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Abstract

In this paper, we consider and study a new class of system of variational inclusions called a system
of variational inclusions involving Cayley operator and Yosida approximation operator with XOR
operation. We have shown that our problem is equivalent to a fixed point equation. Based on fixed
point formulation, an iterative algorithm is designed to obtain existence and convergence result for
our problem.

Keywords: Cayley operator; Yosida approximation operator; XOR operation; Resolvent opera-
tor; Ordered Hilbert space
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1. Introduction

The variational inclusion problem is one of the most important and interesting generalizations of
the variational inequality problem. Rockafellar (1976) developed a proximal point algorithm for
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2 M. Iqbal and T. Ram

solving a classical variational inclusion problem. Since then, several algorithms have came into
picture; see, for example, Agarwal and Verma (2009), Verma (2009a), Verma (2009b), Verma
(2009c), Verma (2007), Verma (2006), Lan (2009), Li (2012), and references therein.

Due to the fact that projection methods cannot be used to solve variational inclusion problems, the
resolvent operator methods came into the picture to solve them efficiently. It is also known that the
monotone operators in abstract spaces can be regularized into single-valued Lipschitzian monotone
operators through a process known as Yosida approximation (see Attouch (1984), Attouch et al.
(1991), Barbu (1976) and Schaefer (1974)).

The XOR operation ⊕ is a binary operation that is commutative as well as associative. The XOR
operation depicts interesting facts and observations and forms various real-time applications, that
is, data encryption, error detection in digital communication, etc.

Li (2008) introduced and studied nonlinear ordered variational inequalities. Later, many prob-
lems related to ordered variational inequalities were studied (see Li (2008); Li (2009); Li (2011a);
Li (2012); Li (2011b); Li et al. (2013a); Li et al. (2013b); Li et al. (2014a); Li et al. (2014b)). In
the recent past, Ahmad et al. (2018) proposed a new approach by introducing a novel mapping
called H(., .)-ordered-compression mapping. They also defined a resolvent operator and explored
its properties using the XOR operation. Additionally, they developed an algorithm specifically
designed for solving XOR variational inclusion problems. Furthermore, the study of ordered varia-
tional inclusions with XOR operations has gained significant attention in various research domains.
Very recent examples of this direction of research can be found in Ahmad et al. (2020) and Iqbal
et al. (2022).

Motivated by the above discussion, in this paper we introduce a new system of variational in-
clusions called the system of variational inclusions involving the Cayley operator and the Yosida
approximation operator with XOR operation. To solve this problem, we propose an iterative algo-
rithm based on the fixed-point formulation. Through this algorithm, we conduct a comprehensive
convergence analysis for the aforementioned problem.

2. Preliminaries

Let H be a real ordered Hilbert space with the usual norm ∥.∥ and the inner product ⟨., .⟩. Let ℵ be
a cone in H. The partial ordering induced by cone ℵ is denoted by “≤”. We denote by C(H), the
collection of all compact subsets of H and by 2H, the collection of all nonempty subsets of H. The
Hausdorff metric on C(H) is denoted by D(., .). For any two arbitrary elements x and y of H, we
denote lub {x, y} for the set {x, y} by x ∨ y. Suppose that lub exists for the set {x, y}. Then, the
operation denoted by ⊕, called the XOR operation, is defined by x⊕ y = (x− y) ∨ (y − x). The
elements x and y are said to be comparable to each other if and only if x ≤ y or y ≤ x and we
denote it by x ∝ y.

From Li (2008), Li (2009), Li (2011a), Li (2012), Li (2011b), Li et al. (2013a), Li et al. (2013b), Li
et al. (2014a), and Li et al. (2014b), it can be found that H is an ordered Hilbert space equipped with
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partial ordering “≤” induced by the cone ℵ. For any elements x, y, v, u ∈ H, the XOR operation
has the following properties:

(i) x⊕ y = y ⊕ x, x⊕ x = 0,
(ii) let τ be a real number, then (τx)⊕ (τy) = |τ | (x⊕ y),

(iii) if x ∝ 0, then −x⊕ 0 ≤ x ≤ x⊕ 0,
(iv) 0 ≤ x⊕ y, if x ∝ y,
(v) if x ∝ y, then x⊕ y = 0 if and only if x = y,

(vi) (x+ y)⊕ (v + u) ≥ (x⊕ v)− (y ⊕ u) ∨ (x⊕ u)− (y ⊕ v),
(vii) ∥0⊕ 0∥ = ∥0∥ = 0,

(viii) ∥x⊕ y∥ ≤ ∥x− y∥ ,
(ix) if x ∝ y, then ∥x⊕ y∥ = ∥x− y∥ .

Moreover, given a mapping A : H → H and a multivalued mapping mapping M : H → 2H, we
define several specific types of mappings. A is called ξ-order non-extended mapping, if there exists
a constant ξ > 0 such that for all x, y ∈ H, the inequality ξ(x ⊕ y) ≤ A(x) ⊕ A(y) holds, A is a
comparison mapping if x ∝ y, implies A(x) ∝ A(y), x ∝ A(x) and y ∝ A(y), for all x, y ∈ H,
A is a strongly comparison mapping, if A is comparison mapping and A(x) ∝ A(y) if and only
if x ∝ y, for all x, y ∈ H. M is a weak-comparison mapping if for ux ∈ M(x), x ∝ ux, and
x ∝ y, there exists uy ∈ M(y) such that ux ∝ uy, for all x, y ∈ H, M is a αA-weak-non-ordinary
difference mapping with respect to A if it is a weak comparison and for each x, y ∈ H, there exists
αA > 0 and ux ∈ M(A(x)) and uy ∈ M(A(y)) such that (ux ⊕ uy) ⊕ αA(A(x) ⊕ A(y)) = 0,
M is called ρ-order different weak-comparison mapping with respect to A, if there exists ρ > 0
and for all x, y ∈ H, there exists ux ∈ M(A(x)), uy ∈ M(A(y)) such that ρ(ux − uy) ∝ x − y,.
Finally, a weak-comparison mapping M is called (αA, ρ)-weak ANODD if it is an αA-weak-non-
ordinary difference mapping and ρ-order different weak-comparison mapping associated with A,
and it satisfies [A+ ρM ] (H) = H, ensuring the image covers the entire space H. Let A be ξ-
ordered non-extended mapping and M is αA-non-ordinary difference mapping with respect to
A. The generalized resolvent operator RM

