
Applications and Applied Mathematics: An International Applications and Applied Mathematics: An International

Journal (AAM) Journal (AAM)

Volume 19
Issue 3 Special Issue No. 12 (March 2024) Article 5

3-2024

Fuzzy Software Reliability and Optimal Release Policy with Log-Fuzzy Software Reliability and Optimal Release Policy with Log-

Logistic Testing Effort: An Analysis Logistic Testing Effort: An Analysis

Seema Rani
T. M. Bhagalpur University, Bhagalpur

Jitendra Kumar
T. M. Bhagalpur University, Bhagalpur

N. Ahmad
T. M. Bhagalpur University, Bhagalpur

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam

 Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
Rani, Seema; Kumar, Jitendra; and Ahmad, N. (2024). Fuzzy Software Reliability and Optimal Release
Policy with Log-Logistic Testing Effort: An Analysis, Applications and Applied Mathematics: An
International Journal (AAM), Vol. 19, Iss. 3, Article 5.
Available at: https://digitalcommons.pvamu.edu/aam/vol19/iss3/5

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for
inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of
Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu.

https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam/vol19
https://digitalcommons.pvamu.edu/aam/vol19/iss3
https://digitalcommons.pvamu.edu/aam/vol19/iss3/5
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol19%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol19%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol19%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/aam/vol19/iss3/5?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol19%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu

1

Available at
http://pvamu.edu/aam

Appl. Appl. Math.
ISSN: 1932-9466

Special Issue No. 12 (March 2024), Article 5, 12 pages

Applications and Applied
Mathematics:

An International Journal
(AAM)

Fuzzy Software Reliability and Optimal Release Policy
With Log-Logistic Testing Effort: An Analysis

1*Seema Rani, 1,2Jitendra Kumar, and 1,3N. Ahmad
1University Department of Statistics and Computer Applications

T. M. Bhagalpur University, Bhagalpur
Bihar, India

1*seema17.rani@gmail.com; 2jitendra12.jgd@gmail.com; 3ahmad_n@tmbuniv.ac.in

*Corresponding Author

Received: May 1, 2023; Accepted: September 18, 2023

Abstract

We will discuss a Software Reliability Growth Model (SRGM) using fuzzy and imperfect
debugging environments; we integrate Log-Logistic (LL) Testing Effort Function (TEF) into fuzzy
SRGMs. Estimation methods, such as Least Square and Maximum Likelihood, are used to obtain
the value of Testing-Effort and SRGMs parameters. It is not always possible and is constantly
required to quantify the exact value of parameters. Due to human conduct, the value of Testing-
Effort and SRGM parameters cannot be exactly quantified. In this scenario, parameters are
supposed to be vague or fuzzy. To make the software consistent, the developer needs to propose
some quantity of vagueness. Therefore, we propose a reliability growth model together with
suspicions involved in parameters of SRGM under imperfect debugging using fuzzy theory. We
calculate the entire cost of software development and reliability of proposed model using
Triangular Fuzzy Number (TFN) for real data sets. Results obtained are compared with previous
works from literature. It is shown the proposed SRGM with LL TEF give realistic extrapolation
ability of software reliability and optimized entire software cost under fuzzy environment.

Keywords: Software Reliability Growth Model; LL Testing Effort Function; Fuzzy number;
Fuzzification; Defuzzification; Triangular Fuzzy Number (TFN); Fuzzy set theory

MSC 2010 No.: 68M15, 68N30, 94D05

1

Rani et al.: Fuzzy Software Reliability and Optimal Release Policy

Published by Digital Commons @PVAMU,

http://pvamu.edu/aam
mailto:seema17.rani@gmail.com
mailto:jitendra12.jgd@gmail.com
mailto:ahmad_n@tmbuniv.ac.in

2 S. Rani et al.

1. Introduction

We know that human nature is uncertain. Interaction between humans and the real world raise
uncertainty. Whenever a person does not qualitatively hold the appropriate information to explicate
its presentation or additional phenomena deterministically and numerically, then uncertainty
appears. The modern vision of uncertainty was introduced in the late 19th century, and it started
from conversion from the conventional vision. Replacement of Newtonian mechanism, which
includes only certainty from probability theories, is known as first stage of conversion. Zadeh
(1965) produced a paper on fuzzy set which started the modern view of uncertainty, known as
second stage of conversion. Probability theory captured uncertainty of confident type. This concept
of uncertainty is challenged by Zadeh (1965). Idealized uncertainty arises everywhere. It is
elementary scientific standard, including necessary and ubiquitous phenomenon (Gong and Hai
(2014)).

