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Abstract 

In existence of heat diffusion and thermal radiation, an analytical equation is found for unsteady 
MHD flow past an exponentially accelerating vertical plate in optically thick water based 
nanofluid. The governing equations are made dimensionless by similarity transformation. A 
definition of Caputo fractional derivative is applied to generalize governing system of partial 
differential equations. Laplace transform techniques are applied and obtained the analytical 
solutions of proposed problems. For a physical point of view, numerical results are obtained using 
MATLAB software and presented via graphs. From the results, it is concluded that magnetic fields 
tend to reduce velocity. It is also worth noting that the heat transfer process improved with thermal 
radiation parameter whereas, mass transfer process improved with thermal diffusion. 
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2  H. Patel and G. Nanda 

Nomenclature 
 
𝜌𝜌𝑛𝑛𝑛𝑛  Density of nanofluid (Kg 𝑚𝑚−3) 

𝜇𝜇𝑛𝑛𝑛𝑛  Dynamic viscosity of nanofluid (𝑚𝑚2𝑠𝑠−1) 

k𝑛𝑛𝑛𝑛  Heat conductivity of nanofluid ( W m−1𝑘𝑘−1) 

(𝐶𝐶𝑝𝑝)𝑛𝑛𝑛𝑛  Specific heat of nanofluid (𝐽𝐽𝐾𝐾𝐾𝐾−1𝑘𝑘) 

𝜙𝜙  Nanoparticle volume fraction 

𝑢𝑢  Fluid velocity in x −direction (𝑚𝑚 𝑠𝑠−1) 
T Temperature (k) 
C Concentration (Kg m−3) 
g Acceleration due to gravity (𝑚𝑚 𝑠𝑠−2) 
D Mass diffusivity ( m2s−1) 
Nr Thermal Radiation 
𝑃𝑃𝑃𝑃  Prandtl number 
𝐺𝐺𝑚𝑚  Mass Grashof number  
Gr Thermal Grashof number  
t Time(s) 
𝑆𝑆𝑆𝑆  Schmidt number 
𝜎𝜎  Electric conductivity of the fluid (𝑚𝑚−1𝑠𝑠) 
𝛽𝛽𝑇𝑇

′  Volumetric coefficient of thermal expansion (𝑘𝑘−1) 
𝛽𝛽𝐶𝐶

′  Volumetric coefficient of concentration  (m3𝐾𝐾𝐾𝐾−1) 
 

1. Introduction  

Magnetohydrodynamics is the science that investigates the interplay between magnetic and 
electrolytic fluids. The influence of magnetohydrodynamics is useful in the research of the human 
body's blood circulation system, the deformation of liquid into metal, plasma confinement, and a 
variety of other social and environmental concerns. Choudhury et al. (2018) discussed the Soret 
effect on MHD convective heat and mass transfer flow of an unsteady viscous incompressible 
electrically conducting fluid past a semi-infinite vertical porous plate in presence of chemical 
reaction and heat sink. Recently, Hossain et al. (2022) has discussed the Thermophysical 
characteristic of nanofluid in presence of magnetohydrodynamics. Saidulu et al. (2019) studied the 
condition of zero normal flux for tangent hyperbolic fluid over an inclined stretching sheet with 
the effects of radiation, heat source/sink and convective boundary condition. Bakar et al. (2021) 
linked the formation of a hybrid nanofluid in a porous media, heat production, thermal radiation, 
and magnetohydrodynamics to the behavior of flow and heat transmission on mixed convection 
(MHD). Kumar et al. (2016) investigated study the effects of diffusion-thermo and first order 
homogeneous chemical reaction on micropolar fluid flow over a vertical permeable plate in a 
porous medium. 
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Nanomaterials have far superior thermal, mechanical, optical, and transport qualities, making them 
an appealing research subject. Nanofluids are employed in a variety of industries including 
manufacturing, energy generation, and medicine. Hunegnaw and Demeke (2020) investigated the 
MHD mixed convective flow of Maxwell nanofluid past a porous vertically stretching sheet in the 
presence of chemical reaction. Nandi et al. (2021) examined the unsteady MHD free convective 
stagnation point flow of a hybrid nanofluid towards an exponentially stretched surface set in a 
uniform porous medium using ohmic, velocity slip, thermal radiation, and viscous dissipations. 
Sabu et al. (2021) examined the impacts of Soret effects, heat supply, and hall current on 
Magnetohydrodynamic convective ferro-nanofluid flow down an inclined channel with porous 
material on a theoretical and statistical level. Gopal and Kishan (2019) studied the viscous and 
Joule’s dissipation on Casson fluid over a chemically reacting stretching sheet with inclined 
magnetic field and multiple slips. Kataria and Patel (2016) studied the impacts of heat and Soret 
production on Magnetohydrodynamic flow using an oscillatory vertical plate engrained in porous 
medium, whereas Kataria and Patel (2018) investigated the effect of heat exchange on 
Magnetohydrodynamic flow with soaring wall heat and increasing surface concentration. 