A,ρ : H → H associated with A and M is defined as
RM

A,ρ(x) = [A+ ρM ]−1(x), for all x ∈ H, ρ > 0, the generalized Cayley operator CM
A,ρ : H → H

is defined as CM
A,ρ(x) =

[
2RM

A,ρ − A
]
(x), for all x ∈ H and the generalized Yosida approximation

operator Y M
A,ρ : H → H is defined as Y M

A,ρ(x) =
1
ρ

[
A−RM

A,ρ

]
(x), for all x ∈ H.

3. Formulation of the Problem and Convergence Analysis

Let H be a real ordered Hilbert space. Let G,F : H → C(H) be the multi-valued mappings
and f, g, q, A,B : H → H, S, T : H × H → H be the single-valued mappings. Let M,N :
H → 2H be the multi-valued mappings. Let CM

A,ρ be the generalized Cayley operator and Y M
A,ρ be

the generalized Yosida approximation operator. We consider the following system of variational
inclusions involving the Cayley operator and the Yosida approximation operator with the XOR
operation.
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4 M. Iqbal and T. Ram

Find x, y ∈ H, u ∈ G(x), v ∈ F (y) such that

0 ∈ S
(
Y M
A,ρ(x)⊕ CM

A,ρ(x), v
)
+M (f(x)) ,

0 ∈ T (u, y − q(y))⊕N (g(y)) .
(1)

Lemma 3.1.

The elements x, y ∈ H, u ∈ G(x), v ∈ F (y) are the solution of a system of variational inclusions
involving Cayley operator and Yosida approximation operator with XOR operation (1) if and only
if the following equations are satisfied:

f(x) =RM
A,ρ

[
A (f(x))− ρS

(
Y M
A,ρ(x)⊕ CM

A,ρ(x), v
)]

, (2)

g(y) =RN
B,γ [B (g(y))⊕ γT (u, y − q(y))] , (3)

where ρ > 0 and γ > 0 are constants.

Proof:

Suppose x, y ∈ H, u ∈ G(x), v ∈ F (y) satisfy (1). Then,

f(x) = RM
A,ρ

[
A (f(x))− ρS

(
Y M
A,ρ(x)⊕ CM

A,ρ(x), v
)]

,

g(y) = RN
B,γ [B (g(y))⊕ γT (u, y − q(y))]

⇔ f(x) = (A+ ρM)−1 [A (f(x))− ρS
(
Y M
A,ρ(x)⊕ CM

A,ρ(x), v
)]

,

g(y) = (B + γN)−1 [B (g(y))⊕ γT (u, y − q(y))]

⇔ A (f(x)) + ρM (f(x)) = A (f(x))− ρS
(
Y M
A,ρ(x)⊕ CM

A,ρ(x), v
)
,

B (g(y)) + γN (g(y)) = B (g(y))⊕ γT (u, y − q(y))

⇔ 0 ∈ S
(
Y M
A,ρ(x)⊕ CM

A,ρ(x), v
)
+M (f(x)) ,

0 ∈ T (u, y − q(y))⊕N (g(y)) . ■

Applying Lemma 3.1, we suggest the following iterative scheme for solving (1).

Algorithm 3.1.

For any given x0, y0 ∈ H, choose u0 ∈ G(x0), v0 ∈ F (y0), and compute the sequences
{xn} , {yn} , {un} and {vn} by the following scheme:

xn+1 =xn − f(xn) +RM
A,ρ

[
A (f(xn))− ρS

(
Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn
)]

, (4)

yn+1 =yn − g(yn) +RN
B,γ [B (g(yn))⊕ γT (un, yn − q(yn))] . (5)

Let un+1 ∈ G(xn+1) and vn+1 ∈ F (yn+1) such that

∥un − un+1∥ ≤ D (G(xn), G(xn+1)) , (6)
∥vn − vn+1∥ ≤ D (F (yn), F (yn+1)) , (7)

where ρ > 0 and γ > 0 are constants, and n = 0, 1, 2, · · ·.
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Theorem 3.1.

Let H be an ordered Hilbert space. Let the mappings f, g, q, A,B : H → H, S, T : H×H → H,
G,F : H → C(H) and M,N : H → 2H fulfill the following conditions:

(i) The mappings f, g are strongly monotone mappings with constants δf and δg, respectively
and Lipschitz continuous with constants λf and λg, respectively.

(ii) The mappings q, A and B are Lipschitz continuous with constants λq, λA and λB, respec-
tively.

(iii) Let A be ξ1-ordered non-extended mapping and B be ξ2-ordered non-extended mapping.
(iv) The mappings F and G are D-Lipschitz continuous with constants λDF

and λDG
, respec-

tively.
(v) The mapping S is Lipschitz continuous in both arguments with constants λS1 and λS2, re-

spectively.
(vi) The mapping T is Lipschitz continuous in both arguments with Lipschitz constants λT1 and

λT2, respectively.
(vii) Let M be (αA, ρ)-weak ANODD mapping and N is (αB, γ)-weak BNODD mapping.

Let RM
A,ρ and RN

B,γ satisfy

RM
A,ρ(x)⊕RM

A,ρ(y) ≤
1

ξ(αAρ− 1)
(x⊕ y), for all x, y ∈ H, (8)

the generalized Cayley operator CM
A,ρ is λC-Lipschitz continuous, and the generalized Yosida ap-

proximation operator Y M
A,ρ is λY -Lipschitz continuous. Suppose xn ∝ xn+1 and yn ∝ yn+1, n =

0, 1, 2, · · ·, CM
A,ρ(x) ∝ CM

A,ρ(y), Y
M
A,ρ(x) ∝ Y M

A,ρ(y), for all x, y ∈ H. Suppose that the following
conditions hold:

0 <K(f) + P1(θ)λAλf + P1(θ)ρλS1 (λY + λC) + P2(θ)γλT1λDG
< 1, (9)

0 <K(g) + P2(θ)λBλg + P2(θ)γλT2 (1 + λq) + P1(θ)ρλS2λDT
< 1, (10)

where K(f) =
√

1− 2δf + λ2
f , K(g) =

√
1− 2δg + λ2

g, P1(θ) =
1

ξ1(αAρ−1)
, P2(θ) =

1
ξ2(αBγ−1)

,

λY = 1+λAξ1(αAρ−1)
ρξ1(αAρ−1)

, λC = 2+λAξ1(αAρ−1)
ξ1(αAρ−1)

, αA > 1
ρ

and αB > 1
γ

. Then, problem (1) has a solution
(x, y, u, v), and the sequences {xn}, {yn},{un} and {vn} generated by Algorithm 3.1 converges to
x, y, u and v, respectively.

Proof:

Using (4) of Algorithm 3.1, property (iv) of XOR operation, and Lemma 3.6 of Li et al. (2013b),
we have
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6 M. Iqbal and T. Ram

0 ≤ xn+1 ⊕ xn =
[
xn − f(xn) +RM

A,ρ

[
A (f(xn))− ρS

(
Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn
)]]

⊕
[
xn−1 − f(xn−1) +RM

A,ρ

[
A (f(xn−1))− ρS

(
Y M
A,ρ(xn−1)

⊕CM
A,ρ(xn−1), vn−1

)]]
= [(xn − f(xn))⊕ (xn−1 − f(xn−1))]

+RM
A,ρ

[
A (f(xn))− ρS

(
Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn
)]

⊕RM
A,ρ

[
A (f(xn−1))− ρS

(
Y M
A,ρ(xn−1)⊕ CM

A,ρ(xn−1), vn−1

)]
≤ [(xn − f(xn))⊕ (xn−1 − f(xn−1))]

+ P1(θ)
[(
A (f(xn))− ρS

(
Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn
))

⊕
(
A (f(xn−1))− ρS

(
Y M
A,ρ(xn−1)⊕ CM

A,ρ(xn−1), vn−1

))]
. (11)

Using property (viii) of XOR operation, from (11), we have

∥xn+1 ⊕ xn∥ ≤ ∥(xn − f(xn))− (xn−1 − f(xn−1))∥
+ P1(θ)

∥∥(A (f(xn))− ρS
(
Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn
))

−
(
A (f(xn−1))− ρS

(
Y M
A,ρ(xn−1)⊕ CM

A,ρ(xn−1), vn−1

))∥∥
≤ ∥(xn − xn−1)− (f(xn)− f(xn−1))∥+ P1(θ) ∥(A (f(xn))− A (f(xn−1)))

−ρ
(
S
(
Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn
)
− S

(
Y M
A,ρ(xn−1)⊕ CM

A,ρ(xn−1), vn−1

))∥∥
≤ ∥(xn − xn−1)− (f(xn)− f(xn−1))∥+ P1(θ) ∥A (f(xn))− A (f(xn−1))∥
+ P1(θ)ρ

∥∥S (
Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn
)
− S

(
Y M
A,ρ(xn−1)⊕ CM

A,ρ(xn−1), vn−1

)∥∥ .
(12)

Since f is strongly monotone with constant δf and Lipschitz continuous with constant λf , and
using the technique of Ahmad and Usman (2009), we have

∥(xn − xn−1)− (f(xn)− f(xn−1))∥2 ≤
(
1− 2δf + λ2

f

)
∥xn − xn−1∥2 ,

which implies ∥(xn − xn−1)− (f(xn)− f(xn−1))∥ ≤ K(f) ∥xn − xn−1∥ , (13)

where K(f) =
√

1− 2δf + λ2
f .

As xn+1 ∝ xn for all n, using property (ix) of XOR operation, (13) and Lipschitz continuity of f
and A, from (12), we have

∥xn+1 − xn∥ ≤ K(f) ∥xn − xn−1∥+ P1(θ)λAλf ∥xn − xn−1∥
+ P1(θ)ρ

∥∥S (
Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn
)
− S

(
Y M
A,ρ(xn−1)⊕ CM

A,ρ(xn−1), vn−1

)∥∥ .
(14)
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Using the Lipschitz continuity of S in both arguments and D-Lipschitz continuity of F , we have∥∥S (
Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn
)
− S

