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Abstract

In this paper, we use Paul-Painlev’e approach method, extended rational sine-cosine method
and extended rational sinh-cosh method to construct the exact solution of the nonlinear Gilson-
Pickering (GP) equation in plasma. The exact solution of GP equation obtained by the above
three methods is new, and we use mathematical software to draw the two-dimensional and
three-dimensional graphs of the new exact solutions. Through the study of nonlinear equations
in plasma, this study will enrich the research and connotation of nonlinear development
equations in plasma.

Keywords: Paul-Painlev’e approach method; Extended rational sine-cosine method; E
xtended rational sinh-cosh method; Gilson—Pickering equation; Nonlinear
equation; Exact solution; Plasma

MSC 2020 No.: 35Q99, 35G20
1. Introduction

The evolution of human understanding of nature from linear to nonlinear phenomena is a sign
of the development of nonlinear science. Nonlinear research in plasma is a potential research
topic, which covers a lot of domains, including natural science, humanities and social science,
also has greater scientific value and profound philosophical methodological significance.
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A team of materials scientists claimed to have achieved magnetic confinement-free stability in
an impermeable plasma in 2013. Obtaining spectroscopic data on plasma properties is
challenging under high pressure, but the plasma's passive influence on nanostructure creation
indicates efficient confinement. Maintaining impermeability for a few tens of seconds resulted
in a significant secondary mode of heating, distinct reaction kinetics, and complex
nanomaterials.

The GP model given in the next formula is what we are studying in this context. The form is
as follows:

Do  0pdp D¢ op
ox’ot £ Ox Ox? ¢8x3 4 ox

op O
+2r,—+—=0, 1
" ox ot M)

—h
while describes wave propagation in plasma physics and crystal lattice theory, ri,1=1, 2, 3, 4
are arbitrary parameters.
Ayesh et al. (2022) thought of this article is to achieve new soliton solutions of the Gilson—
Pickering equation (GPE) with the assistance of Sardar’s subequation method (SSM) and
Jacobi elliptic function method (JEFM). Rehman et al. (2022) extended simple equation
method (ESEM) and the generalized Riccati equation mapping (GREM) method are applied to
the nonlinear third-order Gilson—Pickering (GP) model to obtain a variety of new exact wave
solutions. Liu et al. (2023) derived some sets of nonlinear ordinary differential equation, along

with some analytical solutions, based on the auxiliary transformations. A lot of scholars have
conducted extensive research on this.

2. Analytical methods

Three different analysis methods are briefly introduced in the section that follows.
2.1. Paul-Painlev’e approach method

Suppose the form of the nonlinear development equation is as follows:

T4 ury...) = 0. 2)

By admitting the transformation, the form is as follows:

o(x.1)=0(¢), 3)

£ =Ax+ht. (4)
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Plugging the Equations (3) — (4) into the Equation (2), we get the equation as follows:
S(¢.¢.4"....)=0. (5)

The solution to the nonlinear development equation is presented as follows:

o(&)=4, +W(X)e ™, (6)

or like so:

o) =4y + AW (X)e™ + AW (X )™ (7

Equations (6) — (7) satisfy the following conditions:

e V¢
X=T()=E- . (8)
©)=E-
By using Riccati’s equation, the form is as follows:
W, + FW? =0. ©)
One set of exact solutions is as follows:
W(x)=— (10
FX+X,’
where Ao, A1, A2, N, E, F and X, are constants.
2.2. Expanded rational sine-cosine method
In some nonlinear development equation, like so:
U(¢J¢xa¢t,¢xx5¢n>'“):0' (11)
By admitting the transformation, the form is as follows:
olx.1)=9(S), (12)
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& = Ax +kt. (13)

Plugging the Equations (12) — (13) into the Equation (11), we get the ordinary differential
equation, the form is as follows:

Q(¢’¢é’¢é§’¢§(§""): 0. (14)

The solution of the nonlinear development equation be this:

Asin(ud)
= 1
(P(é/) C+BCOS(/J§')’ (15)
cos(ut) = -<.. (16)
B
Or like the following:
Acos(u5)
= ——— 7" 1
¢(§) C+Bsin(,ué')’ (17)
sin(u¢)#-< (18)
B
where u, A, B and C are constants.
2.3. Expanded rational sinh-cosh method
In some nonlinear development equation, like so:
U(¢’¢x’¢t’¢xx’¢tt’.“):0' (19)
By admitting the transformation, the form is as follows:
olx.0)=p(S), (20)
$ =Ax+kt (21)

