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Abstract 
 
The primary concern of this article is to establish the existence, uniqueness and continuous 
dependence on initial data of mild solutions of second order mixed integrodifferential equations 
of Sobolev type in Banach spaces. For this objective, we employ the idea of strongly continuous 
cosine family of operators, the modified version of Banach theorem and Grownwall’s inequality. 
The model is demonstrated to elucidate the abstract conclusion. 
 
Keywords: Integrodifferential equation; Modified fixed point theorem; Semigroup theory; Mild 

solution 
 
MSC 2010 (or 2020) No.: 47H10, 34G20, 45J05, 45N05, 47D09 
 
 
1. Introduction  
 
Several qualitative properties, namely, existence, uniqueness, and continuous dependence, are 
established for various kind of differential and integrodifferential equations by Kumar and Kumar 
(2013), Kumar and Kumar (2014), Jain and Dhakne (2014), Guerfi and Ardjouni (2022) and Pazy 
(1983).  
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Second order differential and integrodifferential equations arise in the modelling of various 
problems associated with the vibration of hinged bars (Kreiger (1950)), the transverse motion of 
an extensible beam (Ball (1973a), Ball (1973b)) and many other phenomena in the physical and 
engineering sciences like nuclear physics, mathematical biology, and mechanics of materials and 
so on. Due to this, existence, uniqueness and continuous dependence on the initial data for second 
order differential and integrodifferential equations have investigated by many researchers (Akça 
et al. (2020), Kucche and Dhakne (2015), Xie (2017), Jain and Dhakne (2014), Rezapour et al. 
(2021)). In several problems it is very useful to treat the abstract differential equations of second 
order directly in comparison to transform them to first order equations. Second order abstract 
differential equations are investigated by many researchers (Barbu (1972), Fitzgibbon (1982), 
Goldstein (1969)). Balachandran et al. (2002) established the existence of solutions of nonlinear 
extensible beam equations. The approach of strongly continuous cosine families is very important 
and useful for the investigation of abstract second order equations. For more details, we refer to 
Travis and Webb (1978), Travis and Webb (1977), and Muslim et al. (2018). 
 
On the other hand, there are several physical phenomena (for example, Kelvin-Voigt model for 
the non-Newtonian fluid flows (Mohan (2020)), thermodynamics (Chen and Curtin (1968)), sher 
in second order fluids (Huilgol (1968)) and the propagation of long waves of small Amplitudes 
(Benjamin et al. (1972))) that are modeled in Sobolev type equations. The authors Ahire et al. 
(2021) and Kavitha et al. (2021) are investigated the existence of solutions of different kinds of 
Sobolev type equations.  
 
This paper is devoted to investigate the existence, uniqueness and continuous dependence of a 
mild solution of equation of (1)-(3) with less restriction by employing the modified version of 
Banach contraction theorem. Along with this, the concept of strongly continuous cosine family of 
operators is also applied. Some of outcomes which are investigated in Travis and Webb (1978), 
Kumar and Kumar (2014), Jain and Dhakne (2014) and Pazy (1983) are generalized and enhanced.  
 
2.  Existence and uniqueness of mild solution 
 
Consider the second order mixed integrodifferential equation with Sobolev type is presented as 
follows: 

( )( ) ( ) ( ) ( ) ( ) [ ]''

0 0

, , , , ( ) , , , ( ) ,  0, ,
t c

y t Ay t H t y t e t s y s ds f t s y s ds t cχ
 

= + ∈ 
 

∫ ∫           (1) 

( ) 00 ,y y=                  (2) 

( )' 0y Eζ= ∈ ,                 (3) 
 
where , ,H e f are given functions, which are specified later. Also, A  be the infinitesimal generator 
of a strongly continuous cosine family of bounded linear operators ( ){ }:C t t R∈ on E . Further, χ
is a linear operator with domain and range contained in a Banach spaces W  and E , respectively. 
Consider that [ ]( )0, ,Z C c E= is the Banach space of all continuous functions from [ ]0,c into E
endowed with supremum norm: 
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( ){ }: : 0

Z
y sup y t t c= ≤ ≤ . 

