (k) − 1

3
Uk−1 +

2∆t[F (U (k)) + J
(k)
F (U (k+1))− U (k)]

3
, (14)

k = 2, . . . ,M(
I − 2∆t

3
J
(k)
F

)
U (k+1) =

(
4

3
I − 2∆t

3
J
(k)
F

)
U (k) +

2∆t

3
F (U (k))− 1

3
(U (k−1)),

U (k+1) = (I − 2∆t

3
J
(k)
F )−1

(
4

3
I − 2∆t

3
J
(k)
F

)
U (k)

+

(
I − 2∆t

3
J
(k)
F

)−1
2∆t

3
F (U (k))−

(
I − 2∆t

3
J
(k)
F

)−1
1

3
(U (k−1)).

(15)

Therefore, the presented scheme has been linearized, simplifying the task to solving the linear
algebraic equations described in Equation (15), which results in reduced computational time.

5.3. Backward Differentiation Formula of order three (BDF3)

Uk+1 =
18

11
Uk − 9

11
Uk−1 +

2

11
Uk−2 +

6

11
(∆t)F (Uk+1, tk+1), k = 0, 1, ...,M − 1, (16)

U1 and U2 are obtained through BDF1, and for the purpose of linearization, we employ a Taylor
series expansion

F (Uk+1) = F (U (k)) + J
(k)
F (U (k+1) − U (k)) +O(∆t)2, (17)

with J
(k)
F symbolizing the Jacobian matrix at the kth temporal stage.

Replacing Equation (17) into Equation (16) yields:

Uk+1 =
18

11
Uk − 9

11
Uk−1 +

2

11
Uk−2

+
6∆t[F (U (k)) + J

(k)
F (U (k+1))− U (k)]

11
, k = 0, 1, . . . ,M − 1 (18)

(
I − 6∆t

11
J
(k)
F

)
U (k+1) =

(
18

11
I − 6∆t

11
J
(k)
F

)
U (k) +

6∆tF (U (k))

11
− 9

11
U (k−1) +

2

11
U (k−2),

U (k+1) =

(
I − 6∆t

11
J
(k)
F

)−1(
18

11
I − 6∆t

11
J
(k)
F

)
U (k) +

(
I − 6∆t

11
J
(k)
F

)−1
6∆tF (U (k))

11

−
(
I − 6∆t

11
J
(k)
F

)−1
9

11
U (k−1) +

(
I − 6∆t

11
J
(k)
F

)−1
2

11
U (k−2). (19)
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By representing J
(k)
F as the Jacobian matrix at the kth time step, this approach becomes linearized,

simplifying the problem to solving linear algebraic equations and thereby reducing computational
time significantly.

6. Numerical Findings and Discussion

The effectiveness and versatility of the proposed numerical method have been thoroughly tested
through multiple trials. Various combinations of α values and different final time settings were
used to compute solutions, which were then systematically compared with the exact solutions
from illustrative examples. Furthermore, a comparative analysis was conducted to compare the
numerical results with those available in existing literature. All computational tasks were executed
using MATLAB codes developed specifically for this purpose, ensuring accuracy and reliability.

Example 6.1.

Consider the Fisher equation

ut = uxx + αu(1− u), (20)

subject to the given initial condition,

u(x, 0) =
1

(1 + e
√

α

6
x)2

. (21)

Additionally, considering the prescribed boundary conditions,

u(0, t) =
1

(1 + e−5t)2
, 0 ≤ t ≤ T,

u(1, t) =
1

(1 + e1−5t)2
, 0 ≤ t ≤ T.

The exact solution, as provided in Wazwaz and Gorguis (2004), is expressed as:

u(x, t) =
1

(1 + e
√

α

6
x− 5

6
αt)2

. (22)

In our approach utilizing the method of lines semi-discretization, we have directly solved the Fisher
equation. We used first, second, and third-order implicit solvers of backward differentiation for-
mulas (BDFs) and compared the numerical solutions to the exact solutions, at time intervals of
∆t = 0.000005, for two different values of α: specifically, α = 6 and α = 1. Figures 1, 2 and 3
show the comparison between numerical and exact solutions for ∆t = 0.000005 and α = 6, while
Figures 4, 5 and 6 display the same for α = 1. Furthermore, Table 3 and Table 4 provide the error
analysis for both α = 6 and α = 1 at ∆t = 0.000005. For a visual representation of the absolute
error, Figures 7 and 8 illustrate graphs for various ∆t values, for α = 6 and α = 1.

