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The application of mathematical biology and dynamical systems has proven to be an effective
approach for studying viral infection models. To contribute to this research, our paper proposes
a new CHIKV model that takes into account an adaptive immune response and distributed time
delays, which accurately reflects the time lag between initial viral contacts and the production
of new active CHIKV particles. By analyzing the model’s qualitative behavior, we establish a
biological threshold number that can predict whether CHIKV will be cleared from or persist in
the body. We demonstrate the global stability of both CHIKV-present and CHIKV-free steady
states using the Lyapunov functional method and LaSalle’s invariance principle. In addition, we
conduct numerical simulations to examine how time delays can affect the stability of the steady
states. Through these simulations, we gain insights into how varying time delays can influence the
persistence or clearance of CHIKV within the host.

Keywords: Chikungunya virus; Adaptive immune response; Distributed time delays; Global
stability; Lyapunov functionals
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2 T.O. Alade et al.

1. Introduction

Chikungunya virus (CHIKV) disease is a persistent and evolving mosquito-borne viral infection
that continues to pose a significant public health concern in many regions across the globe (Cotella
et al. (2022)). The virus was first identified in Tanzania in the 1950s, and the name "chikungunya"
comes from the Makonde language of southern Tanzania and northern Mozambique, where the
virus was first identified. The name means "that which bends up," referring to the posture of
infected individuals due to the severe joint pain caused by the virus. CHIKV is found in many
countries in Africa, Asia, Europe, and the Americas. Outbreaks of chikungunya have occurred in
several parts of the world in recent years, including the Caribbean, Central and South America,
and the Indian Ocean (Galán-Huerta et al. (2015), Da Silva-Júnior et al. (2017)). The virus is most
commonly found in tropical and subtropical regions and is transmitted by mosquitoes, which are
more abundant in these areas. The impact of CHIKV is manifested through its severity, prevalence,
and geographical spread, which collectively contribute to the escalating public health challenge
posed by the virus in affected regions (Cotella et al. (2022)).

The main mode of transmission for CHIKV to humans is through female mosquito bites, specifi-
cally the Aedes aegypti and Aedes albopictus (El Hajji et al. (2022)). Once a mosquito is infected
with the virus, it can spread the virus to other humans through bites. The virus can also be transmit-
ted from an infected mother to her fetus during pregnancy or childbirth, and in rare cases, the virus
can be transmitted through blood transfusions or organ transplants (Besbassi et al. (2020)). Due
to its mode of transmission via mosquitoes, the virus is categorized as an arbovirus or arthropod
borne virus (Raghavendhar et al. (2019)). CHIKV falls under the Alphavirus genus, which is a part
of the Togariridae family’s classification (Galán-Huerta et al. (2015)) and is the underlying viral
agent responsible for the onset of chikungunya fever (Elaiw et al. (2018a)).

The symptoms of chikungunya virus typically develop 3-7 days after the bite of an infected
mosquito. The symptoms of the illness can last for several days to several weeks, and in some
cases, the joint pain associated with the illness can persist for months or even years (Bettis et al.
(2022)).

CHIKV can have a significant impact on populations, particularly in areas where mosquitoes are
abundant and access to healthcare is limited. The virus can cause severe joint pain, leading to long-
term disability and reduced quality of life. In addition, the virus can place a significant burden
on healthcare systems and economies, particularly in developing countries (Galán-Huerta et al.
(2015)).

There is currently no specific treatment for chikungunya virus infection. The symptoms can be
managed with rest, hydration, and over-the-counter pain medications. In severe cases, hospitaliza-
tion may be necessary (Raghavendhar et al. (2019)).