Plugging the Equations (20) — (21) into the Equation (19), we get the ordinary differential
equation, the form is as follows:

https://digitalcommons.pvamu.edu/aam/vol19/iss1/14
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Q(Q P> Pec»Pece ’) =0. (22)

The solution of the nonlinear development equation be this:

)=y Ziﬁiﬁf)g) ’ 29
cosh(ug) —%. (24)
Or like this:
ol(¢)= Cﬁj;’zf‘n(g‘(% (25)
sinh(u¢)# —%, (26)

where u, A, B and C are constants.

3. Application

In this part, we will apply the Paul-Painlev” e approach method, expanded rational sine-cosine
method and expanded rational sinh-cosh method as the new ideas to solve the GP equation. A
new traveling wave solution can be obtained when these variables have the specific value.

By acknowledging the transformation, the form is as follows:
¢ =Ax+kt, (27)

where A and k are constants.

Plugging the Equation (27) into the Equation (1), we get the following form:
10 Xk—rpp X —pp X —r,pp A+ 2rpA+@k=0. (28)
Integrating once, we get the following form:

~1Zke - g’ - %(n -2 - %rg?wz +(2n2+k)p=0. (29)

Published by Digital Commons @PVAMU, 2024
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3.1. Application of Paul-Painlev’e approach method

Calculation Equation (6) to get ¢ in other forms as follows:

=4, +e "W, (30)

@' =Ne W +3FNe*“W* + 2F ™ W?, (D)

09" = (4, + W \N2e YW +3FNe W + 2F %V ) (32)
(0] = N2 W + Fe Y W* + 2FNe Y, (33)

@’ =4 + 24, VW + W (34)

By plugging Equations (30) — (34) into Equation (29), we get the equation as follows:

- %MAOZ +(2ryh+ k) Ay + e YW (- KN = P AN? = 104, + 20,0+ k)

N e—2N§W2|:_ 3;,1/12kFN—/13(3A0FN+ Nz)—%(r4 —l)/13N2 —%7’3/1}
(35)
+ e Vw3 28 2kF? = 2(24,F + 3FN )~ (r, ~ 1) FN]|

+e e W4[— 22F? - %(a - 1)/13F2} = 0.

Let constant, e MW, e2NW2, e3Nep3, e N4 term to be zero, we get the equations as follows:

- %WOZ +(2nA +k)4, =0, (36)

—~nkN? = AN’ — 1,24, + 21,4+ k =0, (37)

— 35 PkEN - 2 (34,FN + N*)- %(n‘ ~ 1N —%M =0, (38)
— 2R PKF? = 2(24,F +3FN)~(r, ~1)AFN =0, (39)
—2P°F* - %(n —~1)PF* =0. (40)

By using Wolfram Mathematica software, we get the equations as follows:

https://digitalcommons.pvamu.edu/aam/vol19/iss1/14
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A,=0,N#0,r, #0,r, # -1,
bt 2irz\/2«/1+r4
\/N2+2r1r3N2+r12r32 > +2r,N? + 211, N> +1 N> (41)
_ —k-rnk-rk
2r, (1+1,)

,and F =0,

r# 0,4 =D (14 )N 20,
L+rn—r,

. 42

kzil\/g(étrz_FSAO),),=(1+r1r3_r4)k,andF:(), (42)

AN? +47,N> 2r, (=1+1,)

4l

L+ nr

r,=-3,1+rnr,#0,N=— , A, =0,nF #0,

. (43)
L g Tkonk

,andr, # 0,
2nF 2r,

411, F 4
ry==3,145n #0,N =027y - %

L+nr, L+nr
k:i—l\/g,rz 0, = K=k

2nF 2r,

JLE 20,
(44)
,andr, # 0.