A customer always requires software with no defects and minimum cost at specific time.
Estimation of software reliability is a very significant task in software development. Software
Reliability Growth Models (SRGM) is a mathematical tool used to guess and estimate the
reliability of software (see Yamada et al. (1984), Musa et al. (1987), Lyu (1996)). Using dissimilar
postulation and surroundings, varieties of SRGM are developed in past decades (see Musa (1975),
Goal and Okumoto (1979), Obha (84), Yamada and Osaki (1985), Yamada et al. (1993), Lyu
(1996), Ahmad et al. (2008)). These SRGM provide essential information for making decision in
the processes of software development, such as testing resource/effort consumption (see Yamada
et al. (1993), Huang (2005), Bokhari and Ahmad (2006), Ahmad et al. (2011)) and imperfect
debugging (see Rafi et al. (2010), Ahmad et al. (2021)). Optimal release policy and SRGM with
different testing-effort considering imperfect debugging have been introduced by many authors
(see Kapur et al. (2007), Ahmad et al. (2008), Bokhari and Ahmad (2014), Rafi et al. (2010),
Huang and Lyu (2005)). Change point perspective has also been considered into SRGM (see
Huang (2005)). Soft computing techniques have been used to estimate the parameters of SRGM
by several researchers (see Sheta (2007), Kiran and Ravi (2007), Jin and Jin (2016), Shailee et al.
(2019)).

Further, development of software is explained by many parameters. Every parameter included
definite level of fuzziness. So, it becomes necessary to consider the degree of uncertainty involved
in these parameters to develop more reliable software. During the operational and testing phase of
the software development, a tool is used for measuring software reliability, called SRGM (Kapur
et al. (2007)). Also, uncertainty exists in reliability estimation, expenditure estimation, effort
evaluation and risk study in software expansion procedure. In this scenario, several works have
been done under fuzzy environment for last two decades (see Klirr and Yuan (1995), Kapur et al.
(2011), Jha et al. (2011), Pachauri et al. (2013), Rani et al. (2016), Kalayathankal et al. (2017),
Dwivedi and Kumar (2018), Kumar and Ram (2018), Rani and Ahmad (2019, 2020a), Lee et al.
(2022), Kumar et al. (2021)). Recently, Rani and Ahmad (2020) also discussed a SRGM
considering testing-effort functions under fuzzy theory to predict the failure of the software.

This paper integrated Log-Logistic Testing-Effort (LLTE) into fuzzy SRGM. Two methods are
used to estimate the LLTE and SRGM parameters, named as least square estimation and maximum
likelihood methods. Data analysis is present numerically. This paper is an extension of Bokhari
and Ahmad (2006), Ahmad et al. (2011), Ahmad et al. (2008) and Ahmad et al. (2021) to the fuzzy

2

Applications and Applied Mathematics: An International Journal (AAM), Vol. 19 [], Iss. 3, Art. 5

https://digitalcommons.pvamu.edu/aam/vol19/iss3/5

AAM: Intern. J., Special Issue No. 12 (March 2024) 3

environment. This work is little bit different from the work of Rafi et al. (2010) and Rani and
Ahmad (2019).

Proposed work is divided into five sections. LLTE and the proposed model is described in Section
2, and parameter assessment, fuzzification of estimated parameters, arithmetic operation,
defuzzification of fuzzy reliability and comparison between obtained result and the previous model
are described in Section 3. Optimal Release Policy in fuzzy environment is described in Section
4. This work is concluded in Section 5.

2. Fuzzy Software Reliability Growth Model

A. Log-Logistic Testing-Effort

During the testing phase of software development, lots of TE is consumed. The expanded TE helps
us to identify the mistakes successfully and can be described by different circulation (Kapur et al.
(2007), Yamada et al. (1993)). SRGM included LLTEF can determine maximum number of faults
compare than previous methodologies. We are producing fuzzy SRGM using LLTEF.

We can define the cumulative testing-effort of LLTEF in time (0,t] as Ahmad et al. (2008):

𝑊𝑊(𝑡𝑡) = 𝜂𝜂 �1 − 1
1+(Ꞛ𝑡𝑡)µ� = 𝜂𝜂 � (Ꞛ.𝑡𝑡)µ

1+(Ꞛ.𝑡𝑡)µ� , 𝑡𝑡 > 0, (1)

where 𝜂𝜂 is total TE consumed by software testing Ꞛ and µ are scale and shape parameters,
respectively.