 
Sequentially to show our main results, we state certain conditions on the operators A and χ . 
Suppose we have two Banach space E  and W with norm . and .  correspondingly. The operators 

( ):A D A W E⊂ → and ( ): D W Eχ χ ⊂ → fulfill the properties which are mentioned below: 
 
(A1)  The linear operators A and χ are closed, 
(A2) ( ) ( )D D Aχ ⊂ and χ is bijective, and 

(A3) ( )1 : E Dχ χ− → is continuous, 
 
with the help of the properties (A1), (A2) and the closed graph theorem mean the boundedness of 
the linear operator 1 :A E Eχ − → . Also, we set 1

0Fχ − ≤ and 1, 0F t cχ = ∀ ≤ ≤ . 
 
Suppose that there exist positive constants 0 1L ≥ and 1L in such a manner that ( ) 0C t L≤ and 

( ) 1S t L≤ . Here the family ( ){ }:C t t R∈  and ( ){ }:S t t R∈  is the strongly cosine and sine family 
of operators. For detailed information about strongly continuous cosine family of operators, see, 
for instance, Travis and Webb (1978) and Fattorini (1985). 
 
Definition 2.1.  
 
Assume that ( )0, ;H c E∈ . The function y Z∈  is given as follows: 
 

( )
( ) ( )

( ) ( ) ( )( ) ( )( ) [ ]

1 1
0

1

0 0 0

, , , , , , , ,  0, ,
t s c

C t y S t
y t

S t s H s y s e s y d f s y d ds t c

χ χ χ χζ

χ σ σ σ σ σ σ

− −

−

 +


=  
+ − ∈ 

 
∫ ∫ ∫         (4) 

 
is called a mild solution of the equations (1)-(3).  
 
Our further discussions are based on the modified version of Banach contraction principle (see 
Siddiqi (1986), p. 196). 
 
To achieve the desired results, we require the assumptions which are stated as follows: 
 
(A4)  The function [ ]: 0,H c E E E E× × × → is continuous in t  on [ ]0,c and there exists a 

constant   0 0N >  such that 
 

  ( ) ( ) ( )1 1 1 2 2 2 0 1 2 1 2 1 2, , , , , , ,H t x y z H t x y z N x x y y z z− ≤ − + − + −  
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4  K. Kumar and M.N. Tripathi 

for , ,i i ix y z E∈ , 1, 2i = . 
 
(A5)  The functions [ ] [ ], : 0, 0,e f c c E E× × → are continuous in ,t s  on [ ]0,c and there exist two 

positive constants 1 2,N N such that  
 

  ( ) ( ) ( )1 2 1 1 2, , , ,e t s x e t s x N x x− ≤ − , 

  ( ) ( ) ( )1 2 2 1 2, , , ,f t s x f t s x N x x− ≤ − , 
 
for ix E∈ , 1, 2i = . 
 
Theorem 2.1.  
 
Assume that the assumptions (A1) - (A5) hold. Then, the initial value problem (1)-(3) has a unique 
mild solution y Z∈ on[ ]0,c . 
 
Proof:   
 
Define the operator : Z ZΓ → as follows: 
 

( )( )
( ) ( )

( ) ( ) ( )( ) ( )( ) [ ]

1 1
0

1

0 0 0

, , , , , , , , 0,  
t s c

C t y S t
y t

S t s H s y s e s y d f s y d ds t c

χ χ χ χζ

χ σ σ σ σ σ σ

− −

−

 +


Γ =  
+ − ∈ 

 
∫ ∫ ∫

.  (5) 

 
Now, we see that the mild solution of (1)-(3) is a fixed point of the operator equation y yΓ = . We 
assume that ,y v Z∈ . With the use of the equation (5) and the assumptions, we get: 
 

( )( ) ( )( )y t v tΓ − Γ   

    ( ) ( ) ( )( ) ( )( )1

0 0 0

, , , , , , ,
t s c

S t s H s y s e s y d f s y dχ σ σ σ σ σ σ−  
≤ −  

 
∫ ∫ ∫  

             ( ) ( )( ) ( )( )
0 0

, , , , , , ,
s c

H s v s e s v d f s v d dsσ σ σ σ σ σ
 

−  
 

∫ ∫  

               ( ) ( )1 0 0 1 2
0 0 0

t s c

Z ZZ
L F N y s v s N y v d N y v d dsσ σ

 
≤ − + − + − 

 
∫ ∫ ∫  

               ( ) ( )1 0 0 1 0 0 1
0 0 0

t t s

ZZ
L N F y s v s ds L N F N y v d dsσ≤ − + −∫ ∫ ∫  

                          1 0 0 2
0 0

t c

Z
L N F N y v d dsσ+ −∫ ∫  
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2 2