The form of the solution is as follows:

e—N(lx-*—kt)

d(x,t)=A4,+ .
(X ) 4, F(E_eN(LHk[)).FX (45)
N 0

By plugging Equations (41) — (44) into Equation (45), we get the equations as follows:

N[((lr1r3r4) \ Zi”zx/gm ]

X+t
2ry (L+ry) J\/Nz 21N+ 2 R N2 427 N2 421, N2 41,2 N?

€ (46)

o(x,t)=

>

X,

N[((1r1r3r4) \ _2"”2\/Zm ]

X+t
2r, (1414) J\/Nz +21 N2 4121 N2 +21, N2 421737y N2 +7, > N2

€ (47)

>

o(x,1)= =
0

Published by Digital Commons @PVAMU, 2024
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N[(1+r];3 —ry)i f4r2 —r34,) N 1\/7 4ry—ry4y) J

2y (<14ry) JanZvar N? T JaN?rar, N2

4rr, e
¢(x9t)_ + )
I+nr -, X
_N 1+r]r3 r4 l\/i 4ry— V3A0 —l\/i 4ry — r3A0
2ry (~1+ry) \/4N2+4r4N2 JaNZ+ar,N?
4rr, e
olx,1)=
I+nr -, X
4nnF ( 1-nrs i no r3t
Lenry | 2r 2nF “anF
(x,1)=
¢ ’ 4nrnF ( l-nryi i\ry ’
1+r]r3k 2r, 2nF I 2nF
€
F|E—- + X
4nr,F 0
I+ 7
4nnF ( 1-nr; l\/7 7t\/7
Ly 2n 20F TN
(x,1)=
pix 4nrF ( 1-nry —l\/73 =i r3 ’
Linry | 2n, 20F "onE
€
F|E—- + X,
4nr,F 0
1+7r
4rlr2F(—1—r|r3i r3x=i 3 tj
1+nr 2r, 2nF  2n
( , 4’/'1’/'2 . e I3L 2 i 1
X,t)=
P 1+7’17"3 4’1”2‘”( 1-rry ’\/7 l\/T ’
L (- 2m 20 F 2nF
F|E—- + X,
4rr,F 0
1+,
4r1r2F( 1-rry —i r3x rjt
4}"}" 1+r|r3L 2r, 2nF ' 2nF
12
olx,t)=
1+7’17"3 Annk ( 1-nr; l\/T I*’\/Zt
Lenry - 2m 2nF 2nF
€
F| E—- + X
4rr,F 0
1+

B. Yang et al.

(48)

(49)

(50)

(51

(52)

(33)

Through the induction and summary of the Equations (46) — (53), the types of new exact
solutions obtained by Paul-Painlev e approach method can be divided into two categories. We

choose two exact solutions to draw the image.

Taking Equation (48) for example, we use Wolfram Mathematica software to draw the two-

dimensional and three-dimensional graphs.

https://digitalcommons.pvamu.edu/aam/vol19/iss1/14
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By plugging m=1,r=1,rn=1,n=3,40=—4,F=0,E=1,Xo=1,and N =1 into Equation
(48), we get the equation as follows:

go(x,t) =—4+ e_(_%x”it}. (54)

@ (b)

/ \/ zla .
-0 L

~10

(b)

Figure 2. Picture of Equation (54). (a)and(b) are two-dimensional graphs with real and imaginary parts, where ¢ is equal to 1

In Figures 1 and 2, Equation (55) is a soliton solution of Equation (1), and other soliton type
solutions can be obtained for different values of r1, 72, 13, r4, Ao, E, E; Xo, t, and N.

Taking Equation (52) for example, we use Wolfram Mathematica software to draw the two-
dimensional and three-dimensional graphs.

By plugging m=1,ri=1,rn=1,n=-3,40=2, F=1,E=1,Xo=1, and N = 2 into Equation
(52), we get the equation as follows:

—2i(—x+%t}
€

J)=2+——~
olx.1) el (55)

Published by Digital Commons @PVAMU, 2024
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(@) (b)
Figure 3. Picture of Equation (55). (a) and (b) are three-dimensional graphs with real and
imaginary parts
4
0
4
| I 1L
—40 i 1b bo
K
0.
. . 5 0.4
-20 10 10 20
(@) (b)

Figure 4. Picture of Equation (55). (a) and (b) are two-dimensional graphs with real and
imaginary parts, where ¢ is equal to 1

In Figures 3 and 4, Equation (55) is a periodic solution of Equation (1), and the periodic
solution reflects the periodicity in time of the new exact solution.

3.2. Application of expanded rational sine-cosine method

Calculation Equation (15) to get ¢ in other forms as follows:

ol0)-g2omke) 56

5(0)= 4728 —( gi; leCS ‘(:;Sé(;;f ))sin(uc) | -
ool ()= I UENT - C 1 BCeoluc) -
() - A24(B* +2BCcos(u ) + C* cos* () ()

(C + Beos(ug))' ’

https://digitalcommons.pvamu.edu/aam/vol19/iss1/14
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A’sin®(ug)
C+ Bcos(y§))2 :

9'(¢)= ( (60)

By plugging Equations (56) — (60) into Equation (29), we get the equation as follows:

- %(n‘ ~ )P A B? +sin(ug |- n2kdu> (28> - C*)C + (21,4 + k) AC? ]
+ sinz(,ué’)[— PA (2B - C?)- %QMZCz}

+sin(u¢ )eos(ue |- n2kdp? (287 - C*)B + BC*)+ 3(2,4 + k) 4BC?)
+sin(pu¢ )eos® (ud - n kA B2C +3(2n,4 + k) ABC| 61)
+ sin(u{)cos3(y§)[(2rz/1 + k)AB3]+ sinz(,ué’)cos(yg")[— P A 1BC - rSAAzBC]

+sin®(u¢ )cos? (u{){— %l’é/lAsz:l + cos(u{)[— (r, - 1)2,3A2,uzBC]

+ cosz(ug“)[—%(q —1)2 4’ ;ﬁcz} =0.

Let the constant sin™(u{), cos™(u(), sin™(ud)cos" (1) be zeros, then we get the equations as

follows:
- %(4 ~1)P 4’ u’B* =0, (62)
— kA (2B — C*)C + (212 + K)AC =0, (63)
— 2L (2B - C)- %@AAW -0, (64)
—n2kAw? (2% - C*)B + BC?)+3(21,4 + k)ABC? =0, (65)
—n A2kAp’B*C +3(21,A + k)AB*C =0, (66)
(2,4 +k)4B’ =0, (67)
~ P A* 1> BC — 1, JA*BC =0, (68)
- %@Msz =0, (69)
~(r, —1)P4’1*BC =0, (70)
—%(n ~ )P A1 *C* =0. (71)

Published by Digital Commons @PVAMU, 2024
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By using mathematical calculation software, we get the equation as follows:

—(2nA+k —(4nA+2k
A#0,B=0,C#0,u=+ (r22+ )/732,r1= GrA+2K) dr <1, (72)
kA'r, 24 kr,

The form of the solution is as follows:

Asin(u(Ax + kt))
C + Beos(u(Ax + kt))’

o(x,t)= (73)

By plugging Equation (72) into Equation (73), we get the equations as follows:

. - (ZVZ/I + k) 7
Asm[\/\/ K \/2/12 (Ax + kt) (74)

o(x.1)= c ,
| —(2r2/1+k)\/ 7,
Asm( \/\/ pres 2P (Ax + kt) (75)
(p(x,t)= C .

Through the induction and summary of the Equations (74) — (75), the types of new exact
solutions obtained by expanded rational sine-cosine method can be divided into one category.
We choose a representative exact solution to draw the image.

Taking Equation (74) for example, we use Wolfram Mathematica software to draw the two-
dimensional and three-dimensional graphs.

By plugging r1=2, m=-1,m=1,n=1,k=1,1=1,4=2,B=0,and C = 1 into Equation
(74), we get the equation as follows:

olx,1)= ZSin(%(x + t)} : (76)

https://digitalcommons.pvamu.edu/aam/vol19/iss1/14
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Figure 5. The three-dimensional graph of Equation (76)

Figure 6. The two-dimensional graph of Equation (76), where ¢ is equal to 1

In Figures 5 and 6, Equation (76) is a periodic solution of Equation (1), and the periodic
solution reflects the periodicity in time of the new exact solution.