And current testing-effort at time t can be defined as:

𝑤𝑤(𝑡𝑡) = 𝑊𝑊′(𝑡𝑡) = 𝜂𝜂.Ꞛ.µ(Ꞛ𝑡𝑡)µ−1

[1+(Ꞛ𝑡𝑡)µ]2 , 𝑡𝑡 > 0, 𝜂𝜂 > 0, Ꞛ > 0, µ > 0. (2)

Maximum testing-effort 𝑤𝑤(𝑡𝑡) at t is:

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 1
Ꞛ
�𝜂𝜂−1
𝜂𝜂+1

�
1
𝜂𝜂. (3)

B. Proposed Fuzzy SRGM Model

The following are the assumptions of proposed SRGM based on the model described in Rafi et
al. (2010):

3

Rani et al.: Fuzzy Software Reliability and Optimal Release Policy

Published by Digital Commons @PVAMU,

4 S. Rani et al.

1. The NHPP concept is used to detect and eliminate the error in testing phase of software
development.

2. It is obvious that software failure occurs at random time.
3. Whenever a failure arises, the error due to which it is directly detached and novel errors may

be familiarized in among the fault decrease process with some prospect, say ɓ.
4. The time interlude (t, 𝑡𝑡 + ∆t) to the obtainable TE is trained to the mean number of enduring

errors in the system and proportionality is perpetual finished time in the number of faults
identified.

5. Log-Logistic TE function is implemented.

As above assumption mathematical representation of proposed model is:

𝑑𝑑𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑡𝑡

. 1
𝑤𝑤(𝑡𝑡)

= 𝑛𝑛�𝑎𝑎(𝑡𝑡) −𝑚𝑚(𝑡𝑡)�, (4)

𝑑𝑑𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑡𝑡

= ɓ 𝑑𝑑𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑡𝑡

, (5)

where 𝑚𝑚(𝑡𝑡) denotes mean value function, 𝑤𝑤(𝑡𝑡) is Testing-Effort Function (TEF), 𝑎𝑎(𝑡𝑡) is the total
number of errors, 𝑛𝑛 is the error detection rate, and ɓ is the probability of introducing new error.

At 𝑚𝑚(0) = 0,𝑊𝑊(0) = 0, and 𝑎𝑎(0) = 𝑎𝑎, mean value function 𝑚𝑚(𝑡𝑡) can be represented as:

𝑚𝑚(𝑡𝑡) = 𝑚𝑚
1−ɓ

�1 − 𝑒𝑒−𝑛𝑛.(1−ɓ).𝑊𝑊(𝑡𝑡)�. (6)

Finally, the reliability function can be defined as:

𝑅𝑅(𝑡𝑡 + ∆𝑡𝑡/𝑡𝑡) = 𝑒𝑒−𝑚𝑚(𝑡𝑡+∆𝑡𝑡)−𝑚𝑚(𝑡𝑡). (7)

3. Data Investigation

A. Parameter Assessment

Parameters are the total amount of testing-effort expenditure (𝜂𝜂) required by software testing, scale
parameters (Ꞛ), shape parameters (µ), total number of faults (𝑎𝑎), detection rate (n), and probability

4

Applications and Applied Mathematics: An International Journal (AAM), Vol. 19 [], Iss. 3, Art. 5

https://digitalcommons.pvamu.edu/aam/vol19/iss3/5

AAM: Intern. J., Special Issue No. 12 (March 2024) 5

to introduce new faults (ɓ) of SRGM with Log-logistic testing effort can be expected by using
actual data sets and applying the following two estimation methods.

B. Least Square Estimation (LSE)

Let n experimental data couples be in the form (𝑝𝑝𝑖𝑖,𝑄𝑄𝑖𝑖) where �𝑖𝑖 = 1, 2, … … 𝑞𝑞; 0 < 𝑝𝑝1 < 𝑝𝑝2 <
. . . < 𝑝𝑝𝑞𝑞� where 𝑄𝑄𝑖𝑖 is the cumulative TE consumed in time (0,𝑝𝑝𝑖𝑖). Then, the parameters of LL
testing-effort are predicted by minimizing (Ahmad et al. (2008)):

𝑆𝑆(𝜂𝜂, Ꞛ, µ) = ∑ [𝑄𝑄𝑖𝑖 − 𝑄𝑄(𝑝𝑝𝑖𝑖)]2𝑝𝑝
𝑖𝑖=1 .

C. Maximum Likelihood Estimation

The value of parameters �̂�𝜂,Ꞛ�, and µ� have been obtained by the method of least square discussed
earlier. Let q detected data couples are in the form (𝑝𝑝𝑖𝑖, 𝑥𝑥𝑖𝑖) where �𝑖𝑖 = 1, 2, … … 𝑞𝑞; 0 < 𝑝𝑝1 < 𝑝𝑝2 <
. . . < 𝑝𝑝𝑞𝑞� and 𝑥𝑥𝑖𝑖 is detected cumulative number of faults during (0,𝑝𝑝]. This method predicated the
parameters 𝑎𝑎,𝑛𝑛 and ɓ in the SRGM model by MLE method (Ahmad et al. (2008)):

𝐿𝐿(𝑎𝑎,𝑛𝑛, ɓ) ≡ 𝑃𝑃{𝑁𝑁(𝑝𝑝𝑖𝑖) = 𝑥𝑥𝑖𝑖, 𝑖𝑖 = 1, 2, … … … , 𝑞𝑞},

 = ∏ [𝑚𝑚(𝑝𝑝𝑖𝑖)−𝑚𝑚(𝑝𝑝𝑖𝑖−1)]�𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖−1�

(𝑚𝑚𝑖𝑖−𝑚𝑚𝑖𝑖−1)!
𝑞𝑞
𝑖𝑖=1 . 𝑒𝑒−[𝑚𝑚(𝑝𝑝𝑖𝑖)−𝑚𝑚(𝑝𝑝𝑖𝑖−1)],

where 𝑝𝑝0 ≡ 0 and 𝑥𝑥0 ≡ 0.

The data of Tohma et al. (1989) have been used in our proposed model. This data set is taken after
22 days of testing, a whole of 86 software faults were identified and 93 CPU hours were expended.
We estimated the SRGM parameters through MLE method.

To approximate the factors 𝜂𝜂, Ꞛ, and 𝜇𝜇 of Log-Logistic TE, we fit the real TE data into Equation
(1) and (2) and resolve it by the LSE method. These expected parameters are:

𝜂𝜂 = 177.02 , Ꞛ = 0.048 , 𝜇𝜇 = 1.973.

5

Rani et al.: Fuzzy Software Reliability and Optimal Release Policy

Published by Digital Commons @PVAMU,

6 S. Rani et al.

By using these estimated TE parameters 𝜂𝜂, Ꞛ, and 𝜇𝜇, the SRGM parameters a, n, and ɓ in Equation
(6) can be solved by MLE method. We get following estimation for SRGM parameters through
SPSS; these are:

𝑎𝑎 = 133.1, 𝑛𝑛 = 0.016, ɓ = 0.265.

D. Fuzzification of Estimated Parameters

The process of converting crisp erratic into fuzzy variable is called Fuzzification. Intuition,
experience, and analysis of the set of rules and conditions related with the input variables are
generally used fuzzification method. Here, intuition method of fuzzification is used to fuzzified
the crisp erratic into fuzzy variable.

The process of fuzzification can be illustrated by this example as follows below.

Illustrated Example: Assume the crisp value of parameter ‘a’ is 133.1. For example, a= 133.1
and we get 1% of a equal to 1.331. Now, the resultant value added and subtracted with the original
value of a to get the value of 𝑎𝑎4 = 133.1 + 1.331 = 134.431 and 𝑎𝑎2 = 133.1 − 1.331 =
131.769 respectively. To find 𝑎𝑎 = 130.438 again, we subtract the value of 1% of 133.1 from
𝑎𝑎2=131.769. The above illustration can be summarized as follows:

{133.1 − �1 ∗ �
133.1
100

�� − �1 ∗ �
133.1
100

�� = 𝑎𝑎1,

 133.1 − �1 ∗ �
133.1
100

�� = 𝑎𝑎2,

133.1 = 𝑎𝑎3,

 133.1 + �1 ∗
133.1
100

� = 𝑎𝑎4.

Triangular fuzzy number (TFN) z can be distinct as follows, based on above mentioned procedure:

𝜇𝜇𝐴𝐴(𝑧𝑧) =

⎩
⎪⎪
⎨

⎪⎪
⎧

0, 𝑥𝑥 < 131.769,
𝑥𝑥 − 131.769

133.1 − 131.729
, 131.769 ≤ 𝑥𝑥 ≤ 133.1,

134.431 − 𝑥𝑥
134.431 − 133.1

, 133.1 ≤ 𝑥𝑥 ≤ 134.431,

0, 𝑥𝑥 > 134.431.

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 19 [], Iss. 3, Art. 5

https://digitalcommons.pvamu.edu/aam/vol19/iss3/5

AAM: Intern. J., Special Issue No. 12 (March 2024) 7

By following above procedure, the rest parameters of TE and SRGM have been fuzzified at +/-1%
spreads. We fuzzified all parameters, i.e., the total amount of testing-effort expenditure (𝜂𝜂)
required by software testing, scale parameters (Ꞛ), shape parameters (𝜇𝜇), total number of faults
(a), detection rate (n) and new fault rate (ɓ) at +/-2 and +/-3 percent spreads same as +/-1% spreads.