Fractional calculus is an abstract concept that investigates non-integer order interpretations of 
differentiation. For a long time, it was thought to be just theoretically interesting. However, the 
emergence of various useful fractional derivative definitions has broadened the scope of its use. 
Over the past three decades, fractional calculus has progressed from a purely mathematical 
formulation to applications in biotechnology, shear modulus, biomechanics, physics, rheology, 
and electrodynamics. Fluids, biological systems' conductance, sound waves transmission, and data 
processing are few of the uses in science and technology. Aleem et al. (2020) studied how the 
Caputo fractional model may improve fluid flow, whereas Caputo-Fabrizio decays quicker than 
Caputo and is therefore ideally suited to displaying the memory of the flow problem at a certain 
moment. Ali et al. (2020) investigated the influence of copper oxide nanoparticles on the 
magnetohydrodynamic free convection transitory movement of a nano liquid on a vertical wall 
with time-dependent motion, heat, and intensity. Reyaz et al. (2022) have found an analytical 
solution for the Caputo-Fabrizio fractional derivative's actual impact on MHD flow in the presence 
of heat radiation and chemical reaction. In a magnetic and vibration environment, Maiti et al. 
(2021) built a fractional order plasma thermo - chemical flow structure that considered the Dufour 
and Soret effects. Recently, Upreti et al. (2022) studied Sisko fluid flow in stretching surface due 
to viscous dissipation and section whereas Upreti et al. (2020) and Upreti and Kumar (2020) 
considered radiation effects on MHD nanofluid flow.  

Fractional calculus has recently drawn much interest in the domains of science and engineering. 
In literature, the fractional operator has been successfully used in numerous pieces. Studying the 
integrals and derivatives of different-order mechanisms is the focus of the rapidly expanding field 
of fractional calculus in mathematics. For the past few years, research on the concepts and traits 
of these fractional operators has increased significantly due to the high level of interest they have 
generated. It has proliferated among scientists working in various fields because of the positive 
precision obtained when several of the approaches in this calculus have been utilized to mimic 
some real-world phenomena (Kilbas et al. (2006); Magin (2004)). Recently, mathematicians, 
physicists, and engineers found fractional calculus a valuable concept in several disciplines, such 
as electrochemistry, rheology, quantitative biology, diffusion, etc. Caputo and Riemann-Liouville-
related other fractional derivative operators are shown in Jarad, et al. (2012), Gambo et al. (2014), 
and Jarad et al. (2017). 
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2. Novelty of the Problem 

Almost all engineering processes involve heat transfer and radiations. There are number of 
research articles dealing with thermal radiation. It is observed that work considering a coupled 
process by which solutes is transported in a medium under the action of a thermal gradient along 
with exponentially accelerated plate is limited. Also, efficiency of the system can be improved by 
taking nanofluids in the study. This motivated to this novel concept of considering Nanofluid Flow 
Past an Exponentially Accelerated Plate in presence of transverse magnetic field with Soret and 
Thermal Radiation. 
 

3. Mathematical formulation  

As illustrated in Figure 1, the flow is restricted to 𝑦𝑦′ > 0, where 𝑦𝑦′ is determined in direction 
normal to the plate. The fluid is deemed electrically conductive when a homogenous magnetic 
field B is supplied in a direction perpendicular to the plate.  