Over the past few decades, numerous mathematicians have developed mathematical models that
describe the interactions between viruses and host organisms, shedding light on the dynamics of
virus spread and replication. (Examples of viruses include human immunodeficiency virus (HIV),
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hepatitis B virus (HBV), hepatitis C virus (HCV), Zika virus (ZIKV), dengue virus (DENV),
chikungunya virus (CHIKV), and Rift Valley fever virus (RVFV)) (see, e.g., Nowak and May
(2000); Liu and Stechlinski (2015); Sadki et al. (2022); Alade et al. (2021a); Alade (2021);
Alade et al. (2021b); Mann Manyombe et al. (2020); Olaniyi (2018); Olaniyi et al. (2023); Falowo
et al. (2023); Okyere et al. (2020); Alade et al. (2021c); Elaiw et al. (2019b); Abidemi et al. (2019);
Abidemi and Aziz (2020); El Hajji (2021)). The utilization of mathematical modeling in studying
human viruses serves as an essential tool for both the advancement of antiviral medications and
the acquisition of valuable understandings regarding interactions between viruses and their hosts.
It is an effective means of predicting the progression of diseases caused by these viruses. The
exploration of stability analysis in these models is vital for a comprehensive understanding of
how viruses replicate and the underlying mechanisms involved. The adaptive immune response is
also a crucial factor in combating viruses and preventing their growth. The recognition of a for-
eign substance or antigen initiates the activation of the adaptive immune response, which in turn
mobilizes immune cells to launch an attack against the antigen, aiming to eliminate it from the
body. The immune response against CHIKV infection involves the coordinated action of two key
components: cytotoxic T-lymphocytes (CTL) cells and the antibody immune response. Cytotoxic
T-lymphocytes, also known as killer T-cells, play a crucial role in directly combating CHIKV-
infected cells. These specialized cells recognize specific viral antigens presented on the surface of
infected cells and initiate a targeted attack to eliminate them. By releasing cytotoxic molecules,
such as perforin and granzymes, CTL cells induce apoptosis (cell death) in the infected cells, pre-
venting the virus from replicating further (Tanabe et al. (2018), Hoarau et al. (2010)).

On the other hand, the antibody immune response works to neutralize CHIKV infections. B cells, a
type of white blood cell, produce antibodies that are specifically designed to recognize and bind to
CHIKV antigens. These antibodies can directly neutralize the virus by inhibiting its ability to enter
host cells, blocking viral replication, and marking it for destruction by other immune cells (Tanabe
et al. (2018)). Additionally, antibodies can activate complement proteins, leading to the formation
of membrane attack complexes that can directly lyse CHIKV particles (Silva et al. (2017)).

Together, the cytotoxic T-lymphocytes and the antibody immune response act in a coordinated
manner to effectively combat CHIKV infections. Their combined efforts help limit the spread of
the virus, clear infected cells, and ultimately contribute to the resolution of CHIKV-associated
symptoms.

In light of the recent CHIKV outbreaks, the scientific literature has extensively focused on
the transmission dynamics of the disease between mosquito populations and human popula-
tions, as evidenced by numerous mathematical models (Dumont and Chiroleu (2010); Dumont
and Tchuenche (2012); Moulay et al. (2011); Moulay et al. (2012); Manore et al. (2014);
Yakob and Clements (2013)). Although there have been some mathematical models developed for
studying the dynamics of CHIKV, only a few have focused on within-host dynamics. Moreover,
there is a significant gap in the current research as no studies have been conducted on the adaptive
immune response of CHIKV dynamics models with time delay. Most recently, authors in Alade
et al. (2023) considered the need to incorporate cytotoxic T-lymphocytes (CTL) cells representing
adaptive immune response into a within-host CHIKV model proposed by Wang and Liu (2017).
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4 T.O. Alade et al.

However, to the best of our knowledge, a mathematical model for a within-host CHIKV dynamics
incorporating essential features such as saturated incidence, adaptive immune response, latency
and distributed time delays has not been studied in the literature. Therefore, the objective of this
paper is to expand upon the previously examined model studied in Alade et al. (2023) by taking
into account all the aforementioned essential features. Incorporating distributed time delays into
mathematical models of CHIKV dynamics is essential in accurately predicting the spread and be-
havior of virus. This time delays account for the time it takes for a CHIKV to replicate and spread
throughout a host organism or between hosts, and how this process may vary across different in-
dividuals or populations. It can also help to identify critical time points in the disease progression,
which can aid in the development of effective intervention strategies.

The study is organized as follows. Section 2 presents an in-depth exploration of the within-host
CHIKV transmission dynamics model, specifically focusing on the formulation and analysis of the
model considering the adaptive immune response and distributed time delays. This is followed up
by the establishment of the global stability analysis of the model in Section 3. Numerical simula-
tions of the proposed model are carried out in Section 4, while the concluding remarks are provided
in Section 5.