E. Arithmetic Operation

𝑞𝑞 = [𝑏𝑏𝛼𝛼 ,𝑑𝑑𝛼𝛼] = [𝑏𝑏 + (𝑐𝑐 − 𝑏𝑏)𝛼𝛼, 𝑑𝑑 − (𝑑𝑑 − 𝑐𝑐)𝛼𝛼], ∀𝛼𝛼 ∈ [0, 1]. (8)

Triangular fuzzy number max and min bounds of all fuzzified parameters are calculated by using
above mathematical expression as Equation (8) at different assumption Level (AL) (0 to 1) (Klirr
and Yuan (1995)). Max and min bound of 𝑊𝑊(𝑡𝑡) is calculated from Equation (1) at different AL at
𝑡𝑡 = 10, 15, 20, 25 and 𝑡𝑡 = 10.1, 15.1, 20.1, 25.1. Here we used ∆t = 0.100. Now, we calculated
max and min bound of 𝑚𝑚(𝑡𝑡) and 𝑚𝑚(𝑡𝑡 + ∆t) from Equation (6) and reliability from Equation (8).
Max and min bound of 𝑚𝑚(𝑡𝑡) and 𝑚𝑚(𝑡𝑡 + ∆t) at 𝑡𝑡 = 10 and 𝑡𝑡 = 10.1 at different AL (0 to 1) and
+/-1, 2 and 3 percent spreads are shown in Table 1 and 2, respectively. The max and min bound of
reliability at 𝑡𝑡 = 10, 15, 20, 25 for different AL at +/-1, 2 and 3 percent spreads is calculated.

Table 1. Min and Max bound of Mean Value Function at 𝑡𝑡 = 10

AL At +/-1 percent spread At +/-2 percent spread At +/-3 percent spread

Min bound Max bound Min bound Max bound Min bound Max bound

0.000 3.39 3.56 3.31 3.65 3.23 3.74
0.100 3.39 3.55 3.32 3.63 3.25 3.71
0.200 3.40 3.54 3.34 3.61 3.27 3.68
0.300 3.41 3.53 3.35 3.59 3.30 3.66
0.400 3.42 3.52 3.37 3.57 3.32 3.63
0.500 3.43 3.51 3.39 3.56 3.34 3.60
0.600 3.44 3.50 3.40 3.54 3.37 3.57
0.700 3.44 3.49 3.42 3.52 3.39 3.55
0.800 3.45 3.49 3.44 3.50 3.42 3.52
0.900 3.46 3.48 3.45 3.49 3.44 3.49
1.00 3.47 3.47 3.47 3.47 3.47 3.47

7

Rani et al.: Fuzzy Software Reliability and Optimal Release Policy

Published by Digital Commons @PVAMU,

8 S. Rani et al.

Table 2. Min and Max bound of Mean Value Function at 𝑡𝑡 = 10.100

AL At +/-1 percent spread At +/-2 percent spread At +/-3 percent spread

Min bound Max bound Min bound Max bound Min bound Max bound

0.000 6.93 7.57 6.63 7.91 6.35 8.27
0.100 6.96 7.53 6.69 7.84 6.43 8.16
0.200 6.99 7.50 6.75 7.77 6.52 8.05
0.300 7.02 7.47 6.81 7.70 6.60 7.94
0.400 7.05 7.43 6.87 7.63 6.69 7.84
0.500 7.08 7.40 6.93 7.57 6.78 7.73
0.600 7.11 7.37 6.99 7.50 6.87 7.63
0.700 7.14 7.34 7.05 7.43 6.96 7.53
0.800 7.18 7.30 7.11 7.37 7.05 7.43
0.900 7.21 7.27 7.18 7.30 7.14 7.34
1.00 7.24 7.24 7.24 7.24 7.24 7.24

F. Defuzzification of Fuzzy Reliability

Transformation of fuzzy variable into crisp variable is called Defuzzification. Centre of Area
method, Centre of Sums, Centre of Maxima, and Weighted Average Method are popular
defuzzification method. Center of Gravity (CoG) is used for defuzzification and is represented.

Table 3. Comparison of Crisp Reliability with de-fuzzified reliability at different testing time

 Crisp Reliability and Defuzzified Reliability

 Defuzzified value of Reliability
Pachauri et al.

(2013)
Ahmad et al.

(2011)

t crisp
Reliability

+/-1
percent

+/-2
percent

+/-3
percent

10 0.46321 0.4685 0.4691 0.4772 0.6565 0.5652

15 0.5801 0.5804 0.5815 0.5826 0.7223 0.7488

20 0.7116 0.7142 0.7232 0.7302 0.7777 0.9129

25 0.8103 0.8109 0.8135 0.8176 0.8234 0.9849

8

Applications and Applied Mathematics: An International Journal (AAM), Vol. 19 [], Iss. 3, Art. 5

https://digitalcommons.pvamu.edu/aam/vol19/iss3/5

AAM: Intern. J., Special Issue No. 12 (March 2024) 9

4. Optimal Release Policy

It is more valuable for customers to achieve the software at appropriate time and reasonable cost.
Optimal release policy is very important. It helps the developer to release software into market at
appropriate time, because it is very important for customer. The developer always prefers to deliver
the product at specified time. By using the concept of cost-reliability criterion and fuzzy numbers,
Cost model and release policy are discussed in this section. Optimal release policy is also
calculated by same process. Bokhari and Ahmad (2006), Ahmad et al. (2011), Pachauri et al.
(2013) and Kalayathamkal et al. (2017) redefined the cost function as:

𝐶𝐶𝐶𝐶(𝑡𝑡) = 𝐶𝐶𝐶𝐶1𝑚𝑚(𝑡𝑡) + 𝐶𝐶𝐶𝐶2{[𝑚𝑚(𝑡𝑡𝐿𝐿𝐿𝐿) −𝑚𝑚(𝑡𝑡)]} + 𝐶𝐶𝐶𝐶3 ∫ 𝑤𝑤(𝑥𝑥)𝑑𝑑𝑥𝑥𝑡𝑡
0 , (10)

where 𝐶𝐶𝐶𝐶1 = (𝐶𝐶𝐶𝐶11,𝐶𝐶𝐶𝐶21,𝐶𝐶𝐶𝐶31) the error correction cost during testing, 𝐶𝐶𝐶𝐶2 = (𝐶𝐶𝐶𝐶12,𝐶𝐶𝐶𝐶22,𝐶𝐶𝐶𝐶32) is
error correction cost during operation, 𝐶𝐶𝐶𝐶2 > 𝐶𝐶𝐶𝐶1,𝐶𝐶𝐶𝐶3 = (𝐶𝐶𝐶𝐶13,𝐶𝐶𝐶𝐶23,𝐶𝐶𝐶𝐶33,) is the per unit testing-
effort expenditures cost and 𝑡𝑡𝐿𝐿𝐿𝐿 is the length of software life-cycle. In a specified period of time,
the conditional reliability of software system is given below:

𝑅𝑅(𝑡𝑡 + ∆𝑡𝑡/𝑡𝑡) = 𝑒𝑒−𝑚𝑚(𝑡𝑡+∆𝑡𝑡)−𝑚𝑚(𝑡𝑡), (11)

where 𝑚𝑚(𝑡𝑡) is the mean value function. According to Ahmad et al. (2008), reliability time is
calculated to achieve the desired reliability. Total software development cost is calculated at that
reliability time. There is need of minimum 24.42781 weeks for testing to get more than 95%
reliable software by cost-reliability criterion, as obtained result. The selection of spreads decides
the main threat to validate the approach. A wrong selection of spread may guide to incorrect
implication. Therefore, it is essential for the system analyst to select appropriate spread while
fuzzifying the crisp inputs. The selection of spread may depend on a variety of factors, such as:
impreciseness, ambiguity, and accessibility of data, background of operation, good information of
the system.

We assume 𝐶𝐶𝐶𝐶1 = 1,𝐶𝐶𝐶𝐶2 = 50,𝐶𝐶𝐶𝐶3 = 100 results show that, we need minimum 20.6978 weeks
for testing to get more than 95% reliable software by cost-reliability criterion. We fuzzify 𝐶𝐶𝐶𝐶1,
𝐶𝐶𝐶𝐶2 and 𝐶𝐶𝐶𝐶3 at plus/minus 1, 2, and 3 % spreads to determine software cost at 𝑡𝑡 = 24.42781. Now
we calculate min and max bound of 𝐶𝐶𝐶𝐶1, 𝐶𝐶𝐶𝐶2, and 𝐶𝐶𝐶𝐶3. At 𝑡𝑡 = 24.42781 we find out the value
of 𝑚𝑚(𝑇𝑇) and 𝑊𝑊(𝑇𝑇). We get the value of total cost after putting the min and max bound of 𝐶𝐶𝐶𝐶1,
𝐶𝐶𝐶𝐶2, 𝐶𝐶𝐶𝐶3, 𝑚𝑚(𝑇𝑇) and 𝑊𝑊(𝑇𝑇) in Equation (10). De-fuzzified values of total cost are 15090.6037,
15102.6037, and 15122.1366.

9

Rani et al.: Fuzzy Software Reliability and Optimal Release Policy

Published by Digital Commons @PVAMU,

10 S. Rani et al.

5. Conclusion

In this paper, we have discussed a software reliability modeling and analysis with LLTF using
fuzzy set under imperfect debugging environment. We have considered the uncertainty involved
in the parameters of SRGM using Triangular Fuzzy Number. Using the proposed method, we
obtained the fuzzy reliability and total software cost based on cost-reliability-criterion. We have
compared the results with other existing models from the literature. It is revealed that the proposed
fuzzy SRGM has a better prediction of reliability measures.

Therefore, we conclude that the modeling of software reliability and software cost may be more
effective under the fuzzy paradigm. The proposed fuzzy SRGM may be helpful for software
engineers in predicting software reliability measures. Under this framework, it may be extended
by incorporation change-point as well as learning factor.

Acknowledgment

The authors are grateful to the editor and two reviewers for their valuable comments and
suggestions that lead to improve our manuscript.

REFERENCES
Ahmad, N., Ahmad, A. and Farooq, S. U. (2021). An Assessment of Incorporating Log-Logistic

Testing Effort into Imperfect Debugging Delayed S-Shaped Software Reliability Growth
Model, International Journal of Software Innovation (IJSI), Vol. 9, No. 3, pp. 23-41.

Ahmad, N., Bokhari, M. U., Quadri, S. M. K. and Khan, M. G. M. (2008). The Exponentiated -
Weibull Software Reliability Growth Model with various testing-efforts and optimal
release policy: A performance analysis, International Journal of Quality & Reliability
Management, Vol. 25, No. 2, pp. 211-235.

Ahmad, N., Khan, M. G. M. and Rafi, L. S. (2011). Analysis of an inflection S-shaped software
reliability models considering log-logistic testing-effort and imperfect debugging,
International Journal of Computer Science and Network Security, Vol. 11, No. 1, pp. 161-
171.

Bokhari, M. U. and Ahmad, N. (2006). Analysis of a Software Reliability Growth Models: The
case of log-logistic testing-effort function, In Proceeding of 17th IASTED International
Conference on Modeling and Simulation, Montreal, Canada, pp. 540-545.

Bokhari, M. U. and Ahmad, N. (2014). Incorporating Burr Type XII Testing Effort into Software
Reliability Growth Modeling and actual Data Analysis with Application, Journal of
Software, Vol. 9, No. 6, pp. 1389-1400.

Dwivedi, A. and Kumar, D. (2016). Optimal Release Policy of software with imperfect debugging
and testing effort under fuzzy environment, International Journal of Engineering Applied
Science and Technology, Vol. 1, No. 8, pp. 103-107.

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 19 [], Iss. 3, Art. 5

https://digitalcommons.pvamu.edu/aam/vol19/iss3/5

AAM: Intern. J., Special Issue No. 12 (March 2024) 11

Goel, A. L. and Okumoto, K. (1979). Time-dependent error-detection rate model for software
reliability and other performance measures, IEEE Trans. Reliab. Vol. 28, pp. 206-211.

Gong, Z. and Hai, S. (2014). The Interval-Valued Trapezoidal Approximation of Inter-Value
Fuzzy Numbers and Its Application in Fuzzy Risk Analysis, Journal of Applied
Mathematics, Vol. 4, pp. 369-379.

Huang, C. Y. (2005). Performance analysis of software reliability growth models with testing-
effort and change-point, J. Syst. Softw., Vol. 76, No. 2, pp. 181–194.

Huang, C. Y. and Lyu, M. R. (2005). Optimal release time for software systems considering cost,
testing-effort, and test efficiency, IEEE Trans. on Reliability, Vol. 54, No. 4, pp. 583−591.

Jha, P. C., Indumati, Singh, O. and Gupta, D. (2011). Bi-criterion release time problem for a
discrete SRGM under fuzzy environment, Vol. 3, No. 6, pp. 680-696.

Jin, C. and Jin, S. W. (2016). Parameter optimization of software reliability growth model with S-
shaped testing-effort function using improved swarm intelligent optimization, Applied Soft
Computing, Vol. 40, pp. 283-291.

Kapur, P. K., Gupta, A. and Jha P. C. (2007). Reliability Growth Modeling and Optimal Release
Policy under Fuzzy Environment of N-version Programming System Incorporating the
effect of fault removal efficiency, International Journal of Automation and Computing,
Vol. 04, No. 4, pp. 369-379.

Kapur, P. K., Pham, H., Gupta, A. and Jha, P. C. (2011). Optimal Release Policy under Fuzzy
Environment, International Journal of System Assurance Engineering and Management,
Vol. 2, No. 1, pp. 48-58.

Kiran, N. R. and Ravi, V. (2007). Software reliability prediction by soft computing techniques,
Journal of System Software, Vol. 81, No. 4, pp. 576-583.

Klirr, G. J. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-
Hall of India Private Limited, New Delhi.

Kalayathankal, S. J., John, T. A. and Kureethara, J. V. (2017). An ordered ideal intuitionistic fuzzy
software quality model, International Journal of Mechanical Engineering and Technology,
Vol. 8, No. 10, pp. 535-546.