 
Figure 1. Physical Sketch of the Problem 

 
The plate is already at rest with the ambient temperature 𝑇𝑇0 at time 𝑡𝑡′ = 0. The plate starts to swing 
at time 𝑡𝑡′  >  0, according to 𝑢𝑢0𝑒𝑒𝑎𝑎𝑡𝑡

′, and the temperature of the plate is increased or decreased to 
𝑇𝑇𝑤𝑤. The Rosseland approximation (1931) can be used to estimate radiative flux since nanofluid is 
optically thick. A radiative heat flow 𝑞𝑞𝑟𝑟 is also expected to be applied to the plate in the normal 
direction. A medium is said to be optically thick if radiation exchange occurs and takes place only 
among neighboring volume elements. This is diffusion limit in which the governing radiative 
transport equations are differential equations. The water-based fluid and suspended nanoparticles 
copper or silver are also considered to be in thermal equilibrium, with density being proportional 
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to temperature buoyancy forces. The governing momentum, energy and concentration equations 
are as follows. 
       𝜌𝜌𝑛𝑛𝑛𝑛

𝜕𝜕𝑢𝑢′

𝜕𝜕𝑡𝑡′
= 𝜇𝜇𝑛𝑛𝑛𝑛

𝜕𝜕2𝑢𝑢′

𝜕𝜕𝜕𝜕′2
− 𝜎𝜎𝑛𝑛𝑛𝑛𝐵𝐵2𝑢𝑢′ + 𝐾𝐾(𝜌𝜌𝛽𝛽)𝑛𝑛𝑛𝑛(𝑇𝑇′ − 𝑇𝑇0) + 𝐾𝐾(𝜌𝜌𝛽𝛽𝐶𝐶)𝑛𝑛𝑛𝑛(𝐶𝐶′ − 𝐶𝐶0),                                (1) 

       𝜕𝜕𝑇𝑇
′

𝜕𝜕𝑡𝑡′
= 𝑘𝑘𝑛𝑛𝑛𝑛

�𝜌𝜌𝑐𝑐𝑝𝑝�𝑛𝑛𝑛𝑛

𝜕𝜕2𝑇𝑇′

𝜕𝜕𝜕𝜕′2
− 𝜕𝜕𝑞𝑞𝑟𝑟

𝜕𝜕𝜕𝜕′
 ,                                          (2) 

       𝜕𝜕𝐶𝐶′
𝜕𝜕𝑡𝑡′

= 𝐷𝐷𝐶𝐶
𝜕𝜕2𝐶𝐶′
𝜕𝜕𝜕𝜕′2

+ 𝐷𝐷𝑇𝑇
𝜕𝜕2𝑇𝑇′

𝜕𝜕𝜕𝜕′2
 ,                      (3) 

where  

       𝜌𝜌𝑛𝑛𝑛𝑛 = (1 − ∅)𝜌𝜌𝑛𝑛 + ∅𝜌𝜌𝑠𝑠,                 (4) 

       𝜇𝜇𝑛𝑛𝑛𝑛 = 𝜇𝜇𝑛𝑛
(1−∅)2.5,                  (5) 

       𝜎𝜎𝑛𝑛𝑛𝑛 = 𝜎𝜎𝑛𝑛 �1 + 3(𝜎𝜎−1)∅
(𝜎𝜎+2)−(𝜎𝜎−1)∅

�,                 (6) 

       𝜎𝜎 = 𝜎𝜎𝑠𝑠
𝜎𝜎𝑛𝑛

 ,                   (7) 

       (𝜌𝜌𝛽𝛽)𝑛𝑛𝑛𝑛 = (1 − ∅)(𝜌𝜌𝛽𝛽)𝑛𝑛 + ∅(𝜌𝜌𝛽𝛽)𝑠𝑠,                (8) 

       𝑘𝑘𝑛𝑛𝑛𝑛 = 𝑘𝑘𝑛𝑛 �1 − 3 ∅�𝑘𝑘𝑛𝑛−𝑘𝑘𝑠𝑠�
2𝑘𝑘𝑛𝑛+𝑘𝑘𝑠𝑠+∅�𝑘𝑘𝑛𝑛−𝑘𝑘𝑠𝑠�

�,               (9) 

       �𝜌𝜌𝑆𝑆𝑝𝑝�𝑛𝑛𝑛𝑛 = (1 − ∅)(𝜌𝜌𝑆𝑆𝑝𝑝)𝑛𝑛 + ∅(𝜌𝜌𝑆𝑆𝑝𝑝)𝑠𝑠,                         (10) 

       𝑞𝑞𝑟𝑟 = −4𝜎𝜎∗

3𝑘𝑘∗
𝜕𝜕𝑇𝑇′4

𝜕𝜕𝜕𝜕′
.                           (11) 