1 0 0 1 0 0 1 1 0 0 22 2Z Z Z

t tL N F y v t L N F N y v L N F N y v≤ − + − + −  

                1 0 0 1 0 0 1 1 0 0 22 2Z Z Z

t tL N F y v t L N F N c y v L N F N c y v≤ − + − + −  

                1 0 0 1 0 0 1 1 0 0 2Z Z Z
L N F y v t L N F N c y v t L N F N c y v t≤ − + − + −  

               ( )1 0 0 1 21
Z

L N F N c N c t y v≤ + + − ,      (6) 
 
( )( ) ( )( )2 2y t v tΓ − Γ ( )( )( ) ( )( )( )y t v t= Γ Γ − Γ Γ  

     ( )( )( ) ( )( )( )1 1y t v t= Γ − Γ  

          ( ) ( ) ( )( ) ( )( )1
1 1 1

0 0 0

, , , , , , ,
t s c

S t s H s y s e s y d f s y dχ σ σ σ σ σ σ−  
+ −  

 
∫ ∫ ∫  

         ( ) ( )( ) ( )( )1 1 1
0 0

, , , , , , ,
s c

H s v s e s v d f s v d dsσ σ σ σ σ σ
 

−  
 

∫ ∫  

        ( ) ( )1 0 0 1 1
0

t

Z
L N F y s v s≤ −∫  

        ( ) ( ) ( ) ( )1 1 1 2 1 1
0 0

s c

Z Z
N y v d N y v d dsσ σ σ σ σ σ


+ − + − 


∫ ∫  

        ( )( ) ( )( )1 0 0
0

t

L N F y s v s ds≤ Γ − Γ∫  

       ( )( ) ( )( )1 0 0 1
0 0

t s

L N F N y s v s d dsσ+ Γ − Γ∫ ∫  

       ( )( ) ( )( )1 0 0 2
0 0

t c

L N F N y s v s d dsσ+ Γ − Γ∫ ∫  

       ( )1 0 0 1 0 0 1 2
0

1
t

Z
L N F L N F N c N c t y v ds≤ + + −  ∫  

      ( )1 0 0 1 1 0 0 1 2
0 0

1
t s

Z
L N F N L N F N c N c t y v d dsσ+ + + −  ∫ ∫  

      ( )1 0 0 2 1 0 0 1 2
0 0

1
t c

Z
L N F N L N F N c N c t y v ds+ + + −  ∫ ∫  

      ( )
2 3 3

2 2 2
1 0 0 1 2 1 21

2! 3! 3!Z

t t tL N F N c N c y v N N
 

≤ + + − + + 
 

 

       ( )
2 2 2

2 2 2
1 0 0 1 2 1 21

2! 3! 3!Z

t t tL N F N c N c y v N c N c
 

≤ + + − + + 
 

 

       ( )
2 2 2

2 2 2
1 0 0 1 2 1 21

2! 2! 2!Z

t t tL N F N c N c y v N c N c
 

≤ + + − + + 
 
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      ( )
2

22 2 2
1 0 0 1 21

2!Z

tL N F N c N c y v≤ + + − . 

 
With the similar way as we have used above, we get 
 

( )( ) ( )( ) ( )1 0 0 1 21
!

n

n n
Z

L N F N c N c t
y t v t y v

n
+ +  Γ − Γ ≤ − . 

 

For n large enough, 
( )1 0 0 1 21

1
!

n
L N F N c N c t

n
+ +   < . Therefore, for a positive integer n , nΓ is a 

contraction in Z . From the concept of modified version of Banach contraction principle (see Siddiqi 
(1986)), the function Γ  has a unique fixed point y in Z and any fixed point of Γ  is the mild solution 
of the equation (1)-(3) on 0 t c≤ ≤  in such a way that ( )y t E∈ for 0 t c≤ ≤ . So, the proof of the 
Theorem 2.1 is complete. ■ 
 
3. Continuous Dependence on Initial Data 
 
Theorem 3.1.  
 
Suppose that the assumptions (A1) - (A5) hold. Consider that 1 2,y y  are the mild solutions of the 
equation (1)-(3) for 0 t c≤ ≤  corresponding to the initial conditions ( ) ( ) *

1 0 10 , ' 0y y y ζ∗= = and

( ) ( ) **
2 0 20 , ' 0y y y ζ∗∗= = , respectively, and 1 2,y y Z∈ , then the inequality which is stated below,  

 
  ( ) ( ) ( )( )* **

1 2 0 0 1 0 0 0 1 1 0 1 0 1 2exp 1
Z

y y F L F y y F L F F L N c N c N cζ ζ∗ ∗∗ − ≤ − + − + +   ,      (7) 

 
is true. 
 
Proof:  
 
Consider 1 2,y y  are the two mild solutions of the problems (1)-(3) on [ ]0,c  with the initial 

conditions ( ) ( ) *
1 0 10 , ' 0y y y ζ∗= = and ( ) ( ) **

2 0 20 , ' 0y y y ζ∗∗= = , respectively, and 1 2,y y Z∈ . By  
applying the equation (4) and assumptions (A4) and (A5), we get  
 

( ) ( )1 2y t y t− ( ) ( ) ( ) ( )1 1 * **
0 0C t y y S tχ χ χ χ ζ ζ− ∗ ∗∗ −≤ − + −  

                            ( ) ( )( ) ( )( )1
1 1 1

0 0 0

( ) , , , , , , ,
t s c

S t s H s y s e s y d f s y dχ σ σ σ σ σ σ−
  

+ −   
  

∫ ∫ ∫  

                           
( ) ( )( ) ( )( )2 2 2

0 0

, , , , , , ,
s c

H s y s e s y d f s y d dsσ σ σ σ σ σ
 

−  
 

∫ ∫
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                           ( ) ( )* **
0 0 1 0 0 0 1 1F L F y y F L F ζ ζ∗ ∗∗≤ − + −    

                            
( ) ( ) ( ) ( )

( ) ( )

0 1 0 1 2 1 1 20
0

2 1 2
0

t
s

c

F L N y s y s N y y d

N y y d ds

σ σ σ

σ σ σ

+ − + −


+ − 



∫ ∫

∫
 

                           ( ) ( )* **
0 0 1 0 0 0 1 1 F L F y y F L F ζ ζ∗ ∗∗≤ − + −  

                                      ( ) ( )
[ ]

( ) ( )0 1 0 1 2 1 1 2
0,0 0

sup
t s

c
F L N y s y s N y y d

σ
σ σ σ

∈


+ − + −


∫ ∫  

                                      
[ ]

( ) ( )2 1 2
0,0

sup
c

c
N y y d ds

σ
σ σ σ

∈


+ − 


∫  

                           
( ) ( )

( ) ( ) ( )

* **
0 0 1 0 0 0 1 1

0 1 0 1 2 1 2
0

1
t

Z

F L F y y F L F

F L N cN cN y s y s ds

ζ ζ∗ ∗∗≤ − + −

+ + + −∫
. 

 
Applying Grownwall’s inequality (see Gronwall (1919)), we obtain 
 

( ) ( ) ( )( )* **
1 2 0 0 1 0 0 0 1 1 0 1 0 1 2exp 1

Z
y y F L F y y F L F F L N c N c N cζ ζ∗ ∗∗ − ≤ − + − + +  , 

 
and so, (7) holds. Therefore, the proof is complete.  ■ 
 
4. Application  
 
To describe the application of our abstract theory, consider the semilinear integrodifferential 
system as follows: 
 

( ) ( ) ( )
2

2, , ,t t t
t t ξξϖ ξ ϖ ξ ϖ ξ

ξ
∂ ∂ ∂ − = ∂ ∂ ∂ 

 

     ( ) ( )( ) ( )( ) [ ]
0 0

, , , , , , , , ,0 , 0, ,
t c

K t t t s t s ds t cϖ ξ η ϖ ξ κ ϖ ξ ξ π
 

+ ≤ ≤ ∈ 
 

∫ ∫           (8)  

( ) ( )0, , 0,0 ,t t t cϖ ϖ π= = ≤ ≤                (9)  

( ) ( )0,0 ,0 ,yϖ ξ ξ ξ π= ≤ ≤              (10) 

( ) ( ),0 ,0 ,
t
ϖ ξ ζ ξ ξ π∂

= ≤ ≤
∂

             (11) 

 
where the function [ ] 3: 0,K c R R× → , [ ] [ ], : 0, 0,c c R Rη κ × × → are continuous. It is assumed 
that the function ,K η and κ fulfill the following conditions: 