Kumar, A., Bisht, S., Goyal, N. and Ram, M. (2021). Fuzzy Reliability Based on Hesitant and
Dual Hesitant Fuzzy Set Evaluation, International Journal of Mathematical, Engineering
and Management Sciences, Vol. 6, No. 1, pp. 166-179.

Kumar, A. and Ram, M. (2018). System Reliability Analysis Based on Weibull Distribution and
Hesitant Fuzzy Set, International Journal of Mathematical, Engineering and Management
Sciences, Vol. 3, No. 4, pp. 513-521.

Lee, D. H., Chang, I. H. and Pham, H. (2022). Software Reliability Growth Model with Dependent
Failures and Uncertain Operating Environment, Journals of Applied Sciences, Vol. 12, No.
23, pp. 12383.

Lyu, M. R. (1996). Handbook of Software Reliability Engineering, IEEE Computer Society Press,
McGraw Hill, New York.

Musa, J. D. (1975). A theory of software reliability and its application, IEEE Transactions on
Software Engineering, Vol. 1, pp. 312-327.

Musa, J. D., Lannino, A. and Okumoto, K. (1987). Software Reliability Measurement, Prediction
and Application, McGraw Hill.

Ohba, M. (1984). Software Reliability Analysis Model, IBM Journal Research Develop., Vol. 28,
No. 4, pp. 428-443.

11

Rani et al.: Fuzzy Software Reliability and Optimal Release Policy

Published by Digital Commons @PVAMU,

12 S. Rani et al.

Pachauri, B., Kumar, A. and Dhar, J. (2013). Modeling Optimal release policy under fuzzy
paradigm in imperfect debugging environment, Information and Software Technology,
Vol. 55, No. 11, pp. 1974-1980.

Rafi, S. M. K., Rao, K. N. and Akhtar, S. (2010). Incorporated Generalized modified Weibull TEF
into software reliability growth model and analysis of optimal release policy, Computer
and Information Science, Vol. 3, No. 2, pp. 145-162.

Rani, S.and Ahmad, N. (2019). Analysis of fuzzy software reliability growth model and optimal
release policy with log-logistic testing effort under imperfect debugging, International
Journal of Computer Science and Network Security, Vol. 19, No. 7, pp. 185-195.

Rani, S. and Ahmad, N. (2020). Software Reliability Growth Modeling with Burr Type XII using
Fuzzy Logic, 5th International Conference on computing, communication, and security
(ICCCS), IEEE, pp. 1-5.

Rani, S. and Ahmad, N. (2020a). An Assessment of Software Reliability Growth Model and
Optimal Release Policy with Testing Effort under Fuzzy Environment, Solid State
Technology, Vol. 63, No. 6, pp. 5989-6002.

Rani, S., Ara, I. J. and Ahmad, N. (2016). Recent Review and Current Issues in Software
Reliability Growth Models under Fuzzy Environment, International Journal of Latest
Trends in Engineering and Technology, Vol. 6, No. 4, pp. 550-558.

Sheta, A. (2007). Parameter estimation of software reliability growth models by particle swarm
optimization, AIML J., Vol. 7, No. 1, pp. 55–61.

Shailee, L. and Sagar, B. B. (2019). Enhancing Software Reliability prediction based on Hybrid
Fuzzy K-Nearest Neighbour with Glowworm Swarm optimization (FLNN-GSO)
algorithm, International Journal of Recent Technology and Engineering, Vol. 7, No. 6, pp.
535-546.

Tohma, Y., Jacoby, R., Murata, Y. and Yamamoto, M. (1989). Hyper-Geometric Distribution
model to Estimate the Number of Residual Software Fault, Proceeding of COMPSAC-89,
IEEE CS Press, Orlando, pp. 610-617.

Yamada, S., Hishitani, J. and Osaki, S. (1993). Software reliability growth model with Weibull
testing-effort: A model and application, IEEE Transactions on Reliability, Vol. R-35, pp.
100-105.

Yamada, S., Ohba, M. and Osaki, S. (1984). S-shaped software reliability growth models and their
applications, IEEE Transactions on Reliability, Vol. 33, No. 4, pp. 289-292.

Yamada, S., and Osaki, S. (1985), “Software reliability growth modeling: models and
applications”, IEEE Transaction on Software Engineering, Vol. SE-11, No. 12, pp. 1431-
1437.

Zadeh, L. A. (1965). Fuzzy set information and computation, Vol. 8, pp. 338-353.

12

Applications and Applied Mathematics: An International Journal (AAM), Vol. 19 [], Iss. 3, Art. 5

https://digitalcommons.pvamu.edu/aam/vol19/iss3/5

	Fuzzy Software Reliability and Optimal Release Policy with Log-Logistic Testing Effort: An Analysis
	Recommended Citation

	references