Calculation Equation (17) to get ¢ in other forms as follows:

__Acos(ug)

ol¢)= C + Bsin(ul)’ 7
() - oo ) 78)

(C + Bsin(,u())2 ’

Y A,u(B + Csin(,u())
@ (é/)_ (C L Bsin(,ué’)f > (79)

, B Az,uz(B2 +2BCsin(u¢ )+ C? Sinz(ﬂg))

) = (C+ Bsin(ud)) ’ 0
() A st B =+ BCsin(u) @

(C+ Bsin(ug))

Published by Digital Commons @PVAMU, 2024 13
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_ A u? cosz(,ué')(ZB2 -C*+ BCsin(,ug))

o($)e'(£) (C+ BsnGul))

By plugging Equations (77) — (82) into Equation (29), we get the equation as follows:

- %(Q — )P A B? + cos(ug |- n kA (2B> = C*)C + (21,4 + k) AC? ]
+ cosz(,ug’){— AA (2B - C?)- %gmzcz}

+ cos(u¢ Jsin(u |- n2kdp? (287 — C*)B + BC?)+ 3(2,4 + k) 4BC?)
+ cos(ud )sin® (ud - kA p* B2C +3(2n,4 + k) AB*C|
+ cos(y()sin3(y§)[(2rz/1 + k)AB3]+ cosz(,ug)sin(ycf)[— A A1 BC - ;gﬂAzBC]

+ cosz(yg)sinz(yg){— %@MZBZ} + sin(yé’)[— (r, - 1)2,3A2,uzBC]

+ sinz(yé')[—%@ )24’ ,uzCz} =0.

et al.

(82)

(83)

Let constants sin™(u(), cos™(u(), sin™(ud)cos™(u() be zeros, then we get the equations as follows:

—%(n —1)A 4%’ B* =0,
— 1 kA’ (2B — C*)C + (214 + k)AC? =0,
~ 24 (2B - cz)—%@/uzcz ~0,

— i kAp((2B* = C*)B + BC? )+ 3(21,4 + k) ABC? =0,
—rn A2kAp’B*C +3(21,A + k)AB*C = 0,
(2r,A+k)AB® =0,

-~ XA W’BC -r,A4’BC =0,

—~ %r}/lAsz =0,
~(r, -)X 4’ 1’BC =0,

—%(Q — )2 A4’ C* =0.

By using mathematical calculation software, we get the equation as follows:

https://digitalcommons.pvamu.edu/aam/vol19/iss1/14
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C2))
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(93)
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—@gz+mJ;3 _ —(4n A +2k)

1 = ,andr, =1. (94)
kAr, 2227 kr, !

A¢O,B=O,C¢O,y=i\/\/

The form of the solution is as follows:

Acos(u(Ax + kt))
C + Bsin(u(Ax + kt))’

o(x,t)= (95)

By plugging Equation (94) into Equation (95), we get the equations as follows:

—(2nA+ k)\/ 7,
Aco{\/\/ K Y (Ax + kt) (96)

olx,1)= . :
~@2ni+k) | n
Acos{— \/\/ K Y ()Lx + kt) 97)
(o(x,t) = C .

Through the induction and summary of the Equations (96) — (97), the types of new exact
solutions obtained by expanded rational sine-cosine method can be divided into one category.
We choose a representative exact solution to draw the image.

Taking Equation (96) for example, we use Wolfram Mathematica software to draw the two-
dimensional and three-dimensional graphs.

By plugging r1=2, m=-1,m=1,n=1,k=1,1=1,4=2,B=0,and C = 1 into Equation
(96), we get the equation as follows:

o(x,t)= 2005(%()( + t)j . (98)

Published by Digital Commons @PVAMU, 2024
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e
x 20

Figure 7. The three-dimensional graph of Equation (98)

Figure 8. The two-dimensional graph of Equation (98), where ¢ is equal to 1

In Figures 7 and 8, Equation (98) is a periodic solution of Equation (1), and other soliton type
solutions can be obtained for different values of 7, 12, 73, r4, 4, B, C, k, A, t, and p.