By taking a suitably small temperature difference inside the flow, applying Taylor's series, and 
ignoring larger components, Equation (11) reduces to 

       𝑞𝑞𝑟𝑟 = −4𝜎𝜎∗

3𝑘𝑘∗
𝜕𝜕(4𝑇𝑇03𝑇𝑇′−3𝑇𝑇04)

𝜕𝜕𝜕𝜕′
.               (12) 

Using Equation (12) in (2), 
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       �𝜌𝜌𝑆𝑆𝑝𝑝�𝑛𝑛𝑛𝑛
𝜕𝜕𝑇𝑇′

𝜕𝜕𝑡𝑡′
= �𝑘𝑘𝑛𝑛𝑛𝑛 + 16𝜎𝜎∗𝑇𝑇03

3𝑘𝑘∗
� 𝜕𝜕

2𝑇𝑇′

𝜕𝜕𝜕𝜕′2
 ,            (13) 

with boundary conditions  

       𝑢𝑢′ = 0,𝑇𝑇′ = 𝑇𝑇0,𝐶𝐶′ = 𝐶𝐶0;  as  𝑦𝑦′ ≥ 0  and  𝑡𝑡′ = 0,     

       𝑢𝑢′ = 𝑢𝑢0𝑒𝑒𝑎𝑎𝑡𝑡
′ ,𝑇𝑇′ = 𝑇𝑇′∞ + �𝑇𝑇′𝑤𝑤 − 𝑇𝑇′∞� 𝑡𝑡

′
𝑡𝑡0
�  , 𝐶𝐶′ = 𝐶𝐶′𝑤𝑤 , as  𝑡𝑡′ ≥ 0  and  𝑦𝑦′ = 0,  

       𝑢𝑢′ → 0,𝑇𝑇′ → 𝑇𝑇0,𝐶𝐶′ → 𝐶𝐶0;   as  𝑦𝑦′ → ∞  and  𝑡𝑡′ ≥ 0.            (14) 

Introducing non-dimensional variables,  

       𝑦𝑦 = 𝑢𝑢0𝜕𝜕′
𝑣𝑣𝑛𝑛

, 𝑡𝑡 = 𝑢𝑢02𝑡𝑡′

𝑣𝑣𝑛𝑛
,𝑢𝑢 = 𝑢𝑢′

𝑢𝑢0
, 𝜃𝜃 = 𝑇𝑇′−𝑇𝑇0

𝑇𝑇𝑤𝑤−𝑇𝑇0
,𝜔𝜔 = 𝑣𝑣𝑛𝑛𝜔𝜔′

𝑢𝑢02
,𝐶𝐶 = C′−𝐶𝐶0

𝐶𝐶𝑤𝑤−𝐶𝐶0
,           (15) 

the system becomes: 

       𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

= 𝑎𝑎1
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

− 𝑎𝑎3𝑀𝑀2𝑢𝑢 + 𝑎𝑎2𝐺𝐺𝑟𝑟𝜃𝜃 + 𝐺𝐺𝑚𝑚𝑎𝑎5𝐶𝐶,              (16) 

       𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

= 𝑎𝑎4
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

 ,                (17) 

       𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

= 1
𝑠𝑠𝑐𝑐

𝜕𝜕2𝐶𝐶
𝜕𝜕𝜕𝜕2

+ 𝑆𝑆𝑃𝑃 𝜕𝜕
2𝜕𝜕

𝜕𝜕𝜕𝜕2
 ,               (18) 

with initial and boundary conditions 

       𝑢𝑢 = 0,𝑇𝑇 = 𝑇𝑇0,𝐶𝐶 = 𝐶𝐶0;   as  𝑦𝑦 ≥ 0  and  𝑡𝑡 = 0,          (19) 

       𝑢𝑢 = 𝑒𝑒𝑎𝑎𝑡𝑡  ,𝜃𝜃 = 𝑡𝑡 ,𝐶𝐶 = 1, 𝑦𝑦 = 0, 𝑡𝑡 > 0,              (20) 

       𝑢𝑢 → 0,𝜃𝜃 → 0,𝐶𝐶 → 0  as  𝑦𝑦 → ∞, 𝑡𝑡 > 0,              (21) 

where 

        𝑃𝑃𝑃𝑃 =
𝜇𝜇𝑛𝑛 �𝜌𝜌𝑐𝑐𝑝𝑝�𝑛𝑛
𝜌𝜌𝑛𝑛𝑘𝑘𝑛𝑛

 ,𝑀𝑀 = 𝜎𝜎𝑛𝑛𝐵𝐵2𝑣𝑣𝑛𝑛
𝜌𝜌𝑛𝑛𝑢𝑢02

 , 1
𝑘𝑘

= 𝑣𝑣𝑛𝑛𝜑𝜑2

𝑘𝑘1𝑢𝑢02
 , 𝐺𝐺𝑃𝑃 = 𝑔𝑔𝑔𝑔𝑛𝑛(𝑇𝑇𝑤𝑤−𝑇𝑇0)𝑣𝑣𝑛𝑛

𝑢𝑢03
 , 𝑆𝑆𝑆𝑆 = 𝑣𝑣𝑛𝑛

𝐷𝐷𝐶𝐶
 , 𝐾𝐾𝑃𝑃 = 𝑣𝑣𝑛𝑛𝑘𝑘′

𝑢𝑢02
,  
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        𝐺𝐺𝑚𝑚 = 𝑔𝑔𝑔𝑔𝑐𝑐𝑣𝑣𝑛𝑛(𝐶𝐶𝑤𝑤−𝐶𝐶0)
𝑢𝑢03

.  

4. Solution of the problem 

We apply the fractional derivative technique to generate analytical formulae for velocity, 
temperature, and concentration. We have used the Caputo fractional differential operator. 
Equations (16), (17), and (18) with the Caputo derivative have the following form: 

       𝐷𝐷𝑡𝑡∝(𝑢𝑢) = 𝑎𝑎1
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

− 𝑎𝑎3𝑀𝑀2 𝑢𝑢(𝑦𝑦, 𝑡𝑡) + 𝑎𝑎2𝐺𝐺𝑃𝑃 𝜃𝜃(𝑦𝑦, 𝑡𝑡) + 𝐺𝐺𝑚𝑚 𝑎𝑎5𝐶𝐶(𝑦𝑦, 𝑡𝑡),         (22) 

       𝐷𝐷𝑡𝑡
𝑔𝑔(𝜃𝜃) = 𝑎𝑎4

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

,               (23) 

       𝐷𝐷𝑡𝑡
𝛾𝛾(𝐶𝐶) = 1

𝑆𝑆𝑐𝑐
𝜕𝜕2𝐶𝐶
𝜕𝜕𝜕𝜕2

+ 𝑆𝑆𝑃𝑃 𝜕𝜕
2𝜕𝜕

𝜕𝜕𝜕𝜕2
,              (24) 

where Caputo differential operator 𝐷𝐷𝑡𝑡∝ is defined as (Caputo 2015) 

       𝐷𝐷𝑡𝑡∝(𝑓𝑓(𝑡𝑡)) = 1
Γ(1−𝛼𝛼)

 ∫ 𝑛𝑛′(𝜏𝜏)
(𝑡𝑡−𝜏𝜏)𝛼𝛼  𝑑𝑑𝑑𝑑𝑡𝑡

0  ;  0 < 𝛼𝛼 < 1,  

where Γ is Gamma function. 

4.1 Analytic Solution 
 

The Laplace Transform and the Inverse Laplace Transform are used to find analytical solutions. 
Applying Laplace Transform to Equation (23) and using Laplace Transform of corresponding 
initial and boundary condition (19)-(21), we obtain 

        �̅�𝜃(𝑦𝑦, 𝑞𝑞) = 1
𝑞𝑞2

 𝑒𝑒
−�𝑞𝑞

𝛽𝛽

𝑎𝑎4
 𝜕𝜕

,               (25) 

where �̅�𝜃(𝑦𝑦, 𝑞𝑞) indicates the Laplace Transform of 𝜃𝜃(𝑦𝑦, 𝑡𝑡). 

In order to obtain 𝜃𝜃(𝑦𝑦, 𝑡𝑡), we write Equation (25) in the form. 