2. Model Formulation

We consider a model that characterizes the dynamics of within-host CHIKV, incorporating an
adaptive immune response and accounting for distributed time delays as:

Ẇ (t) = µ− ξW (t)− bG(t)W (t)

1 + πG(t)
, (1)

Ẋ(t) = (1− ν)b

∫ κ1

0

ϖ1(τ)e
−κ1τ

G(t− τ)W (t− τ)

1 + πG(t− τ)
dτ − (θ + Ω)X(t), (2)

U̇(t) = νb

∫ κ2

0

ϖ2(τ)e
−κ2τ

G(t− τ)W (t− τ)

1 + πG(t− τ)
dτ + ΩX(t)− (d+ ϵZ(t))U(t), (3)

Ġ(t) = mU(t)− rG(t)− qG(t)A(t), (4)

Ȧ(t) = η + cA(t)G(t)− δA(t), (5)

Ż(t) = γ + wU(t)Z(t)− αZ(t). (6)

In this context, we have the concentrations of different entities represented by W, X, U, G, A, and
Z, which correspond to uninfected cells, latently infected cells, actively infected cells, CHIKV
particles, antibodies, and CTL cells respectively. The death rate of uninfected cells is given by the
parameter ξ, while the birth rate of uninfected cells is represented by µ. The infection of uninfected
cells occurs at a rate determined by the product of b, the rate constant of CHIKV-target incidence,
W , and G. The saturation parameter is denoted as π. When cells become actively infected, they
generate an average of m CHIKV particles, which are targeted by antibodies at a rate of qGA and
die at a rate of rG. Upon encountering an antigen, the antibodies undergo continuous growth at a
steady rate denoted by η, proliferate at a rate of cAG, and die at a rate of δA.
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In this model, it is assumed that a fraction of (1 − ν) of infected cells are in a latent state, while
the remaining fraction ν becomes actively infected cells, where 0 < ν < 1. The latently infected
cells can transmit their infection to actively infected cells at a rate of ΩX , but they also die at a rate
of θX . The actively infected cells, on the other hand, die at a rate of dU and are also targeted and
killed by the CTL (Cytotoxic T Lymphocyte) response at a rate of ϵUZ. The CTL response expands
at a constant rate of γ, proliferates at a rate of wUZ, and dies at a rate of αZ. The term ϖ1(τ)e

−κ1τ

represents the probability that uninfected cells, contacted by CHIKV at time t − τ , survive for
a duration of τ units of time within the range [0, κ1], and subsequently become latently infected
cells at time t. Here, κ1 denotes the upper limit of this delay. Similarly, ϖ2(τ)e

−κ2τ represents the
probability that uninfected cells, contacted by CHIKV at time t − τ , survive for a duration of τ
units of time within the range [0, κ2], and later become actively infected cells at time t. In this case,
κ2 represents the upper limit of this delay. The functions ϖ1(τ) and ϖ2(τ) represent probability
distributions that adhere to the conditions ϖ1(τ) > 0 and ϖ2(τ) > 0, and∫ κ1

0

ϖ1(τ)dτ =

∫ κ2

0

ϖ2(τ)dτ = 1,∫ κ1

0

ϖ1(u)e
nudu <∞,

∫ κ2

0

ϖ2(u)e
nudu <∞, (7)

where n is a positive number. Let

E =

∫ κ1

0

ϖ1(τ)e
−κ1τdτ and K =

∫ κ2

0

ϖ2(τ)e
−κ2τdτ.

The values of E and K in this model are constrained to fall within the range of 0 to 1, inclusive,
denoted as 0 < E ≤ 1 and 0 < K ≤ 1. The initial conditions for the model (1)-(6) are given by
the following form:

W (ς) = ψ1(ς), X(ς) = ψ2(ς), U(ς) = ψ3(ς),

G(ς) = ψ4(ς), A(ς) = ψ5(ς), Z(ς) = ψ6(ς),

ψj(ς) ≥ 0, ς ∈ [−ℓ, 0], and ψj ∈ C([−ℓ, 0],R≥0), j = 1, ..., 5, (8)

where ℓ = max{κ1, κ2}, and C is the Banach space of continuous functions from [−ℓ, 0] into R≥0

with norm ∥ψj∥ = sup
−ℓ≤ς≤0

|ψj(ς)|. This constraint ensures that the system has a unique solution

(Hale and Verduyn Lunel (1993)).

2.1. Basic analytical results

In this study, we examine the properties of nonnegativity and boundedness of the solution for the
proposed CHIKV dynamics model.

Lemma 2.1.

The solutions of the system described by Equations (1)-(6), given the initial states (8), exhibit
nonnegativity and eventually reach a bounded state.

5
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6 T.O. Alade et al.

Proof:

By utilizing Equations (1), (5), and (6), we can deduce that, for W = 0, it follows that Ẇ
∣∣∣
W=0

=

µ > 0, and similarly, Ȧ
∣∣∣
A=0

= η > 0 and Ż
∣∣∣
Z=0

= γ > 0. As a result, we can conclude that

W (t) > 0, A(t) > 0, and Z(t) > 0 for all t ≥ 0. Furthermore, within the interval t ∈ [0, τ ], we
have that

X(t) = e−(θ+Ω)tψ2(0)

+ (1− ν)b

∫ t

0

e−(θ+Ω)(t−u)

∫ κ1

0

e−κ1τϖ1(τ)
W (u− τ)G(u− τ)

1 + πG(u− τ)
dτdu ≥ 0,

U(t) = e−
∫ t

0
(d+ϵZ(u))duψ3(0)

+ νb

∫ t

0

e−
∫ t

ω
(d+ϵZ(u))du

(∫ κ2

0

e−κ2τϖ2(τ)
W (ω − τ)G(ω − τ)

1 + πG(ω − τ)
dτ + ΩX(ω)

)
dω ≥ 0,

G(t) = e−
∫ t

0
(r+qA(u))duψ4(0)

+

∫ t

0

mU(ω)e−
∫ t

ω
(r+qA(u))dudω ≥ 0.

Using Equation (1), we can deduce that lim
t→∞

supW (t) ≤ µ
ξ
.

Let us define T1(t) = (1− ν)
∫ κ1

0
ϖ1(τ)e

−κ1τW (t− τ)dτ +X(t). Then,

Ṫ1(t) = (1− ν)

∫ κ1

0

ϖ1(τ)e
−κ1τ

(
µ− ξW (t− τ)− bG(t− τ)W (t− τ)

1 + πG(t− τ)

)
dτ

+ (1− ν)b

∫ κ1

0

ϖ1(τ)e
−κ1τ

G(t− τ)W (t− τ)

1 + πG(t− τ)
dτ − (θ + Ω)X(t)

≤ µ(1− ν)E − σ̄3

(
(1− ν)

∫ κ1

0

ϖ1(τ)e
−κ1τW (t− τ)dτ +X(t)

)
≤ µ(1− ν)− σ̄3T1(t),

where σ̄3 = min{ξ, θ + Ω}. It follows that lim
t→∞

supT1(t) ≤ N̄1. Since
∫ κ1

0
ϖ1(τ)e

−κ1τW (t −

τ)dτ > 0, then lim
t→∞

supX(t) ≤ N̄1, where N̄1 =
µ(1−ν)

σ̄3
. Let

T2(t) = ν

∫ κ2

0

ϖ2(τ)e
−κ2τW (t− τ)dτ + U(t) +

d

2m
G(t) +

dq

2mc
A(t) +

ϵ

w
Z(t),

6
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then we have

Ṫ2(t) = ν

∫ κ2

0

ϖ2(τ)e
−κ2τ

(
µ− ξW (t− τ)− bG(t− τ)W (t− τ)

1 + πG(t− τ)

)
dτ

+ νb

∫ κ2

0

ϖ2(τ)e
−κ2τ

G(t− τ)W (t− τ)

1 + πG(t− τ)
dτ + ΩX(t)− (d+ ϵZ(t))U(t)

+
d

2m
(mU(t)− rG(t)− qG(t)A(t)) +

dq

2mc
(η + cA(t)G(t)− δA(t))

+
ϵ

w
(γ + wU(t)Z(t)− αZ(t))

≤ µνK + ΩN̄1 +
dqη

2mc
+
ϵγ

w

− σ̄4

(
ν

∫ κ2

0

ϖ2(τ)e
−κ2τW (t− τ)dτ + U(t) +

d

2m
G(t) +

dq

2mc
A(t) +

ϵ

w
Z(t)

)
≤ µν + ΩN̄1 +

dqη

2mc
+
ϵγ

w
− σ̄4T2(t),

where σ̄4 = min{ξ, d
2
, r, δ, α}. Then lim

t→∞
supT2(t) ≤ N̄2. It follows that lim

t→∞
supU(t) ≤ N̄2,

lim
t→∞

supG(t) ≤ N̄3, lim
t→∞

supA(t) ≤ N̄4, and lim
t→∞

supZ(t) ≤ N̄5. As a result, W (t), X(t), U(t),

G(t), A(t), and Z(t) are ultimately bounded. ■

2.2. Steady states and threshold parameter

In this subsection, we demonstrate the presence of steady states in model (1)-(6). To achieve this,
we utilize the approach introduced by Diekmann et al. (1990) and Van den Driessche and Wat-
mough (2002). These methods enable us to express the basic reproduction number of system (1)-
(6) as

RD
0 =

Ψmbµδα

ξ(αd+ ϵγ)(rδ + qη) (θ + Ω)
,

where Ψ = Ω(1− ν)e−κ1τ + νe−κ2τ (θ + Ω).

Considering the right-hand side (RHS) of system (1)-(6) as zero, we have the following expres-
sions:

0 = µ− ξW − bGW

1 + πG
, (9)

0 = E(1− p)
bGW

1 + πG
− (θ + Ω)X, (10)

0 =
KpbWG

1 + πG
+ ΩX − (d+ ϵZ)U, (11)

0 = mU − rG− qGA, (12)
0 = η + cAG− δA, (13)
0 = γ + wUZ − αZ. (14)

7

Alade et al.: Global Stability Analysis of CHIKV Dynamics Model

Published by Digital Commons @PVAMU, 2024



8 T.O. Alade et al.

System (1)-(6) admits a virus-free steady state Q0(W0, 0, 0, 0, A0, Z0), where W0 = µ
ξ
, A0 = η

δ
,

and Z0 =
γ
α
.

It is worth mentioning that each equation of the coupled Equations (9)-(14) is nonlinear. Therefore,
we omit solving analytical expression for the nontrivial steady state Q1(W1, X1, U1, G1, A1, Z1)
due to the complexity of the system.

However, the existence of the endemic state of the system is confirmed through numerical simula-
tions.

3. Global stability analysis

This section presents the establishment of global stability for the two steady states of system (1)-
(6) through the construction of suitable Lyapunov functionals, following the approach presented in
Ghaleb et al. (2022)-Elaiw et al. (2018b).

Theorem 3.1.

Suppose that RD
0 ≤ 1. Then, Q0 exhibits global asymptotic stability.

Proof:

Let us define Y D
0 (W,X,U,G,A, Z) as:

Y D
0 =

Ψ

θ + Ω
W0H

(
W

W0

)
+

Ω

θ + Ω
X + U (15)

+
(d+ ϵZ0)

m
G+

(d+ ϵZ0)q

mc
A0H

(
A

A0

)
+
ϵ

w
Z0H

(
Z

Z0

)
(16)

+
Ω(1− ν)b

θ + Ω

∫ κ1

0

ϖ1(τ)e
−κ1τ

∫ τ

0

G(t− ϱ)W (t− ϱ)

1 + πG(t− ϱ)
dϱdτ

+ νb

∫ κ2

0

ϖ2(τ)e
−κ2τ

∫ τ

0

G(t− ϱ)W (t− ϱ)

1 + πG(t− ϱ)
dϱdτ. (17)

Note that Y D
0 (W,X,U,G,A, Z) > 0 for all W,X,U,G,A, Z > 0 and Y D

0 (W0, 0, 0, 0, A0, Z0) =
0. By differentiating Y D

0 with respect to time along the trajectories of (1)-(6), we obtain the ex-

8
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pression as

dY D
0

dt
=

Ψ

θ + Ω

(
1− W0

W

)(
µ− ξW − bGW

1 + πG

)
+

Ω

θ + Ω

(
(1− ν)b

∫ κ1

0

ϖ1(τ)e
−κ1τ

G(t− τ)W (t− τ)

1 + πG(t− τ)
dτ − (θ + Ω)X

)
+ νb

∫ κ2

0

ϖ2(τ)e
−κ2τ

G(t− τ)W (t− τ)

1 + πG(t− τ)
dτ + ