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Abstract

In this paper we are seeking to conceptualize the notion of corona product of two graphs to contrive
some special types of graphs. That is, here our attempt is to regenerate a familiar graph as a product
graph. We are considering seven familiar graphs here to reconstruct them with the help of corona
product of two graphs. Such types of families of the graphs and operations can be used to study
biological pathways as well as to find the optimal order and size for the special types of graphs.

MSC 2020 No.: 05C30, 68R10

Keywords: Graph; Graph products; Corona product; Isomorphism; Star graph; Double star
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1. Introduction

The concept of corona product is a neoteric addition in the mathematical dictionary. It is a novice
concept to the mathematical world which is still very much in its developmental stage. In layman’s
terminology, Corona Product can be viewed as the concoction of two or more different/same struc-
tures to create a gigantic structure in no time. In mathematical parlance, it is the product of two or
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2 A. Borah and G.P. Singh

more difference/same graphs, i.e., having same/different degrees/nodes to create a larger network
in a limited time. It may be noted that there are other methodologies that do exist for creating
a larger network. The enigma may emanate in the minds of few regarding the utmost emphasis
that the mathematical community is putting on this novice concept. One can easily create a large
network from a given set of nodes and links by simply adding one after another. However, such a
methodology demands lots of time and involves a bucket of costs.

The significance and importance of corona product (Barik et al. (2007); Indulal and Dragan (2015);
Gopalapillai (2011); Laali et al. (2016); Liu and Zhou (2012); McLeman and McNicholas (2011);
Rinurwati et al. (2017); Singh et al. (2020); Suprajitno (2016)) resides not only in creation of a
larger network/graph but the time within which it is created and the cost incurred in its creation.
In the modern era, where data and objects are moving in such a rapid speed, corona product will
be certainly considered more advantageous in terms of speed and cost, and therefore, it outweighs
its concomitant and contemporary algorithms/methodologies on that score. Further, the corona
product can be utilized in enhancing the recent emergence of science such as Internet of Things,
Virtual Reality and Augmented Reality, etc. Hence, corona product is of prime importance in
our study (Frucht and Harary (1970); Jannesari and Omoomi (2012)). The formal mathematical
definition of corona product of two graphs is given in Section 2.

2. Preliminaries

The corona product of two graphs, say G and H , was introduced by Frucht and Harary in 1970,
and it is a graph constructed by taking n instances of H and each such H gets connected to each
node of G, where n is the number of nodes of G. In this paper we will implement the definition of
corona product to visualize some existing graphs.

For example, let G = •1 •2 •3 and H = •a •b . Then GoH is given by

Figure 1. Corona Product of Graphs G and H , GoH

In this example, we have considered two graphs G and H of orders 3 and 2, respectively. Hence,
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by following the definition, we have one copy of G and 3 (order of G) copies of H in the corona
product of G and H , GoH .

The objective of this paper is to further extend and enrich the concept of the corona graph using the
existing body of knowledge and to verify its various paradigms, both functional and non-functional
in order to fully comprehend the concept in reality.

We have considered the analytical and theoretical perspective while writing this paper where we
have singularly implemented the concept of graph product. We have considered seven widely
known graphs such as the complete graph, star graph, null graph, double star graph, wheel graph,
and sunlet graph.

3. Results

Lemma 3.1.

The corona product of K1 and Kr, K1oKr, where r = 1, 2, · · · , n, is Kr+1 or the rth corona
product of K1, K1o

r K1 is Kr+1.

Proof:

Let G1 be K1 and G2 be Kr. Since we are taking the corona K1oKr, therefore, by definition of
the corona product of two graphs, we will take one copy of K1 and | V (K1) |, that is, one copy
of Kr. Now, by definition of the corona product, join the single node of K1 to each node of Kr.
Then, we will get a node which is adjacent to each node of Kr. That is how we have constructed
a complete graph of size r + 1, (for r = 1, 2, ..., n), i.e, Kr+1. Alternatively, let us prove this by
induction method. Let us assume that this is true for n = k. So, now we have to show that it is also
true for n = k + 1. K1(· · · ((K1oK1) · · · )oK1)oK1 = Kk, for k copies of K1. So, now Kko K1

consists of k + 1 copies of K1. Hence, Kko K1 = Kk+1.

Now let us take the corona product of K1 with K1 itself.

K1oK1 will be K2 as shown in the Figure 2.

Figure 2. Corona product K2 as K1 oK1

(K1oK1)oK1 will be K3.

((K1oK1)oK1)oK1 will be K4.

Lemma 3.2.

The corona product of complete graph K1 and null graph with cardinality n, Nn, K1oNn, is the
star graph Sn.
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Figure 3. Corona product K3 as K1 o(K1 oK1)

Figure 4. Corona product K4 as K1 o((K1 oK1)oK1

Proof:

Let G1 be K1 and G2 be disconnected null graph Nn. Now let us take the corona product of K1 and
Nn, K1oNn. Let u be the single vertex of K1 and v1, v2, v3, · · · , vn be the vertices of null graph
Nn. As shown in Figure 5, place the vertex u in the center and join it to each vertex of Nn. Thus,
we will have a graph with center vertex u and n edges, i.e., K1,n. Now take a star graph Sn with
center vertex s1 and n leaves as shown in Figure 6.

Figure 5. Corona product K1 oNn

Now, let us prove the isomorphism between K1oNn and Sn. Let us assume a function f such
that f(u) = s1, f(v1) = s2, f(v2) = s3, · · · , f(vn) = sn+1 is a one-to-one map. We can easily
check the adjacency tenacity between vertices u, v1, v2, v3, · · · , vn and s1, s2, s3, · · · , sn, sn+1 via
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the map f . ■

Figure 6. Star Graph Sn

Lemma 3.3.

The corona product of null graph with cardinality n, Nn and complete graph K1, Nno K1, is the
disconnected graph with n K2 copies.

Proof:

Let G1 be null graph with cardinality n, Nn and G2 be K1. Now, for the corona product Nno K1, we
will have n copies of K1 joined to each singleton vertex of Nn. Thus, we will get n disconnected
edges as shown in Figure 7. This is nothing but a disconnected graph with 2n vertices and n edges,
that is, n K2 copies. ■

Figure 7. n copies of K2

Lemma 3.4.

The corona product of complete graph K2 and null graph of cardinality n Nn, K2oNn, is the
double star graph with n Dn,n copies.

5
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Proof:

Let G1 be K2 and G2 be disconnected null graph Nn. Now, let us take the corona product of K2

and Nn, K2oNn. Let u1 and u2 be the vertices of K2 and v1, v2, v3, · · · , vn be the vertices of null
graph Nn. As shown in Figure 8, join one copy of Nn to each vertex of K2. Thus, we will have a
tree with two non pendant vertices u1 and u2 with degree n.

Figure 8. Corona Product K2 oNn

Now, take a double star graph Dn,n with vertices d1, d2, d3, · · · , dn, · · · , d2n, d2n+1, d2n+2 as shown
in the Figure 9.

Figure 9. Double star Graph Dn,n

Now, let us prove the isomorphism between K2oNn and Dn,n. Let us assume a function g
such that g(u1) = d1, g(u2) = d2, g(v1) = d3, · · · , g(vn) = dn+2, g(v

′

1) = dn+3, g(v
′

2) =
dn+4, · · · , g(v

′

n) = d2n+2, is a one-to-one map. We can easily check the adjacency tenacity be-
tween vertices u, v1, v2, v3, · · · , vn and s1, s2, s3, · · · , sn, sn+1 via the map g. ■

Lemma 3.5.

The corona product of complete graph K1 and cycle graph of cardinality n Cn, K1oCn, is the
wheel graph Wn.

Proof:

Let G1 be K1 and G2 be cycle graph Cn. Now, let us take the corona product of K1 and Cn, K1oCn.
Let a be the single vertex of K1 and v1, v2, v3, · · · , vn be the vertices of cycle graph Cn. As shown
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in Figure 10, place the vertex a in the center and join it to each vertex of Cn. Thus we will have a
graph with center vertex a and n edges, i.e., K1,n. Now take a wheel graph Wn with internal vertex
w1 as shown in the Figure 11.

Figure 10. Corona product of K1 and Cn(K1 oCn)

Now let us prove the isomorphism between K1oCn and Wn. Let us assume a function f such that
f(a) = w1, f(v1) = w2, f(v2) = w3, · · · , f(vn) = wn+1 is a one-to-one map. We can easily check
the adjacency between vertices a, v1, v2, v3, · · · , vn and w1, w2, w3, · · · , wn, wn+1 via the map f .■

Figure 11. Wheel Graph Wn

Lemma 3.6.

The corona product of cycle graph of cardinality n, Cn and complete graph K1, CnoK1, is the
n-sunlet graph.

Proof:

Let G1 be cycle graph Cn and G2 be K1. Now let us take the corona product of Cn and K1, CnoK1.

Let a be the single vertex of K1 and v1, v2, v3, · · · , vn be the vertices of cycle graph Cn. Place the
vertex a outside the circle Cn join the vertex a to each vertex of Cn as shown in Figure 12. Thus,
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we will have a graph with circle Cn with n pendant vertices.

Figure 12. Corona Product Cn oK1

We can easily show that this resultant graph is isomorphic to any n-sunlet graph in terms of adja-
cency. ■

We can also study the corona product of graphs with some special types of graphs and digraphs
that are used as modeling tools in different disciplines where we model with the help of Petri Nets
(Jangid and Singh (2023); Singh (2014); Singh et al. (2022); Singh et al. (2023)).

4. Conclusions and Future Scope

This paper primarily dealt with the technique to generate a new graph in the most convenient
theoretical approach to understand the new graph. Here we employed the basic definition of a
corona product to perceive some of the existing and well-known graphs. This paper will surely
help to understand the larger graph along with its components by means of a product graph.

The main motive behind writing this paper was to bring out the notion of corona product of two
graphs in understanding known graphs, which later leads us to study the known larger graph as
multiplication of two smaller graphs, but not as a bigger graph. Hence, this paper will certainly
help the researchers to understand the idea of product graph more explicitly, especially the corona
product which is already existing as known graphs of bigger size. The purpose of this study is
not to define anything novel, but to analyze the anatomy of an existing concept. In addition to the
structural properties, the adjacency properties of these graphs can also be understood in term of
corona product of two graphs. Some of the open challenges for future work are given below:
1. Is it possible to define the corona product in Petri Nets and its reachability tree?
2. Does there exist the class of Petri Nets whose reachability tree generates the results discussed in
the paper?
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