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Abstract

In this paper, a comparative study between two different methods for solving nonlinear time-
fractional coupled Boussinesq-Burger equation is conducted. The techniques are denoted as
the Natural Transform Decomposition Method (NTDM) and the Variational Iteration Transform
Method (VITM). To showcase the efficacy and precision of the proposed approaches, a pair of
different numerical examples are presented. The outcomes garnered indicate that both methods
exhibit robustness and efficiency, yielding approximations of heightened accuracy and the solu-
tions in a closed form. Nevertheless, the VITM boasts a distinct advantage over the NTDM by
addressing nonlinear predicaments without recourse to the application of Adomian polynomials.
Furthermore, the VITM’s capacity to surmount challenges arising from the identification of the
overarching Lagrange multiplier stands as an augmenting facet, amplifying its advantage over the
NTDM technique.

Keywords: Adomain decomposition method; Nonlinear Caputo time-fractional Boussinesq-
Burger equation; Variational iteration method; Series solution
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2 J.U. Yadav and T.R. Singh

1. Introduction

Fractional differential equations are widely used in the interpretation and modeling of many
realism matters that appeared in applied mathematics and physics including fluid mechanics,
plasma physics, optical fibers, dispersive wave, acoustic, thermoelastic materials, medical sci-
ences, biology, electricity channels, rusting physical chemistry, shock wave, mathematics, fluid
mechanics and polymers, have performed studies in fractional behavior (Abu Arqub (2019);
Momani et al. (2020a); Momani et al. (2020b); Maayah et al. (2022); Arqub and Maayah (2023);
Abu Arqub et al. (2022)). Several authors have employed various techniques for solving fractional
order of differential equations in linear or nonlinear forms. Some techniques include the homotopy
analysis method (Shah and Singh (2019)), Shehu decomposition method (Chu et al. (2021)), homo-
topy perturbation method (Jani and Singh (2022); Choksi and Singh (2019)), variational iteration
transform method (Chu et al. (2021); Chandru and Radhakrishnan (2022)), adomian decomposi-
tion Method (Yadav and Singh (2023c); Yadav and Singh (2023d); Khalouta and Kadem (2019)),
new laplace variational iteration method (Anjum and He (2019)), modified variational iteration
method (Yadav and Singh (2023b)), natural transform decomposition method and iterative shehu
transform method (Kanth et al. (2021)).

The ADM was developed by G. Adomian, an American mathematician. It aims to find results in
the form of a series and decompose the nonlinear operator into a sequence, with the terms being
examined recursively using Adomian polynomials (Wazwaz and El-Sayed (2001)). By incorporat-
ing the Natural transformation, this technique has been modified to become the Natural transform
decomposition method (NTDM). It has been successfully applied to various fractional higher-order
partial differential equations (Kanth et al. (2021)).

He (1998), a Chinese mathematician, introduced the variational iteration method (VIM) as a mod-
ification of a general Lagrange multiplier technique (Inokuti et al. (1978)). This approach has
proven to be effective in solving various problems. Similarly, the Shehu transform method has
been used to modify this method, resulting in the variational iteration transform method (VITM).
VITM has been successfully applied to solve different types of differential and partial differential
equations. For example, it has been used to solve non-linear fractional dispersive partial differential
equations in Wu and Baleanu (2013) and Chu et al. (2021) and nonlinear oscillator equations in
Anjum and He (2019). The Elzaki transform with VIM is examined for the time-fractional deriva-
tive of a nonlinear PDE (Ziane et al. (2017)). Compared to Adomian’s decomposition process, the
computation of Adomian’s polynomials is not necessary for VITM, and it provides a closed solu-
tion to the problem instead of an approximation at mesh points like the (Dehghan (2006)) mesh
point methods. Additionally, VITM can provide an accurate approximation of the exact solution.

Fractional non-linear differential equations are important as they can accurately describe phenom-
ena that cannot be explained by integer-order differential equations. The Boussinesq-Burgers equa-
tion describes the behavior of certain types of nonlinear waves in fluid dynamics and other fields
like nonlinear acoustics and traffic flow. It combines the nonlinear and dispersive effects of the
Boussinesq equation with the dissipative effects (due to viscosity) of the Burgers equation. Many
numerical and semi-analytical methods, for example, Sarhan et al. used Laplace Residue Power
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series (Sarhan et al. (2022)), Gupta et al. used homotopy perturbation method and optimal homo-
topy asymptotic method (Gupta and Ray (2014)), Kumar et al. used homotopy analysis transform
method (Kumar et al. (2016)), Khater et al. used generalized Kudryashov method (Khater and Ku-
mar (2017)), and so on, are suggested in the open literature to obtain an approximated solution of
the Boussinesq-Burgers Equation to obtain.

This work introduces a natural transform with the Adomian decomposition method, called this
conjunction NTDM, and the Shehu transform with a variational iteration method, called this con-
junction VITM. The proposed approaches are used to solve non-linear PDE without perturba-
tion, discretizing them, with less computation which leads to a more realistic representation. The
main motivation of this paper is to compare the NTDM and VITM solutions for solving the time-
fractional coupled Boussinesq-Burgers (TF-CBB) equation in Caputo fractional derivative with a
singular kernel. One of the great advantages of the Caputo fractional derivative is that it allows
traditional initial and boundary conditions to be included in the formulation of the problem. In
addition, its derivative for a constant is zero (Podlubny (1998)).

Different numerical examples are considered to validate the efficiency of the proposed methods.

1.1. Basic Definitions

In this section, necessary definitions and preliminary results about fractional calculus, Natural
transform, and Shehu transform, which are used further in this paper, are referenced. For more
details, see Yadav and Singh (2023d), Yadav and Singh (2023c), Kilbas et al. (2006), Maitama and
Zhao (2019), Khalouta and Kadem (2019), and Belgacem and Silambarasan (2012).

2. Solution of nonlinear time-fractional coupled differential equations by
the VITM

Theorem 2.1.

Consider the nonlinear Caputo time-fractional coupled partial differential equations (1) and (2)
with the initial conditions. Then, by the VITM the exact solution of Equations (1) and (2) is given
as a limit of the successive approximations θm(ς, τ) and ηm(ς, τ), m = 0, 1, 2, · · · ; in other words,

θ(ς, τ) = lim
m→∞

θm(ς, τ),

η(ς, τ) = lim
m→∞

ηm(ς, τ).

Proof:

The general form of the nonlinear non-homogeneous fractional partial differential equation (FPDE)
is considered with an order of µ ∈ (m− 1,m] to demonstrate the basic operation of the proposed
methods, NTDM and VITM, which aim to solve the TF-CBB equation

Dµ
τ θ(ς, τ) +N1 [θ(ς, τ)] + L1 [θ(ς, τ)] = h(ς, τ), (1)

3
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4 J.U. Yadav and T.R. Singh

Dµ
τ η(ς, τ) +N2 [η(ς, τ)] + L2 [η(ς, τ)] = g(ς, τ), (2)

with initial condition

θ(ς, 0) = ψ(ς), θτ (ς, 0) = ϕ(ς), η(ς, 0) = ϑ(ς), ητ (ς, 0) = φ(ς), (3)

where Dµ
τ θ(ς, τ) and Dµ

τ η(ς, τ) is the Caputo fractional derivative of the function θ(ς, τ) and
η(ς, τ), respectively, L1 and L2 are the linear differential operators, h(ς, τ) and g(ς, τ) are the
non-homogeneous terms and N1 and N2 represent the non-linear differential operators.

Equations (1) and (2), when subjected to the Shehu transform (S) procedure for fractional deriva-
tive, lead to

S [Dµ
τ θ(ς, τ)] = S[h(ς, τ)] + S [L1 [θ(ς, τ)] +N1 [θ(ς, τ)]] , (4)

S [Dµ
τ η(ς, τ)] = S[g(ς, τ)] + S [L2 [η(ς, τ)] +N2 [η(ς, τ)]] . (5)

Applying the differentiation property of the Shehu transform, we obtain(
p

q

)µ

S [θ(ς, τ)]−
(
p

q

)µ−1

ψ(ς)−
(
p

q

)µ−2

ϕ(ς) = S[h(ς, τ)] + S[W1(ς, τ)], (6)(
p

q

)µ

S [η(ς, τ)]−
(
p

q

)µ−1

ϑ(ς)−
(
p

q

)µ−2

φ(ς) = S[g(ς, τ)] + S[W2(ς, τ)], (7)

where

W2(ς, τ) = N1(θ(ς, τ)) + L1(θ(ς, τ))) and W(ς, τ) = N2(η(ς, τ)) + L2(η(ς, τ))).

After this, apply the inverse Shehu transform (S) in the above equation. We have

θ(ς, τ) = Q(ς, τ) + S−1
(qµ
pµ

S[W1(ς, τ) + h(ς, τ)]
)
, (8)

η(ς, τ) = R(ς, τ) + S−1
(qµ
pµ

S[W2(ς, τ) + g(ς, τ)]
)
, (9)

where Q(ς, τ) and R(ς, τ) are a term arising from the source term and the prescribed initial condi-
tions. Take the first partial derivative with respect to τ in the above equation to obtain

∂

∂τ
θ(ς, τ)− ∂

∂τ
Q(ς, τ)− ∂

∂τ
S−1
(qµ
pµ

S[W1(ς, τ)]
)
= 0, (10)

∂

∂τ
η(ς, τ)− ∂

∂τ
R(ς, τ)− ∂

∂τ
S−1
(qµ
pµ

S[W2(ς, τ)]
)
= 0. (11)

According to the variational iteration method (Biazar et al. (2010)), we can construct a correct
functional as follows

θm+1(ς, τ) = θm(ς, τ)−
∫ τ

0

[
∂θm
∂ξ

− ∂Q

∂τ
− ∂

∂τ
S−1

(
qµ

pµ
S[N1(θm) + L1(θm))]

)]
dξ, (12)

ηm+1(ς, τ) = ηm(ς, τ)−
∫ τ

0

[
∂ηm
∂ξ

− ∂R

∂τ
− ∂

∂τ
S−1

(
qµ

pµ
S[N1(ηm) + L1(ηm))]

)]
dξ, (13)

4
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or

θm+1(ς, τ) = Q(ς, τ) + S−1

(
qµ

pµ
S[N1(θm) + L1(θm))]

)
, (14)

ηm+1(ς, τ) = R(ς, τ) + S−1

(
qµ

pµ
S[N1(ηm) + L1(ηm))]

)
. (15)

Finally, the exact solution of Equations (30) and (31) is given as a limit of the successive approxi-
mations θm(ς, τ) and ηm(ς, τ), m = 0, 1, 2, ..., in other words,

θ(ς, τ) = lim
m→∞

θm(ς, τ), (16)

η(ς, τ) = lim
m→∞

ηm(ς, τ). (17)
■

3. Solution of nonlinear time-fractional coupled differential equations by
the NTDM

Theorem 3.1.

Consider the nonlinear Caputo time-fractional coupled partial differential equations (1) and (2)
with the initial conditions. Then, by the VITM the exact solution of Equations (1) and (2) is given
as a limit of the successive approximations θm(ς, τ) and ηm(ς, τ), m = 0, 1, 2, · · · ; in other words,

θ(ς, τ) =
∞∑

m=0

θm(ς, τ),

η(ς, τ) =
∞∑

m=0

ηm(ς, τ).

Proof:

In this section, we see the methodology of NTDM. Applying natural transform (NT ) in Equation
(1) and (2), we have(

p

q

)µ(
NT [θ(ς, τ)]− ψ(ς)

p
− qϕ(ς)

p2

)
= NT [L1(θ(ς, τ)) +N1(θ(ς, τ))], (18)

(
p

q

)µ(
NT [η(ς, τ)]− ϑ(ς)

p
− qφ(ς)

p2

)
= NT [L2(η(ς, τ)) +N2(η(ς, τ))], (19)

where

W1(ς, τ) = N1(θ(ς, τ)) + L1(θ(ς, τ)) and W2(ς, τ) = N2(η(ς, τ)) + L2(η(ς, τ)).

Express the nonlinear operator N1 and N2 as a decomposition into (Wazwaz and El-Sayed (2001))

N1(θ(ς, τ)) =
∞∑

m=0

Am and N2(η(ς, τ)) =
∞∑

m=0

Bm. (20)
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6 J.U. Yadav and T.R. Singh

The definition of the Adomian polynomials’ nonlinearity is as follows

Am =
1

m!

[
∂m

∂λm

(
N1

(
∞∑
i=0

λiθi

))]
λ=0

and Bm =
1

m!

[
∂m

∂λm

(
N2

(
∞∑
i=0

λiθi

))]
λ=0

, (21)

where m = 0, 1, 2, 3, . . . . The analytical expansion for Equations (1) and (2) is assumed to be
represented by the Adomian polynomials, which are denoted by Am and Bm,

θ(ς, τ) =
∞∑

m=0

θm(ς, τ) and η(ς, τ) =
∞∑

m=0

ηm(ς, τ). (22)

By inserting Equations (20) through (22) into (18) and (19), we obtain:

θ(ς, τ) =
∞∑

m=0

θm(ς, τ) = NT −1

[
qϕ(ς)

p2
+
ψ(ς)

p

]

+NT −1

[(
q

p

)µ

NT

[
∞∑

m=0

L1(θm(ς, τ)) + Am

]]
, (23)

η(ς, τ) =
∞∑

m=0

ηm(ς, τ) = NT −1

[
qφ(ς)

p2
+
ϑ(ς)

p

]

+NT −1

[(
q

p

)µ

NT

[
∞∑

m=0

L2(ηm(ς, τ)) + Bm

]]
. (24)

From Equations (23) and (24) , we get

θ0(ς, τ) = NT −1

[
ψ(ς)

p
+
q ϕ(ς)

p2

]
,

η0(ς, τ) = NT −1

[
ϑ(ς)

p
+
q φ(ς)

p2

]
,

θ1(ς, τ) = NT −1

[(
q

p

)µ

NT [L1(θ0(ς, τ)) + A0]

]
,

η1(ς, τ) = NT −1

[(
q

p

)µ

NT [L2(η0(ς, τ)) + B0]

]
,

...

θm+1(ς, τ) = NT −1

[(
qµ

pµ

)
NT [L1(θm(ς, τ)) + Am]

]
, m ≥ 1, (25)

ηm+1(ς, τ) = NT −1

[(
qµ

pµ

)
NT [L2(ηm(ς, τ)) + Bm]

]
, m ≥ 1. (26)

To obtain the NTDM solution of Equations (1) through (3), we insert (25) and (26) into (22). The
solution in series form can be obtained by Equations (25) and (26) as

θ(ς, τ) = θ0(ς, τ) + θ1(ς, τ) + θ2(ς, τ) + ... =
∞∑

m=0

θm(ς, τ), (27)

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 19 [2024], Iss. 1, Art. 13

https://digitalcommons.pvamu.edu/aam/vol19/iss1/13



AAM: Intern. J., Vol. 19, Issue 1 (June 2024) 7

η(ς, τ) = η0(ς, τ) + η1(ς, τ) + η2(ς, τ) + ... =
∞∑

m=0

ηm(ς, τ). (28)
■

4. Convergence analysis

For the convergence of the NTDM and VITM, solutions have been used this definition.

Definition 4.1.

∀ k ∈ N ∪ 0; υk can be obtain as (Yadav and Singh (2023d))

υk =

{
∥θk+1∥
∥θk∥ if ∥θk∦= 0,

0 if ∥θk∥= 0.
(29)

5. Numerical Application of time-fractional coupled Boussinesq-Burgers
equation

In this work, we look at the time-fractional coupled Boussinesq-Burgers equation

Dµ
τ θ − 0.5ης + 2θθς = 0, (30)

Dµ
τ η − 0.5θςςς + 2(θη)ς = 0, (31)

τ > 0, 0 < µ ≤ 1, with initial condition

θ(ς, 0) =
ck

2
+
ck

2
tanh

(
−kς − ln b

2

)
, (32)

η(ς, 0) =
−k2

8
sech2

(
kς + ln b

2

)
, (33)

where θ(ς, τ) is the horizontal velocity field and η(ς, τ) is the height of the water surface above a
horizontal level at the bottom. At µ = 1, the exact solution of Equations (30) and (31) is given by

θ(ς, τ) =
ck

2
+
ck

2
tanh

(
ck2τ − kς − ln b

2

)
, (34)

η(ς, τ) =
−k2

8
sech2

(
kς − ck2τ + ln b

2

)
. (35)

Here Equations (30) and (31) are the general form of time-fractional coupled Boussinesq-Burgers
equation as (Kumar et al. (2016)), (Sarhan et al. (2022)) with initial conditions (32) and (33).
Equations (34) and (35) are the exact solution of the TF-CBB equation.

Now, we apply the VITM and NTDM to solve two examples of nonlinear Caputo time-fractional
Boussinesq-Burger equations with different parameters and then compare our approximate solu-
tions with the exact solutions.

7
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8 J.U. Yadav and T.R. Singh

Example 5.1.

Consider the nonlinear Caputo time-fractional coupled Boussinesq-Burgers equations (30) and
(31) with initial conditions (32) and (33) at c = 0.5, k = −1 and b = 2.

5.1. Application of the VITM

Applying the steps involved in the VITM as presented in Section (2) to Equations (30) and (31),
we obtain the iteration formula as follows

θm+1(ς, τ) = −1

4
− 1

4
tanh

(
ς − ln 2

2

)
+ S−1

(
qµ

pµ
S

[
0.5

∂

∂ς
(ηm)− 2θm

∂

∂ς
(θm)

])
, (36)

ηm+1(ς, τ) =
−1

8
sech

(
ς − ln 2

2

)
+ S−1

(
qµ

pµ
S

[
0.5

∂3

∂ς3
(ηm)− 2

∂

∂ς
(θmηm)

])
, (37)

and

θ0(ς, τ) = −1

4
− 1

4
tanh

(
ς − ln 2

2

)
,

η0(ς, τ) =
−1

8
sech2

(
ς − ln 2

2

)
,

θ1(ς, τ) = −1

4
− 1

4
tanh

(
ς − ln 2

2

)
+

0.0625 τµ

cosh3
(

ς−ln(2)
2

)
Γ(µ+ 1)

,

η1(ς, τ) =
−1

8
sech2

(
ς − ln 2

2

)
+

0.0625 τµ sinh
(

ς−ln(2)
2

)
cosh3

(
ς−ln(2)

2

)
Γ(µ+ 1)

,

θ2(ς, τ) = −1

4
− 1

4
tanh

(
ς − ln 2

2

)
+

0.0625 τµ

cosh3
(

ς−ln(2)
2

)
Γ(µ+ 1)

+
0.0312s τ 2µ sinh

(
ς−ln(2)

2

)
cosh3

(
ς−ln(2)

2

)
Γ(2µ+ 1)

,

η2(ς, τ) =
−1

8
sech2

(
ς − ln 2

2

)
+

0.0625 τµ sinh
(

ς−ln(2)
2

)
cosh3

(
ς−ln(2)

2

)
Γ(µ+ 1)

−
0.015625 τ 2µ

(
2 cosh

(
ς−ln(2)

2

)
−3
)

cosh4
(

ς−ln(2)
2

)
Γ(2µ+ 1)

,

...

8
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The VITM solution is obtained by incorporating θm(ς, τ) and ηm(ς, τ) in Equations (16) and (17),

θ(ς, τ) = lim
m→∞

θm(ς, τ) ≈ −1

4
− 1

4
tanh

(
x− ln 2

2

)
+

0.0625 τµ

cosh3
(

ς−ln(2)
2

)
Γ(µ+ 1)

+
0.03125 τ 2µ sinh

(
ς−ln(2)

2

)
cosh3

(
ς−ln(2)

2

)
Γ(2µ+ 1)

+ · · · , (38)

η(ς, τ) = lim
m→∞

ηm(ς, τ) ≈
−1

8
sech2

(
ς − ln 2

2

)
+

0.0625 τµ sinh
(

ς−ln(2)
2

)
cosh3

(
ς−ln(2)

2

)
Γ(µ+ 1)

−
0.015625 τ 2µ

(
2 cosh

(
ς−ln(2)

2

)
−3
)

cosh4
(

ς−ln(2)
2

)
Γ(2µ+ 1)

+ · · · . (39)

Finally, as m→ ∞, the exact solution of Equations (30) and (31) is

θ(ς, τ) = −1

4
− 1

4
tanh

(
0.5τ + ς − ln 2

2

)
, (40)

η(ς, τ) = −1

8
sech2

(
−ς − 0.5τ + ln 2

2

)
. (41)

5.2. Application of the NTDM

Apply the steps involved in the NTDM as presented in Section (3) to Equations (30) and (31). The
Natural transform is applied in governing equation with initial and boundary condition

(
p

q

)α [
NT [θ(ς, τ)]−

(
1

p

)
θ(ς, 0)

]
= NT

[
0.5ης − 2θθς

]
,(

p

q

)α [
NT [η(ς, τ)]−

(
1

p

)
η(ς, 0)

]
= NT

[
0.5θςςς − 2(θη)ς

]
.

Applying the inverse natural transform

θ(ς, τ) = NT −1

[
θ(ς, 0)

p
+
qα

pα
NT

{
0.5ης − 2θθς

}]
,

η(ς, τ) = NT −1

[
η(ς, 0)

p
+
qα

pα
NT

{
0.5θςςς − 2(θη)ς

}]
.
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Applying ADM approach

∞∑
m=0

θ(ς, τ) = −1

4
− 1

4
tanh

(
ς − ln 2

2

)
+NT −1

(
qµ

pµ
NT

[
0.5

∂

∂ς
(ηm)− 2

∞∑
m=0

Am

])
, (42)

∞∑
m=0

θm+1(ς, τ) =
−1

8
sech

(
−ς + ln 2

2

)
+NT −1

(
qµ

pµ
NT

[
0.5

∂3

∂ς3
(ηm)− 2

∂

∂ς
(

∞∑
m=0

Bm)

])
,

(43)

where
∑∞

m=0Am = θθς ,
∑∞

m=0Bm = (θη)ς , are the Adomian polynomials that represent the
nonlinear terms, and

θ0(ς, τ) = −1

4
− 1

4
tanh

(
ς − ln 2

2

)
,

η0(ς, τ) =
−1

8
sech2

(
ς − ln 2

2

)
,

θ1(ς, τ) =
0.0625 τµ

cosh3
(

ς−ln(2)
2

)
Γ(µ+ 1)

,

η1(ς, τ) =
0.0625 τµ sinh

(
ς−ln(2)

2

)
cosh3

(
ς−ln(2)

2

)
Γ(µ+ 1)

,

θ2(ς, τ) =
0.03125 τ 2µ sinh

(
ς−ln(2)

2

)
cosh3

(
ς−ln(2)

2

)
Γ(2µ+ 1)

,

η2(ς, τ) = −
0.015625 τ 2µ

(
2 cosh

(
ς−ln(2)

2

)
−3
)

cosh4
(

ς−ln(2)
2

)
Γ(2µ+ 1)

,

...

The NTDM solution is obtained by incorporating θ0(ς, τ), θ1(ς, τ), ... and η0(ς, τ), η1(ς, τ) in
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Equations (27) and (28),

θ(ς, τ) = −1

4
− 1

4
tanh

(
ς − ln 2

2

)
+

0.0625 τµ

cosh3
(

ς−ln(2)
2

)
Γ(µ+ 1)

+
0.03125 τ 2µ sinh

(
ς−ln(2)

2

)
cosh3

(
ς−ln(2)

2

)
Γ(2µ+ 1)

+ · · · , (44)

η(ς, τ) =
−1

8
sech2

(
ς − ln 2

2

)
+

0.0625 τµ sinh
(

ς−ln(2)
2

)
cosh3

(
ς−ln(2)

2

)
Γ(µ+ 1)

−
0.015625 τ 2µ

(
2 cosh

(
ς−ln(2)

2

)
−3
)

cosh4
(

ς−ln(2)
2

)
Γ(2µ+ 1)

+ · · · . (45)

Finally, as m→ ∞, the exact solution of Equations (30) and (31) is

θ(ς, τ) = −1

4
− 1

4
tanh

(
0.5τ + ς − ln 2

2

)
, (46)

η(ς, τ) = −1

8
sech2

(
−ς − 0.5τ + ln 2

2

)
. (47)

Example 5.2.

Consider the nonlinear Caputo time-fractional Boussinesq-Burgers equation (30) and (31) with
initial condition (32) and (33) at c = 0.5, k = −1 and b = 9.

5.3. Application of the VITM

Applying the steps involved in the VITM as presented in Section (2) to Equations (30) and (31),
we obtain the iteration formula as follows,

θm+1(ς, τ) = −1

4
− 1

4
tanh

(
ς − ln 9

2

)
+ S−1

(
qµ

pµ
S

[
0.5

∂

∂ς
(ηm)− 2θm

∂

∂ς
(θm)

])
, (48)

ηm+1(ς, τ) =
−1

8
sech

(
−ς + ln 9

2

)
+ S−1

(
qµ

pµ
S

[
0.5

∂3

∂ς3
(ηm)− 2

∂

∂ς
(θmηm)

])
, (49)

and

θ0(ς, τ) = −0.25− 0.25 tanh (0.5 ς − 1.0986) ,
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η0(ς, τ) = −0.125 sech(0.5ς − 1.0986)2,

θ1(ς, τ) = −0.25− 0.25 tanh (0.5 ς − 1.0986) +
−0.0625 τµ

Γ (µ+ 1) cosh2 (0.5 ς − 1.0986)
,

η1(ς, τ) = −0.125 sech(0.5ς − 1.0986)2 +
0.0625 τµ sinh (0.5 ς − 1.0986)

Γ (µ+ 1) cosh3 (0.5 ς − 1.0986)
,

θ2(ς, τ) = −0.25− 0.25 tanh (0.5 ς − 1.0986) +
−0.0625 τµ

Γ (µ+ 1) cosh2 (0.5 ς − 1.0986)

+
0.03125 τ 2µ sinh (0.5 ς − 1.0986)

cosh3 (0.5 ς − 1.0986) Γ (2µ+ 1)
,

η2(ς, τ) = −0.125 sech(0.5ς − 1.0986)2 +
0.0625 τµ sinh (0.5 ς − 1.0986)

Γ (µ+ 1) cosh3 (0.5 ς − 1.0986)

+
−0.015625 τ 2µ

(
2 cosh2 (0.5 ς − 1.0986)− 3

)
Γ (2µ+ 1) cosh4 (0.5 ς − 1.0986)

,

...

The VITM solution is obtained by incorporating θm(ς, τ) and ηm(ς, τ) in Equations (16) and (17),

θ(ς, τ) = lim
m→∞

θm(ς, τ) ≈ −0.25− 0.25 tanh (0.5 ς − 1.0986) +
−0.0625 τµ

Γ (µ+ 1) cosh2 (0.5 ς − 1.0986)

+
0.03125 τ 2µ sinh (0.5 ς − 1.0986)

cosh3 (0.5 ς − 1.0986) Γ (2µ+ 1)
+ · · · , (50)

η(ς, τ) = lim
m→∞

ηm(ς, τ) ≈ −0.125 sech(0.5ς − 1.0986)2 +
0.0625 τµ sinh (0.5 ς − 1.0986)

Γ (µ+ 1) cosh3 (0.5 ς − 1.0986)

+
−0.015625 τ 2µ

(
2 cosh2 (0.5 ς − 1.0986)− 3

)
Γ (2µ+ 1) cosh4 (0.5 ς − 1.0986)

+ · · · . (51)

Finally, as m→ ∞ the exact solution of Equations (30) and (31) is

θ(ς, τ) = −1

4
− 1

4
tanh

(
0.5τ + ς − ln 9

2

)
, (52)

η(ς, τ) = −1

8
sech2

(
−ς − 0.5τ + ln 9

2

)
. (53)

12

Applications and Applied Mathematics: An International Journal (AAM), Vol. 19 [2024], Iss. 1, Art. 13

https://digitalcommons.pvamu.edu/aam/vol19/iss1/13



AAM: Intern. J., Vol. 19, Issue 1 (June 2024) 13

5.4. Application of the NTDM

Applying the steps involved in the NTDM as presented in Section (3) to Equations (30) and (31),
we have

∞∑
m=0

θ(ς, τ) = −1

4
− 1

4
tanh

(
ς − ln 9

2

)
+NT −1

(
qµ

pµ
NT

[
0.5

∂

∂ς
(ηm)− 2

∞∑
m=0

Am

])
, (54)

∞∑
m=0

θm+1(ς, τ) =
−1

8
sech

(
−ς + ln 9

2

)
+NT −1

(
qµ

pµ
NT

[
0.5

∂3

∂ς3
(ηm)− 2

∂

∂ς
(

∞∑
m=0

Bm)

])
,

(55)

where
∑∞

m=0Am = θθς ,
∑∞

m=0Bm = (θη)ς , are the Adomian polynomials that represent the
nonlinear terms, and

θ0(ς, τ) = −0.25− 0.25 tanh (0.5 ς − 1.0986) ,

η0(ς, τ) = −0.125 sech(0.5ς − 1.0986)2,

θ1(ς, τ) =
−0.0625 τµ

Γ (µ+ 1) cosh2 (0.5 ς − 1.0986)
,

η1(ς, τ) =
0.0625 τµ sinh (0.5 ς − 1.0986)

Γ (µ+ 1) cosh3 (0.5 ς − 1.0986)
,

θ2(ς, τ) =
0.03125 τ 2µ sinh (0.5 ς − 1.0986)

cosh3 (0.5 ς − 1.0986) Γ (2µ+ 1)
,

η2(ς, τ) =
−0.015625 τ 2µ

(
2 cosh2 (0.5 ς − 1.0986)− 3

)
Γ (2µ+ 1) cosh4 (0.5 ς − 1.0986)

,

... (56)

The NTDM solution is obtained by incorporating θ0(ς, τ), θ1(ς, τ), ... and η0(ς, τ), η1(ς, τ) in
Equations (27) and (28),

θ(ς, τ) = −0.25− 0.25 tanh (0.5 ς − 1.0986) +
−0.0625 τµ

Γ (µ+ 1) cosh2 (0.5 ς − 1.0986)

+
0.03125 τ 2µ sinh (0.5 ς − 1.0986)

cosh3 (0.5 ς − 1.0986) Γ (2µ+ 1)
+ · · · , (57)

η(ς, τ) = −0.125 sech(0.5ς − 1.0986)2 +
0.0625 τµ sinh (0.5 ς − 1.0986)

Γ (µ+ 1) cosh3 (0.5 ς − 1.0986)

+
−0.015625 τ 2µ

(
2 cosh2 (0.5 ς − 1.0986)− 3

)
Γ (2µ+ 1) cosh4 (0.5 ς − 1.0986)

+ · · · . (58)
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Finally, as m→ ∞ the exact solution of Equations (30) and (31) is

θ(ς, τ) = −1

4
− 1

4
tanh

(
0.5τ + ς − ln 9

2

)
, (59)

η(ς, τ) = −1

8
sech2

(
−ς − 0.5τ + ln 9

2

)
. (60)

6. Numerical results and discussion

In Example (5.1), we have used b = 2 to obtain the solution for the time-fractional coupled
Boussinesq-Burgers equation (TF-CBB). Figure (1) shows a comparison between the VITM,
NTDM, and Exact solution of θ(ς, τ) and η(ς, τ). Figure (2) shows a comparison of a plot of
maximum absolute errors between the VITM and NTDM solution of θ(ς, τ) and η(ς, τ). Figure
(3) displays a comparison between the three-dimensional NTDM, VITM, and exact solutions of
the velocity function θ(ς, τ) for the nonlinear TF-CBB equation at µ = 1, with −10 < ς < 10 and
0 < τ < 1. Similarly, Figure (4) shows for the height η(ς, τ). All the 3D and 2D plots of solutions
obtained from our proposed methods exhibit behavior that is similar to the exact solution. Figure
(5) compares the 3D plot of absolute errors between the NTDM and VITM solutions for θ(ς, τ)
at µ = 1. Similarly, Figure (6) compares the absolute errors between the NTDM and VITM solu-
tions for η(ς, τ) at µ = 1. Figures (2), (5) and (6) indicate that the approximate solutions obtained
by NTDM and VITM are the closest to the exact solution and have minimal errors. Furthermore,
Figure (7) illustrates a comparison of the velocity θ(ς, τ) at different values of fractional orders
(µ = 0.6, 0.7, 0.8, 0.9, 1) for ς = 5. Similarly, Figure (8) shows a comparison of the heights η(ς, τ)
at the same fractional orders µ and ς = 5. These figures collectively say that the proposed method
yields highly accurate solutions, demonstrating excellent agreement with the exact solutions.

In Example (5.2), we have used b = 9 to obtain the solution for the time-fractional coupled
Boussinesq-Burgers equation (TF-CBB). Figure (9) shows a comparison between the VITM,
NTDM, and Exact solution of θ(ς, τ) and η(ς, τ). Figure (10) shows a comparison of a plot of max-
imum absolute errors between the VITM and NTDM solution of θ(ς, τ) and η(ς, τ). Figure (11)
displays a comparison between the three-dimensional NTDM, VITM, and exact solutions of the
velocity function θ(ς, τ) for the nonlinear TF-CBB equation at µ = 1, b = 2, with −10 < ς < 10
and 0 < τ < 1. Similarly, Figure (12) shows for the height η(ς, τ). All the 3D and 2D plots of
solutions obtained from our proposed methods exhibit behavior that is similar to the exact solu-
tion. Figure (13) compares the 3D plot of absolute errors between the NTDM and VITM solutions
for θ(ς, τ) at µ = 1. Similarly, Figure (14) compares the absolute errors between the NTDM and
VITM solutions for η(ς, τ) at µ = 1. Figures (10), (13), and (14) indicate that the approximate
solutions obtained by NTDM and VITM are the closest to the exact solution and have minimal
errors. Furthermore, Figure (15) illustrates a comparison of the velocity θ(ς, τ) at different val-
ues of fractional orders (µ = 0.6, 0.7, 0.8, 0.9, 1) for ς = 5. Similarly, Figure (16) compares the
heights η(ς, τ) at the same fractional orders µ and ς = 5. These figures collectively say that the pro-
posed method yields highly accurate solutions, demonstrating excellent agreement with the exact
solutions.
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Tables (1) and (2), we have computed the numerical comparison of absolute errors for differences
between the exact solutions and the 3rd order approximate solution by VITM and the 4rth term
approximate solution by NTDM at µ = 1. The absolute errors obtained by VITM are the same
results obtained by NTDM.

7. Conclusion

In this study, we have compared the solution obtained from the variational iteration Transform
method (VITM) and the Natural transform decomposition method (NTDM) for solving the non-
linear Caputo time-fractional coupled Boussinesq-Burgers equation. These two methods stand as
reliable and effective approaches as both of them give solutions in approximations with higher pre-
cision. The correlation between the outcome of the third iteration using VITM and the fourth term
within NTDM manifests a remarkable concordance. Nonetheless, a distinct advantage of VITM
lies in its capacity to tackle nonlinear quandaries sans the utilization of Adomian polynomials. This
attribute empowers VITM to surmount the challenges arising from the calculations of the general
Lagrange multiplier, presenting an added edge over the decomposition method. It is concluded
that these methods are very powerful mathematical tools for solving different kinds of nonlinear
fractional differential equations. These methods are useful to solve real-life world problems.
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Appendix

Figure 1. For example 1, comparison graph of VITM, NTDM and Exact solution at τ = 0.1

Figure 2. For example 1, plot of maximum absolute errors of VITM and NTDM solution at τ = 0.1

Figure 3. Surface plot of velocity θ(ς, τ) (a) Exact (b) NTDM and (c) VITM solution at µ = 1
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Figure 4. Surface plot of height η(ς, τ) (a) Exact (b) NTDM and (c) VITM solution at µ = 1

Figure 5. Comparison of absolute error of velocity θ(ς, τ) (a) NTDM and (b) VITM solution at µ = 1

Figure 6. Comparison of absolute error of height η(ς, τ) (a) NTDM and (b) VITM solution at µ = 1
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Figure 7. Comparison of velocity θ(ς, τ) (a) NTDM and (b) VITM solution at different fractional order µ

Figure 8. Comparison of height η(ς, τ) (a) NTDM and (b) VITM solution at different fractional order µ

Figure 9. For example 2, comparison graph of VITM, NTDM and Exact solution at τ = 0.1
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Figure 10. For example 2, plot of maximum absolute errors of VITM and NTDM solution at τ = 0.1

Table 1. Comparision of the absolute errors for Example (5.1) at µ = 1, c = 0.5, k = −1 and b = 2

(ς, τ) |θExact − θNTDM | |θExact − θV ITM | |ηExact − ηNTDM | |ηExact − ηV ITM |
(0.1,0.1) 1.5000×10−08 1.5000×10−08 1.3200×10−08 1.3200×10−08

(0.1,0.2) 2.3650 ×10−07 2.3650×10−07 2.2170×10−07 2.2170×10−07

(0.1,0.3) 1.1856×10−06 1.1856×10−06 1.1647×10−06 1.1647×10−06

(0.1,0.4) 3.7064×10−06 3.7064×10−06 3.8139×10−06 3.8139×10−06

(0.1,0.5) 8.9445×10−06 8.9445×10−06 9.6315×10−06 9.6315×10−06

(0.2,0.1) 1.3400×10−08 1.3400×10−08 1.8400×10−08 1.8400×10−08

(0.2,0.2) 2.1030×10−07 2.1030×10−07 3.0400×10−07 3.0400×10−07

(0.2,0.3) 1.0483×10−06 1.0483×10−06 1.5785×10−06 1.5785×10−06

(0.2,0.4) 3.2595×10−06 3.2595×10−06 5.1105×10−06 5.1105×10−06

(0.2,0.5) 7.8225×10−06 7.8225×10−06 1.2767×10−05 1.2767×10−05

(0.3,0.1) 1.1200×10−08 1.1200×10−08 2.3300×10−08 2.3300×10−08

(0.3,0.2) 1.7590×10−07 1.7590×10−07 3.7890×10−07 3.7890×10−07

(0.3,0.3) 8.7110×10−07 8.7110×10−07 1.9524×10−06 1.9524×10−06

(0.3,0.4) 2.6887×10−06 2.6887×10−06 6.2733×10−06 6.2733×10−06

(0.3,0.5) 6.4024×10−06 6.4024×10−06 1.5557×10−05 1.5557×10−05

(0.4,0.1) 8.8000×10−09 8.8000×10−09 2.7200×10−08 2.7200×10−08

(0.4,0.2) 1.3500×10−07 1.3500×10−07 4.4180×10−07 4.4180×10−07

(0.4,0.3) 6.6000×10−07 6.6000×10−07 2.2622×10−06 2.2622×10−06

(0.4,0.4) 2.0118×10−06 2.0118×10−06 7.2267×10−06 7.2267×10−06

(0.4,0.5) 4.7288×10−06 4.7288×10−06 1.7820×10−05 1.7820×10−05

(0.5,0.1) 5.8000×10−09 5.8000×10−09 3.0300×10−08 3.0300×10−08

(0.5,0.2) 8.8200×10−08 8.8200×10−08 4.8800×10−07 4.8800×10−07

(0.5,0.3) 4.2160×10−07 4.2160×10−07 2.4870×10−06 2.4870×10−06

(0.5,0.4) 1.2525×10−06 1.2525×10−06 5.9179×10−05 5.9179×10−05

(0.5,0.5) 2.8612×10−06 2.8612×10−06 1.9403×10−05 1.9403×10−05
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Figure 11. Surface plot of velocity θ(ς, τ) (a) Exact (b) NTDM and (c) VITM solution at µ = 1

Figure 12. Surface plot of height η(ς, τ) (a) Exact (b) NTDM and (c) VITM solution at µ = 1

Figure 13. Comparison of absolute error of velocity θ(ς, τ) (a) NTDM and (b) VITM solution at µ = 1
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Figure 14. Comparison of absolute error of height η(ς, τ) (a) NTDM and (b) VITM solution at µ = 1

Figure 15. Comparison of velocity θ(ς, τ) (a) NTDM and (b) VITM solution at different fractional order µ

Figure 16. Comparison of height η(ς, τ) (a) NTDM and (b) VITM solution at different fractional order µ
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Table 2. Comparision of the absolute errors for Example (5.2) at µ = 1, c = 0.5, k = −1 and b = 9

(ς, τ) |θExact − θNTDM | |θExact − θV ITM | |ηExact − ηNTDM | |ηExact − ηV ITM |
(0.1,0.1) 1.9300×10−09 1.9300×10−09 1.0080×10−08 1.0080×10−08

(0.1,0.2) 3.0100×10−08 3.0100×10−08 1.6353×10−07 1.6353 ×10−07

(0.1,0.3) 1.6064×10−07 1.6064×10−07 8.3935×10−07 8.3935×10−07

(0.1,0.4) 5.3494×10−07 5.3494×10−07 2.6887×10−06 2.6887×10−06

(0.1,0.5) 1.3747×10−06 1.3747×10−06 6.6512×10−06 6.6512×10−06

(0.2,0.1) 2.8300×10−09 2.8300×10−09 1.1500×10−08 1.1500×10−08

(0.2,0.2) 4.7350×10−08 4.7350×10−08 1.8592×10−07 1.8592×10−07

(0.2,0.3) 2.4992×10−07 2.4992×10−07 9.5204×10−07 9.5204×10−07

(0.2,0.4) 8.2166×10−07 8.2166×10−07 3.0429×10−06 3.0429×10−06

(0.2,0.5) 2.0831×10−06 2.0831×10−06 7.5107×10−06 7.5107×10−06

(0.3,0.1) 4.1900×10−09 4.1900×10−09 1.2790×10−08 1.2790×10−08

(0.3,0.2) 6.7320×10−08 6.7320×10−08 2.0692×10−07 2.0692×10−07

(0.3,0.3) 3.5079×10−07 3.5079×10−07 1.0575×10−06 1.0575×10−06

(0.3,0.4) 1.1427×10−06 1.1427×10−06 3.3725×10−06 3.3725×10−06

(0.3,0.5) 2.8748×10−06 2.8748×10−06 8.3049×10−06 8.3049×10−06

(0.4,0.1) 5.4900×10−09 5.4900×10−09 1.3980×10−08 1.3980 ×10−08

(0.4,0.2) 8.8870×10−08 8.8870×10−08 2.2543×10−07 2.2543 ×10−07

(0.4,0.3) 4.6126×10−07 4.6126×10−07 1.1492×10−06 1.1492 ×10−06

(0.4,0.4) 1.4947×10−06 1.4947×10−06 3.6560×10−06 3.6560 ×10−06

(0.4,0.5) 3.7403×10−06 3.7403×10−06 8.9809×10−06 8.9809 ×10−06

(0.5,0.1) 6.7800×10−09 6.7800×10−09 1.4910×10−08 1.4910 ×10−08

(0.5,0.2) 1.1206×10−07 1.1206×10−07 2.3980×10−07 2.3980 ×10−07

(0.5,0.3) 5.7976×10−07 5.7976×10−07 1.2194×10−06 1.2194 ×10−06

(0.5,0.4) 1.8715×10−06 1.8715×10−06 3.8688×10−06 3.8688 ×10−06

(0.5,0.5) 4.6648×10−06 4.6648×10−06 9.4775×10−06 9.4775 ×10−06
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