       �̅�𝜃(𝑦𝑦, 𝑞𝑞) = 1
𝑞𝑞2

 ∑ 1
𝑛𝑛!
�− 𝜕𝜕

√𝑎𝑎4
�
𝑛𝑛

 ∞
𝑛𝑛=0 𝑞𝑞

𝑛𝑛𝛽𝛽
2  .            (26) 

Applying Inverse Laplace Transform to Equation (26), we get 

       𝜃𝜃(𝑦𝑦, 𝑡𝑡) = 𝑡𝑡 ∑ 1

𝑛𝑛! Γ�2−𝑛𝑛𝛽𝛽2 �
�− 𝜕𝜕

�𝑎𝑎4𝑡𝑡𝛽𝛽
�

𝑛𝑛

 ∞
𝑛𝑛=0 .           (27) 
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Now applying Laplace Transform to Equation (24) and using Laplace transform of corresponding 
initial and boundary condition (19)-(21), we obtain 

       𝐶𝐶̅(𝑦𝑦, 𝑞𝑞) = 1
𝑞𝑞

 𝑒𝑒−�𝑆𝑆𝑐𝑐 𝑞𝑞𝛾𝛾 𝜕𝜕 + 𝑆𝑆𝑐𝑐𝑆𝑆𝑟𝑟 𝑞𝑞𝛽𝛽−2

𝑞𝑞𝛽𝛽−𝑆𝑆𝑐𝑐 𝑎𝑎4 𝑞𝑞𝛾𝛾
�𝑒𝑒

−�𝑞𝑞
𝛽𝛽

𝑎𝑎4
 𝜕𝜕
−  𝑒𝑒−�𝑆𝑆𝑐𝑐 𝑞𝑞𝛾𝛾 𝜕𝜕 �.          (28) 

Again, applying Laplace Transform to Equation (22) and using Laplace transform of 
corresponding initial and boundary condition (19)-(21), we obtain 

       𝑢𝑢�(𝑦𝑦, 𝑞𝑞) = 𝐴𝐴 𝑒𝑒−
�𝑑𝑑1+𝑞𝑞

𝛼𝛼
𝑎𝑎1

 𝜕𝜕 −  𝑎𝑎4 𝑑𝑑2
𝑞𝑞2� 𝑎𝑎1 𝑞𝑞𝛽𝛽−𝑎𝑎4𝑑𝑑1−𝑎𝑎4𝑞𝑞𝛼𝛼�

 𝑒𝑒
−�𝑞𝑞

𝛽𝛽

𝑎𝑎4
 𝜕𝜕
− 𝑑𝑑3

𝑞𝑞 [𝑎𝑎1 𝑞𝑞𝛾𝛾𝑆𝑆𝑐𝑐−𝑑𝑑1−𝑞𝑞𝛼𝛼]  𝑒𝑒−�𝑆𝑆𝑐𝑐 𝑞𝑞𝛾𝛾 𝜕𝜕  

                        −𝑆𝑆𝑐𝑐𝑆𝑆𝑟𝑟 𝑞𝑞𝛽𝛽−2 𝑑𝑑3
𝑞𝑞𝛽𝛽−𝑆𝑆𝑐𝑐 𝑎𝑎4 𝑞𝑞𝛾𝛾

⎩
⎨

⎧
𝑎𝑎4 𝑒𝑒

−�𝑞𝑞
𝛽𝛽
𝑎𝑎4

 𝑦𝑦

𝑎𝑎1 𝑞𝑞𝛽𝛽−𝑎𝑎4𝑑𝑑1−𝑎𝑎4𝑞𝑞𝛼𝛼
−  𝑒𝑒−�𝑆𝑆𝑐𝑐 𝑞𝑞𝛾𝛾 𝑦𝑦

𝑎𝑎1 𝑞𝑞𝛾𝛾𝑆𝑆𝑐𝑐−𝑑𝑑1−𝑞𝑞𝛼𝛼
 

⎭
⎬

⎫
,          (29) 

where  

     𝐴𝐴 = 1
𝑞𝑞−𝑎𝑎

+  𝑎𝑎4 𝑑𝑑2
𝑞𝑞2� 𝑎𝑎1 𝑞𝑞𝛽𝛽−𝑎𝑎4𝑑𝑑1−𝑎𝑎4𝑞𝑞𝛼𝛼�

+ 𝑑𝑑3
𝑞𝑞 [𝑎𝑎1 𝑞𝑞𝛾𝛾𝑆𝑆𝑐𝑐−𝑑𝑑1−𝑞𝑞𝛼𝛼] +  𝑆𝑆𝑐𝑐𝑆𝑆𝑟𝑟 𝑞𝑞𝛽𝛽−2 𝑑𝑑3

𝑞𝑞𝛽𝛽−𝑆𝑆𝑐𝑐 𝑎𝑎4 𝑞𝑞𝛾𝛾
� 𝑎𝑎4 
𝑎𝑎1 𝑞𝑞𝛽𝛽−𝑎𝑎4𝑑𝑑1−𝑎𝑎4𝑞𝑞𝛼𝛼

−  1
𝑎𝑎1 𝑞𝑞𝛾𝛾𝑆𝑆𝑐𝑐−𝑑𝑑1−𝑞𝑞𝛼𝛼

 � 

    𝑑𝑑1 = 𝑎𝑎3𝑀𝑀2 , 𝑑𝑑2 = 𝑎𝑎2𝐺𝐺𝑃𝑃 , 𝑑𝑑3 = 𝐺𝐺𝑚𝑚 𝑎𝑎5 

For Equations (28) and (29), we can’t find the inverse Laplace transform analytically in the 
complex transformation domain. As a result, we employed numerical approaches to derive the 
inverse Laplace transform of Equations (28) and (29). In the numerical Laplace technique for 
solving fractional differential equations, Stehfest's (1970) and Tzou's (1970) algorithms are 
utilized. 

4.2 Nusselt Number and Sherwood Number 
 
The Nusselt number 𝑁𝑁𝑢𝑢 and Sherwood Number 𝑆𝑆ℎ can be expressed as  

       𝑁𝑁𝑢𝑢 = −�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕=0

& 𝑆𝑆ℎ = −�𝜕𝜕𝐶𝐶
𝜕𝜕𝜕𝜕
�
𝜕𝜕=0

 .            (30) 

 

4.3 Numerical Solution  

The governing linear parabolic partial differential equations (16)-(18) with initial and boundary 
conditions are solved numerically by using MATLAB software (PDEPE Solver). We have taken 
increment step along t  as 0.09090 and y  directions as 0.09677 in entire numerical computations. 
In present problem, the cost and the accuracy of the solution depend strongly on length of the 
vector y . This attentive problem requests the solution on mesh produced by spaced points from 
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the spatial interval 31 values of y from the space interval [0, 3] and 11 values of t  from the time 
interval [0, 1]. 
 

5. Results and Discussion 

The physical interpretation of the observed data is presented in this part, which includes graphs. 
Numerical simulations were carried out to demonstrate the impact of various physical 
characteristics. The following are the results that we obtained to demonstrate the impacts of 
nanoparticle volume fraction ∅, magnetic field parameter 𝑀𝑀, Thermal Radiation number 𝑁𝑁𝑃𝑃, 
Prandtl number 𝑃𝑃𝑃𝑃, Schmidt number 𝑆𝑆𝑆𝑆, Mass Grashof number 𝐺𝐺𝑚𝑚, Thermal Grashof number 𝐺𝐺𝑃𝑃, 
and Soret number 𝑆𝑆𝑃𝑃 on Momentum, Heat and Diffusion profiles.  
 

 
Figure 2. Velocity profile 𝑢𝑢 for distinct values of ∅ 
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Figure 3. Temperature profile 𝜃𝜃 for distinct values of ∅ 

 

 
Figure 4. Velocity profile 𝑢𝑢 for distinct values of 𝐺𝐺𝑃𝑃 
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Figure 5. Velocity profile 𝑢𝑢 for distinct values of 𝐺𝐺𝑚𝑚 

 
Figure 6. Temperature profile 𝜃𝜃 for distinct values of 𝑁𝑁𝑃𝑃 
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Figure 7. Velocity profile 𝑢𝑢 for distinct values of 𝑀𝑀 

 

 
Figure 8. Concentration profile 𝐶𝐶 for distinct values of 𝑆𝑆𝑃𝑃 
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Table 1: Comparison of Sherwood Number with Patel et al. (2022) at 𝑆𝑆𝑃𝑃 =  0 

𝑺𝑺𝑺𝑺 𝒕𝒕 Patel et al. (2022) Present Study 

1.5 0.4 -0.2185 -0.2185 

2.0 0.4 -0.2523 -0.2523 

2.5 0.4 -0.2821 -0.2821 

1.5 0.5 -0.2443 -0.2443 

1.5 0.6 -0.2676 -0.2676 

 