(
Y M
A,ρ(xn−1)⊕ CM

A,ρ(xn−1), vn−1

)∥∥
=

∥∥S (
Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn
)
− S

(
Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn−1

)
+S

(
Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn−1

)
− S

(
Y M
A,ρ(xn−1)⊕ CM

A,ρ(xn−1), vn−1

)∥∥
≤

∥∥S (
Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn
)
− S

(
Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn−1

)∥∥
+
∥∥S (

Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn−1

)
− S

(
Y M
A,ρ(xn−1)⊕ CM

A,ρ(xn−1), vn−1

)∥∥
≤ λS2 ∥vn − vn−1∥+ λS1

∥∥(Y M
A,ρ(xn)⊕ CM

A,ρ(xn)
)
−
(
Y M
A,ρ(xn−1)⊕ CM

A,ρ(xn−1)
)∥∥

≤ λS2D (F (yn), F (yn−1)) + λS1

∥∥(Y M
A,ρ(xn)⊕ CM

A,ρ(xn)
)
−
(
Y M
A,ρ(xn−1)⊕ CM

A,ρ(xn−1)
)∥∥

≤ λS2λDF
∥yn − yn−1∥+ λS1

∥∥(Y M
A,ρ(xn)⊕ CM

A,ρ(xn)
)
−
(
CM

A,ρ(xn−1)⊕ Y M
A,ρ(xn−1)

)∥∥ . (15)

Now, using property (vi) of XOR operation, we have(
Y M
A,ρ(xn)⊕ CM

A,ρ(xn)
)
−

(
CM

A,ρ(xn−1)⊕ Y M
A,ρ(xn−1)

)
∨
(
Y M
A,ρ(xn)⊕ Y M

A,ρ(xn−1)
)

−
(
CM

A,ρ(xn−1)⊕ CM
A,ρ(xn)

)
≤

(
Y M
A,ρ(xn) + CM

A,ρ(xn−1)
)
⊕
(
CM

A,ρ(xn) + Y M
A,ρ(xn−1)

)
.

(16)

We know that if lub {x, y} ≤ z, then x ≤ z and y ≤ z. Thus, from (16), we deduce that(
Y M
A,ρ(xn)⊕ CM

A,ρ(xn)
)
−

(
CM

A,ρ(xn−1)⊕ Y M
A,ρ(xn−1)

)
≤

(
Y M
A,ρ(xn) + CM

A,ρ(xn−1)
)
⊕

(
CM

A,ρ(xn) + Y M
A,ρ(xn−1)

)
. (17)

From (17) and property (viii) of XOR operation, we have∥∥(Y M
A,ρ(xn)⊕ CM

A,ρ(xn)
)
−

(
CM

A,ρ(xn−1)⊕ Y M
A,ρ(xn−1)

)∥∥
≤

∥∥(Y M
A,ρ(xn) + CM

A,ρ(xn−1)
)
−

(
CM

A,ρ(xn) + Y M
A,ρ(xn−1)

)∥∥
≤

∥∥(Y M
A,ρ(xn)− Y M

A,ρ(xn−1)
)
+
(
CM

A,ρ(xn−1)− CM
A,ρ(xn)

)∥∥
≤

∥∥Y M
A,ρ(xn)− Y M

A,ρ(xn−1)
∥∥+

∥∥CM
A,ρ(xn)− CM

A,ρ(xn−1)
∥∥

≤ λY ∥xn − xn−1∥+ λC ∥xn − xn−1∥
= (λY + λC) ∥xn − xn−1∥ . (18)

Using (18), (15) becomes∥∥S (
Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn
)
− S

(
Y M
A,ρ(xn−1)⊕ CM

A,ρ(xn−1), vn−1

)∥∥
≤ λS2λDF

∥yn − yn−1∥+ λS1 (λY + λC) ∥xn − xn−1∥ . (19)

Combining (14) and (19), we have

∥xn+1 − xn∥ ≤ [K(f) + P1(θ)λAλf + P1(θ)ρλS1 (λY + λC)] ∥xn − xn−1∥
+ P1(θ)ρλS2λDF

∥yn − yn−1∥ . (20)

Applying (5) of Algorithm 3.1, property (iv) of XOR operation, and Lemma 3.6 of Li et al. (2013b),
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we have

0 ≤ yn+1 ⊕ yn =
[
yn − g(yn) +RN

B,γ [B (g(yn))⊕ γT (un, yn − q(yn))]
]
⊕ [yn−1 − g(yn−1)

+RN
B,γ [B (g(yn−1))⊕ γT (un−1, yn−1 − q(yn−1))]

]
≤ [(yn − g(yn))⊕ (yn−1 − g(yn−1))] +

[
RN

B,γ [B (g(yn))⊕ γT (un, yn − q(yn))]

⊕RN
B,γ [B (g(yn−1))⊕ γT (un−1, yn−1 − q(yn−1))]

]
≤ [(yn − g(yn))⊕ (yn−1 − g(yn−1))] + P2(θ) [(B (g(yn))⊕ γT (un, yn − q(yn)))

⊕ (B (g(yn−1))⊕ γT (un−1, yn−1 − q(yn−1)))] . (21)

Using property (viii) of XOR operation, from (21), we have

∥yn+1 ⊕ yn∥ ≤ ∥(yn − g(yn))⊕ (yn−1 − g(yn−1))∥+ P2(θ) ∥(B (g(yn))⊕ γT (un, yn − q(yn)))

⊕ (B (g(yn−1))⊕ γT (un−1, yn−1 − q(yn−1)))∥
≤ ∥(yn − g(yn))− (yn−1 − g(yn−1))∥+ P2(θ) ∥(B (g(yn))⊕ γT (un, yn − q(yn)))

− (B (g(yn−1))⊕ γT (un−1, yn−1 − q(yn−1)))∥
≤ ∥(yn − yn−1)− (g(yn)− g(yn−1))∥+ P2(θ) ∥(B (g(yn))⊕ γT (un, yn − q(yn)))

− (B (g(yn−1))⊕ γT (un−1, yn−1 − q(yn−1)))∥ . (22)

Since g is strongly monotone with constant δg and Lipschitz continuous with constant λg using the
same technique as for (13), we have

∥(yn − yn−1)− (g(yn)− g(yn−1))∥2 ≤
(
1− 2δg + λ2

g

)
∥yn − yn−1∥2 ,

which implies ∥(yn − yn−1)− (g(yn)− g(yn−1))∥ ≤ K(g) ∥yn − yn−1∥ , (23)

where K(g) =
√

1− 2δg + λ2
g.

Since g and B are Lipschitz continuous with constants λg and λB, respectively, using the same
arguments as for (18), we have

∥(B (g(yn))⊕ γT (un, yn − q(yn)))− (B (g(yn−1))⊕ γT (un−1, yn−1 − q(yn−1)))∥
≤ ∥(B (g(yn)) + γT (un−1, yn−1 − q(yn−1)))⊕ (γT (un, yn − q(yn)) +B (g(yn−1)))∥
≤ ∥(B (g(yn)) + γT (un−1, yn−1 − q(yn−1)))− (γT (un, yn − q(yn)) +B (g(yn−1)))∥
≤ ∥B (g(yn))−B (g(yn−1))∥+ γ ∥T (un, yn − q(yn))− T (un−1, yn−1 − q(yn−1))∥
≤ λBλg ∥yn − yn−1∥+ γ ∥T (un, yn − q(yn))− T (un−1, yn−1 − q(yn−1))∥ . (24)

Using the Lipschitz continuity of T in both the arguments, the Lipschitz continuity of q, and D-
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Lipschitz continuity of G, we have

∥T (un, yn − q(yn))− T (un−1, yn−1 − q(yn−1))∥
≤ ∥T (un, yn − q(yn))− T (un−1, yn − q(yn)) + T (un−1, yn − q(yn))

−T (un−1, yn−1 − q(yn−1))∥
≤ ∥T (un, yn − q(yn))− T (un−1, yn − q(yn))∥+ ∥T (un−1, yn − q(yn))

−T (un−1, yn−1 − q(yn−1))∥
≤ λT1 ∥un − un−1∥+ λT2 ∥(yn − q(yn))− (yn−1 − q(yn−1))∥
≤ λT1 ∥un − un−1∥+ λT2 [∥yn − yn−1∥+ ∥q(yn)− q(yn−1)∥]
≤ λT1D (G(xn), G(xn−1)) + λT2 ∥yn − yn−1∥+ λT2λq ∥yn − yn−1∥
≤ λT1λDG

∥xn − xn−1∥+ (λT2 + λT2λq) ∥yn − yn−1∥ . (25)

Using (25) in (24), we have

∥(B (g(yn))⊕ γT (un, yn − q(yn)))− (B (g(yn−1))⊕ γT (un−1, yn−1 − q(yn−1)))∥
≤ (λBλg + γλT2 + γλT2λq) ∥yn − yn−1∥+ γλT1λDG

∥xn − xn−1∥ . (26)

As yn+1 ∝ yn for all n, from (22), (23) and (26), we have

∥yn+1 − yn∥ ≤ [K(g) + P2(θ)λBλg + P2(θ)γλT2 (1 + λq)] ∥yn − yn−1∥
+ P2(θ)γλT1λDG

∥xn − xn−1∥ . (27)

Adding (20) and (27), we have

∥xn+1 − xn∥+ ∥yn+1 − yn∥ ≤ [K(f) + P1(θ)λAλf + P1(θ)ρλS1 (λY + λC)

+P2(θ)γλT1λDG
] ∥xn − xn−1∥

+ [K(g) + P2(θ)λBλg + P2(θ)γλT2 (1 + λq)

+P1(θ)ρλS2λDF
] ∥yn − yn−1∥

≤ η (θ)
[
∥xn − xn−1∥+ ∥yn − yn−1∥

]
, (28)

where η (θ) = max
{
[K(f) + P1(θ)λAλf + P1(θ)ρλS1 (λY + λC) + P2(θ)γλT1λDG

] ,

[K(g) + P2(θ)λBλg + P2(θ)γλT2 (1 + λq) + P1(θ)ρλS2λDF
]
}
.

By (9) and (10), it follows that 0 < η (θ) < 1, and thus (28) implies that {xn} and {yn} are both
Cauchy sequences in H. Therefore, there exists x, y ∈ H such that xn → x and yn → y as n → ∞.

Now we prove that un → u ∈ G(x) and vn → v ∈ F (y). In fact, it follows from the D-Lipschitz
continuity of G,F and from Algorithm 3.1 that

∥un+1 − un∥ ≤ D (G(xn+1), G(xn)) ≤ λDG
∥xn+1 − xn∥ (29)

∥vn+1 − vn∥ ≤ D (F (yn+1), F (yn)) ≤ λDF
∥yn+1 − yn∥ . (30)

From (29) and (30), it is clear that {un} and {vn} are also Cauchy sequences in H. Thus, there
exist u, v ∈ H such that un → u and vn → v as n → ∞.
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Further,

d(u,G(x)) ≤ ∥u− un∥+ d(un, G(x))

≤ ∥u− un∥+D(G(xn), G(x))

≤ ∥u− un∥+ λDG
∥xn − x∥ → 0, as n → ∞,

which implies that d(u,G(x)) = 0. Since G(x) ∈ CB(H), it follows that u ∈ G(x). Similarly,
we can show that v ∈ F (y). By continuity of f, g, A,B, S, T,G, F, q, RM

A,ρ, Y
M
A,ρ, C

M
A,ρ, R

N
B,γ and

Algorithm 3.1, we have

f(x) = RM
A,ρ

[
A (f(x))− ρS

(
Y M
A,ρ(x)⊕ CM

A,ρ(x), v
)]

,

g(y) = RN
B,γ [B (g(y))⊕ γT (u, y − q(y))] .

It follows from Lemma 3.1 that (x, y, u, v) is a solution of the problem (1). ■

4. Numerical Example

The following example is presented in support of the main result and shows the convergence by
using MATLAB R2021a.

Example 4.1.

Let H = R with usual norm and inner product.

(i) Let S, T : H×H → H be single-valued mappings such that

S(x, y) =
3x

23
+

2y

19
,

T (x, y) =
2x

25
+

y

17
.

Then, for any x1, x2, y ∈ H, we have

∥S(x1, y)− S(x2, y)∥ =

∥∥∥∥3x1

23
+

2y

19
− 3x2

23
− 2y

19

∥∥∥∥
=

3

23
∥x1 − x2∥

≤ 1

7
∥x1 − x2∥ ,

that is, S is Lipschitz continuous in the first argument with constant λS1 = 1
7
. It is easy to

check that S is Lipschitz continuous in the second argument with constant λS2 =
1
9
.

Similarly, one can show that T is Lipschitz continuous in both arguments with constants
λT1 =

1
12

and λS1 =
1
15

, respectively.
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(ii) Let G,F : H → C(H) be multi-valued mappings such that

G(x) =

{
3x

23

}
,

F (x) =

{
2x

19

}
.

Now for any x, y ∈ H, we have

D (G(x), G(y)) ≤ max

{∥∥∥∥3x23 − 3y

23

∥∥∥∥ ,∥∥∥∥3y23 − 3x

23

∥∥∥∥}
=

3

23
max {∥x− y∥ , ∥y − x∥}

≤ 1

6
∥x− y∥ ,

that is, G is D-Lipschitz continuous with constant λDG
= 1

6
.

Similarly, it can be shown that F is D-Lipschitz continuous with constant λDF
= 1

8
.

(iii) Let A,B, q : H → H be single-valued mappings such that

A(x) =
x

7
,

B(x) =
x

5
,

q(x) =
2x

5
.

Then, for any x, y ∈ H, we have

∥A(x)− A(y)∥ =
∥∥∥x
7
− y

7

∥∥∥
=

1

7
∥x− y∥

≤ 1

5
∥x− y∥ ,

that is, A is Lipschitz continuous with constant λA = 1
5
. It is easy to check that A is ξ1-

ordered non-extended mapping with the constant ξ1 = 1
7
.

Similarly, one can show that B is Lipschitz continuous with constant λB = 1
3

and ξ2-ordered
non-extended mapping with constant ξ2 = 1

5
, and q is Lipschitz continuous with constant

λq =
1
2
.

(iv) Let M,N : H → 2H be multi-valued mappings such that

M(x) = {3x} ,
N(x) = {2x} .

For ρ = 7 it is clear that M is (αA, ρ)-weak ANODD mapping with αA = 3.

For γ = 5 it is clear that N is (αB, γ)-weak BNODD mapping with αB = 2.

11

Iqbal and Ram: System of Variational Inclusions

Published by Digital Commons @PVAMU, 2024



12 M. Iqbal and T. Ram

(v) Let f, g : H → H be single-valued mappings such that

f(x) =
x

3
,

g(x) =
2x

7
.

It can be easily shown that f is Lipschitz continuous with constant λf = 1
2

and strongly
monotone with constant δf = 1

4
; and g is Lipschitz continuous with constant λg = 1

2
and

strongly monotone with constant δg = 1
3
.

(vi) In view of the above calculation, we obtained the resolvent operators RM
A,ρ and RN

B,γ such that

RM
A,ρ(x) = [A+ ρM ]−1 (x) =

1

21
x,

RN
B,γ(x) = [B + γN ]−1 (x) =

5

51
x.

Now, for any x, y ∈ H, we have

RM
A,ρ(x)⊕RM

A,ρ(y) =
1

21
x⊕ 1

21
y

=
1

21
(x⊕ y)

≤ 7

20
(x⊕ y),

that is, RM
A,ρ satisfy condition (8) with P1(θ) =

1
ξ1(αAρ−1)

= 7
20

.

In the same manner, one can show that RN
B,γ satisfy condition (8) with P2(θ) =

1
ξ2(αBγ−1)

= 5
9
.

(vii) Using the value of RM
A,ρ calculated in step (vi), we obtained the generalized Cayley operator

as

CM
A,ρ(x) =

[
2RM

A,ρ − A
]
(x) =

−1

21
x.

Then, for any x, y ∈ H, we have∥∥CM
A,ρ(x)− CM

A,ρ(y)
∥∥ =

1

21
∥x− y∥

≤ 9

10
∥x− y∥ ,

that is, CM
A,ρ is Lipschitz continuous with constant λC = 2+λAξ1(αAρ−1)

ξ1(αAρ−1)
= 9

10
.

(viii) Using the value of RM
A,ρ calculated in step (vi), we obtained the generalized Yosida approxi-

mation operator as

Y M
A,ρ(x) =

1

ρ

[
A−RM

A,ρ

]
(x) =

2

147
x.

Then, for any x, y ∈ H, we have∥∥Y M
A,ρ(x)− Y M

A,ρ(y)
∥∥ =

2

147
∥x− y∥

≤ 11

140
∥x− y∥ ,

12

Applications and Applied Mathematics: An International Journal (AAM), Vol. 19 [2024], Iss. 4, Art. 2

https://digitalcommons.pvamu.edu/aam/vol19/iss4/2



AAM: Intern. J., Special Issue No. 13 (October 2024) 13

that is, Y M
A,ρ is Lipschitz continuous with constant λY = 1+λAξ1(αAρ−1)

ρξ1(αAρ−1)
= 11

140
.

(ix) Using all the values of constants calculated in the above steps, conditions (9) and (10) of
Theorem 3.1 are fulfilled.

Thus, all the conditions of Theorem 3.1 are satisfied and the problem (1) admits a solution
(x, y, u, v). Subsequently, the sequences {xn}, {yn},{un} and {vn} generated by Algorithm 3.1
converge to x, y, u and v, respectively.

Now, from Algorithm 3.1, we have

xn+1 = xn − f(xn) +RM
A,ρ

[
A (f(xn))− ρS

(
Y M
A,ρ(xn)⊕ CM

A,ρ(xn), vn
)]

=
16982788

25631361
xn,

and yn+1 = yn − g(yn) +RN
B,γ [B (g(yn))⊕ γT (un, yn − q(yn))] =

104007

142324
yn.

Table 1 and Table 2 show the numerical values of {xn} and {yn} for different initial values, re-
spectively.

Table 1. Computational results for different initial values of x0.

No. of x0 = 1.0 No. of x0 = 2 No. of x0 = 4
iterations xn iterations xn iterations xn
1 1.0000 1 2.0000 1 4.0000
2 0.6626 2 1.3252 2 2.6503
3 0.4390 3 0.8780 3 1.7560
4 0.2909 4 0.5818 4 1.1635
5 0.1927 5 0.3855 5 0.7709
10 0.0246 10 0.0492 10 0.0984
15 0.0031 15 0.0063 15 0.0126
20 0.0004 20 0.0008 20 0.0016
25 0.0001 25 0.0001 25 0.0002
26 0.0000 26 0.0001 26 0.0001
27 0.0000 27 0.0000 27 0.0001
28 0.0000 28 0.0000 28 0.0001
29 0.0000 29 0.0000 29 0.0000
30 0.0000 30 0.0000 30 0.0000

In Figure 1 and Figure 2, we show the convergence of {xn} and {yn} with different initial values
using MATLAB R2021a, respectively. In Figure 3, we plot a combined graph for {xn} and {yn}
for the initial value x0 = y0 = 4 by using MATLAB R2021a.

5. Conclusions

In this paper, we study a new class of system of variational inclusions that involves the Cayley
operator, the Yosida approximation operator and the XOR operation. It is established that a system
of variational inclusions involving the Cayley operator and the Yosida approximation operator with
the XOR operation is equivalent to a fixed-point equation. We propose an iterative algorithm based
on this fixed point formulation to obtain an existence and convergence result for a “system of
variational inclusions involving the Cayley operator and the Yosida approximation operator with
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Figure 1. The convergence of {xn} with initial values x0 = 1, x0 = 2 and x0 = 4.

Table 2. Computational results for different initial values of y0.

No. of y0 = 1.0 No. of y0 = 2 No. of y0 = 4
iterations yn iterations yn iterations yn
1 1.0000 1 2.0000 1 4.0000
2 0.7308 2 1.4616 2 2.9231
3 0.5340 3 1.0681 3 2.1361
4 0.3903 4 0.7805 4 1.5610
5 0.2852 5 0.5704 5 1.1408
10 0.0594 10 0.1189 10 0.2377
15 0.0124 15 0.0248 15 0.0495
20 0.0026 20 0.0052 20 0.0103
25 0.0005 25 0.0011 25 0.0022
30 0.0001 26 0.0002 26 0.0004
35 0.0000 27 0.0000 27 0.0001
36 0.0000 28 0.0000 28 0.0001
37 0.0000 29 0.0000 29 0.0000
38 0.0000 30 0.0000 30 0.0000

Figure 2. The convergence of {yn} with initial values y0 = 1, y0 = 2 and y0 = 4.
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Figure 3. The convergence of {xn} and {yn} with initial values x0, y0 = 4.

XOR operation.” Our results may be extended to higher-dimensional spaces and may be used for
practical purposes by other scientists.

Acknowledgment:

The authors are very grateful to the anonymous referees and the Editor for their very constructive
suggestions, remarks, editing and comments that helped us very much in improving the paper.

REFERENCES

Agarwal, R.P. and Verma, R.U. (2009). General implicit variational inclusion problems based on
A-maximal (m)-relaxed monotonicity (AMRA) frameworks, Applied Mathematics and Com-
putation, Vol. 215, pp. 367–379.

Ahmad, R., Ahmad, I., Ali, I., Homidan, S. and Wang, Y.H. (2018). H(., .)-ordered compression
mapping for solving XOR-variational inclusion problem, J. Nonlinear Convex Anal., Vol. 19,
pp. 2189–2201.

Ahmad I., Pang C.T., Ahmad, R. and Ishtyak, M. (2017). System of Yosida inclusions involving
XOR-operation, J. Nonlinear Convex Anal., Vol. 18, pp. 831–845.

Ahmad, I., Rahaman, M., Ahmad, R. and Ali, I. (2020). Convergence analysis and stability of per-
turbed three-step iterative algorithm for generalized mixed ordered quasi-variational inclusion
involving XOR operator, Optimization, Vol. 69, pp. 821–845.

Ahmad, R. and Usman, F. (2009). System of generalized variational inclusions with H-accretive
operators in uniformly smooth Banach spaces, J. Comput. Appl. Math., Vol. 230, pp. 424–432.

Attouch, H. (1984). Variational Convergence for Functions and Operators, Pitman: Boston, MA,
USA.

15

Iqbal and Ram: System of Variational Inclusions

Published by Digital Commons @PVAMU, 2024



16 M. Iqbal and T. Ram

Attouch, H., Moudafi, A. and Riahi, H. (1991). Quantitative stability analysis for maximal mono-
tone operators and semi-groups of contractions, Semin. Anal. Convexe Montp, Vol. 21, pp.
1–38.

Barbu, V. (1976). Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff:
Groningen, The Netherlands.

Iqbal, J., Rajpoot, A.K., Islam, M., Ahmad, R. and Wang, Y. (2022). System of Generalized Vari-
ational Inclusions Involving Cayley Operators and XOR-Operation in q-Uniformly Smooth
Banach Spaces, Mathematics, Vol. 10, Article ID 2837.

Lan, H.Y. (2009). Approximation solvability of nonlinear random (A, η)-resolvent operator equa-
tions with random relaxed cocoercive operators, Computer and Mathematics with Applica-
tion, Vol. 57, pp. 624–632.

Li, F. (2012). On over-relaxed proximal point algorithms for generalized nonlinear operator equa-
tion with (A, η,m)-monotonicity framework, International Journal of Modern Nonlinear The-
ory and Application, Vol. 1, pp. 67–72.

Li, H.G. (2008). Approximation solution for general nonlinear ordered variational inequalities and
ordered equations in ordered Banach space, Nonlinear Anal. Forum, Vol. 13, No. 2, pp. 205–
214.

Li, H.G. (2009). Approximation solution for a new class of general nonlinear ordered variational
inequalities and ordered equations in ordered Banach space, Nonlinear Anal. Forum, Vol. 14,
pp. 89–97.

Li, H.G. (2011a). Nonlinear inclusion problem for ordered RME set-valued mappings in ordered
Hilbert space, Nonlinear Funct. Anal. Appl., Vol. 16, No. 1, pp. 1–8.

Li, H.G. (2011b). Sensitivity analysis for general nonlinear ordered parametric variational inequal-
ity with restricted-accretive mapping in ordered Banach space, Nonlinear Funct. Anal. Appl.,
Vol. 17, No. 1, pp. 109–118.

Li, H.G. (2012). Nonlinear inclusion problem involving (α, τ)-NODM set-valued mappings in
ordered Hilbert space, Appl. Math. Lett., Vol. 25, pp. 1384–1388.

Li, H.G., Qiu, D. and Jin, M. (2013a). GNM order variational inequality system with ordered
Lipschitz continuous mappings in ordered Banach space, J. Inequal. Appl., Vol. 2013, No. 1,
pp. 1–11.

Li, H.G., Qiu, D. and Zou, Y. (2013b). Characterizations of weak-ANODD set-valued mappings
with applications to an approximate solution of GNMOQV inclusions involving ⊕ operator
in ordered Banach spaces, Fixed Point Theory Appl., Vol. 2013, Article ID 241.

Li, H.G., Li, P.L. and Jin, M.M. (2014a). A class of nonlinear mixed ordered inclusion problems for
ordered (αA, τ)-ANODM set-valued mappings with strongly comparison mapping A, Fixed
Point Theory Appl., Vol. 2014, pp. 1–9.

Li, H.G., Li, P.L., Zheng, J.M. and Jin, M.M. (2014b). Sensitivity analysis for generalized set-
valued parametric ordered variational inclusion with (α, λ)-NODSM mappings in ordered
Banach spaces, Fixed Point Theory Appl., Vol. 2014, No. 1, pp. 1–12.

Rockafellar, R.T. (1976). Monotone operators and the proximal point algorithm, SIAM Journal on
Control and optimization, Vol. 14, pp. 877–898.

Schaefer, H.H. (1974). Banach Lattices and Positive Operators, Springer: Berlin, Germany.
Verma, R.U. (2006). Sensitivity analysis for generalized strongly monotone variational inclusions

16

Applications and Applied Mathematics: An International Journal (AAM), Vol. 19 [2024], Iss. 4, Art. 2

https://digitalcommons.pvamu.edu/aam/vol19/iss4/2



AAM: Intern. J., Special Issue No. 13 (October 2024) 17

based on the (A, η)-resolvent operator technique, Applied Mathematics Letters, Vol. 19, pp.
1409–1413.

Verma, R.U. (2007). General system of (A, η)-monotone variational inclusion problems based on
generalized hybrid iterative algorithm, Nonlinear Analysis: Hybrid Systems, Vol. 1, No. 3, pp.
326–335.

Verma, R.U. (2009a). Generalized over-relaxed proximal algorithm based on A-maximal mono-
tonicity framework and application to inclusion problems, Mathematical and Computer Mod-
elling, Vol. 49, pp. 1587–1594.

Verma, R.U. (2009b). A new relaxed proximal point procedure and applications to nonlinear vari-
ational inclusions, Computers and Mathematics with Applications, Vol. 58, pp. 1631–1635.

Verma, R.U. (2009c). The generalized relaxed proximal point algorithm involving A-maximal re-
laxed accretive mappings with applications to Banach spaces, Mathematical and Computer
Modeling, Vol. 50, pp. 1026–1032.

17

Iqbal and Ram: System of Variational Inclusions

Published by Digital Commons @PVAMU, 2024


	(SI13-04) System of Variational Inclusions Involving Cayley Operator and Yosida Approximation Operator with XOR Operations
	Recommended Citation

	tmp.1729888334.pdf.xMArZ