3.3. Application of expanded rational sinh-cosh method

Calculation Equation (23) to get ¢ in other forms as follows:

(D(QV) _ Asinh(,ué’)

C + Bcosh(u¢)’ &)
2 A* sinhz(,ué')

¢ (é’) - (C + Bcosh(,ué’))2 ’ (109

N A,u(B + Ccosh(,ué’))
()= (C+ Beosh(ug)f (1on

, A (32 +2BC cosh(,u{)+ Cc? COShZ(,UéV))

((0 (C:))Z B (C + Bcosh(,ué’ ))4 ’ (102
. (é’) _ - A,uz(2B2 —-C*+BC cosh(,ug”))sinh(,ué’) ’ (103)

(C + Bcosh(u¢))

https://digitalcommons.pvamu.edu/aam/vol19/iss1/14 16



Yang et al.: New Exact Solution of Gilson-Pickering Equation in Plasma

AAM: Intern. J., Vol. 19, Issue 1 (June 2024) 17

oo — A’ sinhz(,ué’)(ZB2 —-C*+BC cosh(,ué’))
¢(§)¢ (é/)_ (C—l— BCOSh(ﬂ§))4 : (104)

By plugging Equations (99) — (104) into Equation (29), we get the equation as follows:

- %(n )P A B +sinh(ug i kA’ (2B — C°)C + (2154 + k)AC?
+ sinhz(yg)[ﬂf/lz 1(2B> - C?)- %szcz}

+ sinh(u¢ )cosh(u¢ i 2k (2B% - C*)B + BC? )+ 3(2r,4 + k) ABC?|
+sinh(u¢ eosh? (| kA’ B>C +3(2n,4 + k) AB*C| (105)
+ sinh(yé’)cosh3(yé’)[(2r2}t + k)AB3]+ sinhz(yé’)cosh(yé’)[/13A2y2BC - r3/1AzBC]

+ sinhz(,ué')coshz(y{{— %rﬁAsz} + cosh(yg")[— (r4 - 1)/13A2,uzBC]

+ coshz(yé'{—%(r4 - l)ﬂfAzyzCz} =0.

Let constants sinh™(u(), cosh™(1(), sinh™(u{)cosh™(u() be zeros, then we get the equations as

follows:
—%(n ~1)P A’ u’B* =0, (106)
kA (2B% = C*)C +(2nA+k)AC® =0, (107)
PA (2B - C?)- %lgﬂAzC'Z =0, (108)
i 2kAw?((2B° - C*)B+ BC? )+ 3(21,4 + k)ABC? =0, (109)
rAkAp*B*C +3(2r,A + k)AB*C =0, (110)
(2,4 +k)AB* =0, (111)
A A1’ BC - r,AA’BC =0, (112)
—%@/MZBZ =0, (113)
cosh(u¢): (r, ~1)P’ 4’ 1> BC =0, (114)
—%(Q ~D)EA W’ C? =0. (115)
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By using mathematical calculation software, we get the equation as follows:

2rA+k | —r —(4r/1+2k)
A#0,B=0,C#0,u=+ 2 oy = 2 ,andr, =1.
yzi \/ e ,/uz h . v (116)

The form of the solution is as follows:

Asinh(u(Ax + kt))
C + Bcosh(u(Ax + kt))

o(x,t)= (117)

By plugging Equation (116) into Equation (117), we get the equations as follows:

. [2rA+k |-r
Asmh[\/ ir 22 (Ax+ kt)} (118)
C b

. 2rnA+k |[—r
h| - 2 —3
Asin [ \/ B 22 (/lx+kt)J (119)

plx,1)=

plx,1)=

Through the induction and summary of the Equations (118) — (119), the types of new exact
solutions obtained by expanded rational sine-cosine method can be divided into one category.
We choose a representative exact solution to draw the image.

Taking Equation (118) for example, we use Wolfram Mathematica software to draw the two-

dimensional and three-dimensional graphs.

By plugging =3, m=1,nm=-2,n=1,k=1,1=1,4=2,B=0,and C = 1 into Equation
(118), we get the equation as follows:

@(x,¢)=2sinh(x +1). (120)
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Figure 9. The three-dimensional graph of Equation (120)

Figure 10. The two-dimensional graph of Equation (120) ,where ¢ is equal to 1

In Figures 9-10, Equation (120) is a periodic solution of Equation (1), and the periodic solution
reflects the periodicity in time of the new exact solution.

Calculation Equation (25) to get ¢ in other forms as follows:

O Sy
oy
e e
e 7 e SN
5(0)= Ay’ (2B + € — BCsinh(u¢ ))eosh(u¢) (125)

(C+ Bsinh(u¢)) ’
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_ A*u’ cosh’ (,ué’)(ZB2 +C? - BCsinh(,ug“))
- (C + Bsinh(u¢))*

P& )e'(¢) (126)

By plugging Equations (121) — (126) into Equation (29), we get the equation as follows:

- %(n —1)B A B + cosh(ug |- n kA (2B> = C*)C + (21,4 + k) AC?]

+ coshz(yé)[— PA (2B - C?)- %QMZCZ}

+ cosh(u¢ )sinh(u¢ - 2kdw? (28> - € )B + BC? )+ 3(21,4 + k) ABC?]
+ cosh(u¢ )sinh? (kA u* B>C +3(2n,4 + k) AB>C| (127)
+ cosh(yg")sinh3(y§)[(2r2/1 + k)AB3]+ cosh’” (,ug”)sinh(,ué’)[/@Az,uzBC - r3/1AzBC]

4 coshz(ﬂg)sinhz(yg){— %;5/1/1232} +sinh(u¢ |(r, —1)4° 4% BC]

+ sinhz(,ug“)[—%(q )24’ ﬂzcz} =0.

Let constant sinh™(u(), cosh™(u(), sinh™(u{)cosh™(ul) terms to be zeros, thenwe get the
equations as follows:

1 342 2p2
—5(7’4 ~)PA W B* =0, (128)
— kA (2B + C*)C + (212 + k)ACT =0, (129)
—43/12#2(232 +C2)—%r31A2C2 =0, (130)

2 2 2 2 2 2
—n kA (287 + C*)B - BC?)+3(21,4 + k)ABC? =0, (131)
rAkAp*B*C +3(2r,A + k)AB*C =0, (132)
(2,4 +k)AB* =0, (133)
A A1’ BC - r,AA’BC =0, (134)
1

—EI’MAZBZ =0, (135)
(r, - )A A’ BC =0, (136)

1 342,22
_E(r4 ~D)AALAC? =0, (137)
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By using mathematical calculation software, we get the equation as follows:

2rA+k | —r —(4r/1+2k)
A#0,B=0,C#0,u=+ 2 oy = 2 ,andr, =1
yzi \/ kAT \/uz h . =1 0139

The form of the solution is as follows:

Acosh(u(Ax + kt))
C + Bsinh(u(Ax + kt))’

o(x,t)= (139)

By plugging Equation (138) into Equation (139), we get the equations as follows:

21"21, +k -n
Acosh[\/ e 1/2/12 (ﬂx+kt)] (140)

o(x,t)= c ,
2]"2], +k ;”'3
A cosh[\/ K | Y (Ax+ kt)} (141)
go(x,t) = C .

Through the induction and summary of the Equations (140) — (141), the types of new exact
solutions obtained by expanded rational sine-cosine method can be divided into one category.
We choose a representative exact solution to draw the image.

Taking Equation (140) for example, we use Wolfram Mathematica software to draw the two-
dimensional and three-dimensional graphs.

By plugging =3, m=1,nm=-2,n=1,k=1,1=1,4=2,B=0,and C = 1 into Equation
(140), we get the equation as follows:

(o(x,t) = 2cosh(x + t). (142)
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Figure 11. The three-dimensional graph of Equation (142)
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Figure 12. The two-dimensional graph of Equation (142), where ¢ is equal to 1

In Figures 11-12, Equation (142) is a periodic solution of Equation (1), and other soliton type
solutions can be obtained for different values of 7, 12, 73, r4, 4, B, C, k, A, t, and p.

4. Conclusion

In this work, the exact solution of the GP equation was obtained using the Paul-Painlev’e
approach method, extended rational sine-cosine and extended rational sinh-cosh method. The
exact solution of GP equation obtained by the above three methods is new, and we use
mathematical software to draw the two-dimensional and three-dimensional graphs of the new
exact solutions. This paper not only extends the exact solution of GP equation, but also provides
a new way to study more exact solutions of nonlinear equation in the future. But different
methods will get different exact solutions, the method we use only gets part of the exact
solution of the equation, so finding more exact solutions will be a problem to be further studied.
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