The influence of nanoparticle volume fraction ∅ on fluid momentum is depicted in Figure 2. In 
Figure 2, as the value ∅ rises, the fluid momentum slows down in the interval (0,1) and fluid 
velocity increases in the interval (1,3). Figure 3 depicts the volume fraction as a function of 
temperature. The fluid temperature rises as ∅ increases, which can be seen in the graph. It is 
because when the value of nanoparticle volume fraction ∅ grows, the viscous forces increase, 
causing the heat capacity of the fluid to rise, resulting in a rise in temperature. The influence of 
Thermal Grashof number Gr and Mass Grashof number Gm have been displayed in Figure 4 and 
Figure 5. As illustrated in both images, higher Gm and Gr values increase the fluid momentum. 
It's because of the proportions of buoyancy and viscous forces. As a result, raising the values of 
Gr and Gm lowers viscosity by increasing the buoyancy force. The influence of the radiation 
parameter Nr on the heat profile is seen in Figure 6. Higher levels of Nr result in a rise in 
temperature, as shown in the graph. The temperature effect of Nr is consistent with its physical 
behavior, resulting in a rise in nanofluid temperature in the boundary layer area. Figure 7 shows 
the momentum of a fluid as a function of the magnetohydrodynamic (MHD) parameter, M. The 
existence of a magnetic material or even an electrical current that produces magnetic fields could 
trigger the induced magnetic field. The magnetic field's pulling force grows as the MHD parameter 
is enhanced. The fluid flow is hindered as a result, and the fluid motion is lowered. The cause of 
Soret number Sr on concentration profile has been illustrated in Figure 8 and it has been observed 
that concentration profile decreases as Soret number Sr rises. Table 1 communicates the 
comparison of rate of mass transfer with the analysis reported by Patel et al. (2022). It demonstrates 
the validity of the current study by comparing it to previous findings; this indicates they are in 
good agreement. It supports our findings in terms of Sherwood number since it agrees well with 
the previously stated results. 

 
6. Conclusion 

Stable MHD flow through an exponentially accelerating vertical surface in optically thick 
nanofluid has been examined in the influence of heat transfer and thermal radiation. Closed form 
issues are solved using the Laplace technique and the Caputo fractional model. The impact of 
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various factors on velocity profile, temperature profile, and concentration profile has been studied 
through graphs. The current investigation yielded the following key findings. 

• The Mass Grashof number and Thermal Grashof numbers tend to accelerate the motion 
of fluid flow. 

• The fluid motion reduced by increasing the value of nanoparticle volume fraction, 
Magnetic field.  

• The heat transfer enhanced with nanoparticle volume fraction and Thermal Radiation 
parameter. 

• Thermo-diffusion tends to reduce the mass transfer process.  
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Appendix  

𝑏𝑏0 = 1 − ∅, 𝑏𝑏1 = (𝑏𝑏0 + ∅ 𝜌𝜌𝑠𝑠
𝜌𝜌𝑛𝑛

)  𝑏𝑏2 = (𝑏𝑏0 + ∅ (𝜌𝜌𝑔𝑔)𝑠𝑠
(𝜌𝜌𝑔𝑔)𝑛𝑛

)  

𝑏𝑏3 = (𝑏𝑏0 + ∅ (𝜌𝜌𝑐𝑐𝑝𝑝)𝑠𝑠
(𝜌𝜌𝑐𝑐𝑝𝑝)𝑛𝑛

), 𝑏𝑏4 = 𝑘𝑘𝑛𝑛𝑛𝑛
𝑘𝑘𝑛𝑛

, 𝑏𝑏5 = 𝜎𝜎𝑛𝑛𝑛𝑛
𝜎𝜎𝑛𝑛

, 

𝑏𝑏6 = 𝑏𝑏4
𝑏𝑏3

, 𝑏𝑏7 = (𝑏𝑏0 + ∅ (𝜌𝜌𝑔𝑔)𝑐𝑐
(𝜌𝜌𝑔𝑔)𝑛𝑛

), 𝑎𝑎1 = 1
𝑏𝑏02.5𝑏𝑏1

  

𝑎𝑎2 = 𝑏𝑏2
𝑏𝑏1

  𝑎𝑎3 = 𝑏𝑏5
𝑏𝑏1

  𝑎𝑎4 = 𝑏𝑏4+𝑁𝑁𝑟𝑟
𝑏𝑏3𝑝𝑝𝑟𝑟

  

𝑎𝑎5 = 𝑏𝑏7
𝑏𝑏1

, 𝐻𝐻 = 𝑎𝑎1𝑏𝑏6   
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