To evaluate the performance of our proposed numerical schemes, Tables 5, 6, 7, 10, and 11 com-
pare our results with previously published schemes for Example 1, at α = 6 for different values
of time steps. Similarly, Tables 8 and 9 conduct the same comparison for Example 2 at α = 1.

9
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10 V. Vimal et al.

Remarkably, the numerical solutions achieved through the implementation of BDF2 and BDF3
display superior accuracy when compared to the outcomes produced by BDF1. The proposed nu-
merical schemes include implicit solvers, specifically, BDF1, BDF2, and BDF3, designed to en-
hance accuracy in addressing the Fisher equation. Compared to the methods described by Bastani
and Salkuyeh (2012), Mittal and Jiwari (2009), amd Hussan and Mebrate (2022), our proposed
numerical schemes exhibit a remarkable level of agreement with exact solutions.

Example 6.2.

Let’s consider Fisher’s equation within the domain [0, 1]:

ut = uxx + u(1− uα), (23)

subject to the given initial condition,

u(x, 0) =

{
1

2
tanh

(
− α

2
√
2α + 4

x

)
+

1

2

} 2

α

. (24)

The precise solution is elaborated as follows (Wang (1988); Bastani and Salkuyeh (2012)):

u(x, t) =

{
1

2
tanh

(
− α

2
√
2α + 4

(
x− α + 4√

2α + 4
t

))
+

1

2

} 2

α

. (25)

7. Conclusion

This paper examines the use of semidiscretization techniques in combination with backward dif-
ferentiation formulas to solve Fisher’s equation. This equation is found in various scientific and
engineering fields, with its main application in the biomedical sciences. It is used to determine the
size of brain tumours. Two examples are compared between numerical results and exact solutions.
BDF2 and BDF3 are found to be more accurate than BDF1. The results obtained with this approach
are more precise and closer to the exact solution compared to those described in the comparison
table. The numerical methods proposed in this paper demonstrate their effectiveness and reliability
in solving Fisher’s equation.
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Appendix

Table 1. We compared numerical (BDF1, BDF2, BDF3) and exact results for Example 1 at various spatial points, with
a time step of ∆t = 0.000005, a total time of T = 0.1, and α = 6

Calculated Solution Exact solution

x BDF1 BDF2 BDF3

0 0.387455619 0.387455619 0.387455619 0.387455619

0.1 0.358418057 0.358420710 0.358420160 0.358426914

0.2 0.329970861 0.329972600 0.329974683 0.329984205

0.3 0.302300596 0.302301568 0.302305675 0.302317425

0.4 0.275584019 0.275584418 0.275589827 0.275603147

0.5 0.249979873 0.249979929 0.249985848 0.250000000

0.6 0.225625036 0.225625003 0.225630619 0.225644772

0.7 0.202631559 0.202631703 0.202636242 0.202649430

0.8 0.181084751 0.181085339 0.181088115 0.181099172

0.9 0.161042341 0.161043628 0.161044094 0.161051594

1 0.142536957 0.142536957 0.142536957 0.142536957

Table 2. We compared numerical (BDF1, BDF2, BDF3) and exact results for Example 2 at various spatial points, with
a time step of ∆t = 0.000005, a total time of T = 0.1, and α = 1

Calculated Solution Exact solution

x BDF1 BDF2 BDF3

0 0.271254811 0.271254811 0.271254811 0.271254811

0.1 0.260737784 0.260738230 0.260738056 0.260738428

0.2 0.250420391 0.250420750 0.250420905 0.250421096

0.3 0.240310950 0.240311240 0.240311656 0.240311688

0.4 0.230417634 0.230417876 0.230418460 0.230418385

0.5 0.220747899 0.220748116 0.220748764 0.220748648

0.6 0.211308466 0.211308683 0.211309286 0.211309201

0.7 0.202105305 0.202105547 0.202106001 0.202106010

0.8 0.193143625 0.193143913 0.193144130 0.193144276

0.9 0.184427868 0.184428219 0.184428133 0.184428430

1 0.175962132 0.175962132 0.175962132 0.175962132
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Figure 1. Solution at ∆t = 0.000005, α = 6, and T = 0.1 for Example 1

Figure 2. Solution at ∆t = 0.000005, α = 6, and T = 0.1 for Example 1
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Figure 3. Solution at ∆t = 0.000005, α = 6, and T = 0.1 for Example 1

Figure 4. Solution at ∆t = 0.000005, α = 1, and T = 0.1 for Example 2
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Figure 5. Solution at ∆t = 0.000005, α = 1, and T = 0.1 for Example 2

Figure 6. Solution at ∆t = 0.000005, α = 1, and T = 0.1 for Example 2
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Table 3. We analyzed the errors (BDF1, BDF2, BDF3) at various spatial points in Example 1, comparing them to the
exact solution. This evaluation was carried out with ∆t = 0.000005, T = 0.1, and α = 6

Absolute error

x BDF1 BDF2 BDF3

0.1 8.85790E-06 6.20440E-06 6.75430E-06

0.2 1.33443E-05 1.16049E-05 9.52180E-06

0.3 1.68285E-05 1.58563E-05 1.17495E-05

0.4 1.91282E-05 1.87290E-05 1.33201E-05

0.5 2.01267E-05 2.00705E-05 1.41522E-05

0.6 1.97368E-05 1.97697E-05 1.41538E-05

0.7 1.78707E-05 1.77267E-05 1.31883E-05

0.8 1.44206E-05 1.38330E-05 1.10570E-05

0.9 9.25270E-06 7.96580E-06 7.50020E-06

Table 4. We analyzed the errors (BDF1, BDF2, BDF3) at various spatial points in Example 2, comparing them to the
exact solution. This evaluation was carried out with ∆t = 0.000005, T = 0.1, and α = 1

Absolute error

x BDF1 BDF2 BDF3

0.1 6.437E-07 1.983E-07 3.716E-07

0.2 7.053E-07 3.458E-07 1.905E-07

0.3 7.378E-07 4.480E-07 3.260E-08

0.4 7.505E-07 5.092E-07 7.500E-08

0.5 7.491E-07 5.322E-07 1.157E-07

0.6 7.350E-07 5.174E-07 8.510E-08

0.7 7.048E-07 4.625E-07 8.700E-09

0.8 6.511E-07 3.628E-07 1.461E-07

0.9 5.626E-07 2.113E-07 2.972E-07
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Figure 7. Absolute error at ∆t = 0.000005, T = 0.1, and α = 6 for Example 1

Figure 8. Absolute error at ∆t = 0.000005, T = 0.1, and α = 1 for Example 2
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Table 5. We conducted a spatial comparison between numerical results and exact solutions for Example 1 at ∆t =
0.00005, α = 6, and a spatial resolution of N = 20

T x DQM(Bastani

and

Salkuyeh

(2012))

BDF1 BDF2 BDF3 Exact Solu-

tion

0.5 0.25 0.81847 0.818375 0.818403 0.818413 0.818393

0.75 0.72592 0.725799 0.725835 0.725840 0.725824

1.0 0.25 0.98293 0.982916 0.982922 0.982922 0.982919

0.75 0.97208 0.972067 0.972074 0.972074 0.972071

Table 6. Numerical and exact results for Example 1 were compared at various spatial locations with a time step of
∆t = 0.0001 and α = 6

x T Mittal and Ji-

wari (2009)

BDF1 BDF2 BDF3 Exact

Solution

0.25 0.5 0.81847 0.818399 0.818455 0.818475 0.818393

1.0 0.98293 0.982909 0.982917 0.982921 0.982919

2.0 0.99988 0.999883 0.999883 0.999883 0.999883

5.0 1.00000 1.000000 1.000000 1.000000 1.000000

0.5 0.5 0.77590 0.775828 0.775896 0.775932 0.775828

1.0 0.97816 0.978134 0.978145 0.978151 0.978147

2.0 0.99985 0.978134 0.999850 0.999850 0.978147

5.0 1.00000 1.000000 1.000000 1.000000 1.000000

0.75 0.5 0.72594 0.725830 0.725902 0.725913 0.725824

1.0 0.97209 0.972057 0.972069 0.972072 0.972071

2.0 0.99981 0.999808 0.999808 0.999808 0.999808

5.0 1.00000 1.000000 1.000000 1.000000 1.000000
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Table 7. Numerical and exact results(BDF1, BDF2, BDF3) for Example 1 were compared at various spatial locations
with a time step of ∆t = 0.00005 and α = 6

x T Mittal and Ji-

wari (2009)

BDF1 BDF2 BDF3 Exact

Solution

0.25 0.5 0.81843 0.818419 0.818447 0.818456 0.818393

1.0 0.98292 0.982911 0.982915 0.982917 0.982919

2.0 0.99988 0.999883 0.999883 0.999883 0.999883

5.0 1.00000 1.000000 1.000000 1.000000 1.000000

0.5 0.5 0.77585 0.775850 0.775885 0.775903 0.775803

1.0 0.97815 0.978136 0.978142 0.978145 0.978147

2.0 0.99985 0.999850 0.999850 0.999850 0.999850

5.0 1.00000 1.000000 1.000000 1.000000 1.000000

0.75 0.5 0.72588 0.725857 0.725893 0.725898 0.725824

1.0 0.92208 0.972061 0.972067 0.972068 0.972071

2.0 0.99981 0.999808 0.999808 0.999808 0.999808

5.0 1.00000 1.000000 1.000000 1.000000 1.000000

Table 8. Numerical and exact results for Example 2 were compared at various spatial locations with a time step ∆t =
0.0001 and α = 1

x T Mittal and Ji-

wari (2009)

BDF1 BDF2 BDF3 Exact

Solution

0.25 0.5 0.33412 0.334080 0.334091 0.334081 0.334094

1.0 0.45576 0.455726 0.455739 0.455728 0.455739

2.0 0.68397 0.683943 0.683954 0.683946 0.683951

5.0 0.96653 0.966523 0.966525 0.966524 0.966525

0.5 0.5 0.30576 0.305724 0.305734 0.305725 0.305739

1.0 0.42553 0.425496 0.425508 0.425498 0.425509

2.0 0.65924 0.659209 0.659220 0.659213 0.659216

5.0 0.96303 0.963027 0.963028 0.963027 0.963028

0.75 0.5 0.27838 0.278339 0.278350 0.278341 0.278353

1.0 0.39544 0.395399 0.395411 0.395401 0.395411

2.0 0.63338 0.633350 0.633361 0.633352 0.633358

5.0 0.95918 0.959176 0.959178 0.959177 0.959178
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Table 9. Numerical and exact results for Example 2 were compared at various spatial locations with a time step of
∆t = 0.0001 and α = 1

x T Mittal and Ji-

wari (2009)

BDF1 BDF2 BDF3 Exact

Solution

0.25 0.5 0.33411 0.334086 0.334091 0.334086 0.334094

1.0 0.45575 0.455733 0.455739 0.455733 0.455739

2.0 0.68395 0.683951 0.683954 0.683950 0.683951

5.0 0.96653 0.966524 0.966525 0.966524 0.966525

0.5 0.5 0.30575 0.305729 0.305734 0.305730 0.305739

1.0 0.42552 0.425502 0.425508 0.425503 0.425509

2.0 0.65922 0.659216 0.659220 0.659216 0.659216

5.0 0.96303 0.963027 0.963028 0.963028 0.963028

0.75 0.5 0.27837 0.278345 0.278350 0.278345 0.278353

1.0 0.39542 0.395405 0.395411 0.395406 0.395411

2.0 0.63336 0.633358 0.633361 0.633356 0.633358

5.0 0.95918 0.959177 0.959178 0.959177 0.959178

Table 10. Numerical and exact results for Example 1 were compared at various spatial locations with a time step of
∆t = 0.0004 and α = 6

Calculated Solution Exact solution

x SIS(Hussan and Mebrate (2022)) BDF2 BDF3

0 0.77580349 0.77580349 0.77580349 0.77580349

0.1 0.75685967 0.75674061 0.75668190 0.75671127

0.2 0.73668727 0.73646744 0.73650712 0.73641959

0.3 0.71528604 0.71498712 0.71509655 0.71492899

0.4 0.69266980 0.69231660 0.69246633 0.69225459

0.5 0.66886832 0.66848896 0.66864838 0.66842802

0.6 0.64392921 0.64355499 0.64369221 0.64349899

0.7 0.61791942 0.61758437 0.61766635 0.61753662

0.8 0.59092643 0.59066656 0.59065939 0.59063034

0.9 0.56305891 0.56291102 0.56278049 0.56289023

1 0.53444665 0.53444665 0.53444665 0.53444665
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Table 11. Numerical and exact results for Example 1 were compared at various spatial locations with a time step of
∆t = 0.04 and α = 6

Calculated Solution Exact solution

x SIS(Hussan and Mebrate (2022)) BDF2 BDF3

0 0.77580349 0.77580349 0.77580349 0.77580349

0.1 0.77289178 0.76479618 0.75517619 0.75671127

0.2 0.76541026 0.73883526 0.74734027 0.73641959

0.3 0.75339775 0.72157093 0.73415343 0.71492899

0.4 0.73681535 0.70276626 0.71584647 0.69225459

0.5 0.71556149 0.68014513 0.69255806 0.66842802

0.6 0.68949244 0.65397072 0.66436100 0.64349899

0.7 0.65844935 0.62499621 0.63141836 0.61753662

0.8 0.62229286 0.59460544 0.59392347 0.59063034

0.9 0.58094620 0.56708129 0.55199679 0.56289023

1 0.53444665 0.53444665 0.53444665 0.53444665
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