7
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8  K. Kumar and M.N. Tripathi 

 
For every 0 t c≤ ≤ and 1 2 31 2 3, , , , ,x x x z z z R∈% % % % % % , there exists a constant  
 

( ) ( ) ( )1 2 3 1 2 31 2 3 1 2 30, , , , , ,K t x x x K t z z z C x z x z x z− ≤ − + − + −% % % % % % % % % % % % , 

( ) ( ) ( )1 2 1 21, , , ,t s x t s x C x xη η− ≤ −% % % % , 

( ) ( ) ( )1 2 1 22, , , ,t s x t s x C x xκ κ− ≤ −% % % % . 

 
Let us take [ ]2 0, .E L π= Define the operator ( ):A D A E E⊂ → and ( ): D E Eχ χ ⊂ →  by

( ) ,A ξξϖ ϖ= , ( ) ξξχ ϖ ϖ ϖ= −  where each domain ( )D A  and ( )D χ  is given by 

( ) ( ){ }: ,  are absolutely continuous,  and 0 0 .E Eξ ξξϖ ϖ ϖ ϖ ϖ ϖ π∈ ∈ = =  
 
Here, explicitly the operator A is the infinitesimal generator of a strongly continuous cosine family 

( ){ }t R
C t

∈
on E . Then the operator A and χ have infinite series representation which are given as 

follows: 
 

( ) ( )2

1
, ,n n

n
A n D Aϖ ϖ ϖ ϖ ϖ

∞

=

= − ∈∑ , 

( )( ) ( )2

1
1 , ,n n

n
n Dχϖ ϖ ϖ ϖ ϖ χ

∞

=

= + ∈∑ , 

 

where ( ) 2 sin , 1,2,...n n nϖ ξ ξ
π

 
= =  
 

is an orthogonal set of vectors of A . Again, for Eϖ ∈  it 

holds the properties which are given as:  
 

( ) ( )1
2

1

1 , ,
1 n n

n n
χ ϖ ϖ ϖ ϖ

∞
−

=

=
+

∑  

( ) ( )
2

1
2

1
, ,

1 n n
n

nA
n

χ ϖ ϖ ϖ ϖ
∞

−

=

−
− =

+
∑  

( ) ( ) ( )2
1

cos
,

1 n n
n

nt
C t

n
ϖ ϖ ϖ ϖ

∞

=

=
+∑  

and  

( ) ( )
( ) ( )2

1

sin
,

1 n n
n

nt
S t

n n
ϖ ϖ ϖ ϖ

∞

=

=
+

∑ . 

 
As a consequence, ( ) ( ) 1C t S t= ≤ and for t R∈ , ( )S t is compact. 
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The function [ ]: 0,H c E E E E× × × → , [ ] [ ], : 0, 0,e f c c E E× × → is given as follows:  
 

( )( ) ( ) ( )( ), , , , , , ( ) ,H t u v w K t u v wξ ξ ξ ξ=  

( )( ) ( ), , , , ( ) ,e t s u t s uξ η ξ=  

( )( ) ( ), , , , ( )f t s u t s uξ κ ξ= , 
 
where , ,u v w E∈ and 0 ξ π≤ ≤ , [ ]0,t c∈ . With the choices for the functions , ,H e f and the 
operator A which is taken above, the equations (8)-(11) can be formulated as in the following 
abstract form in Banach space E : 
 

( )( ) ( ) ( ) ( )( ) ( )( ) [ ]
0 0

'' , , , , , , , , 0, ,
t c

y t Ay t H t y t e t s y s ds f t s y s ds t cχ
 

= + ∈ 
 

∫ ∫  

( ) 00 ,y y=  

( )' 0y Eζ= ∈ . 
 
Since all the assumptions of Theorem 2.1 are fulfilled, then (8)-(11) contains a solution on 

[ ]0,t c∈ . 
 
5. Conclusion 
 
We summarize our work with the objectives achieved, i.e., we establish some qualitative properties 
of mild solution of second order mixed integrodifferential equations in Banach spaces. For this 
purpose, we apply the ideas of modified version of Banach contraction theorem, semigroup theory 
and the strongly continuous cosine family of operators. Moreover, we also give an example to 
illustrate the theory. 
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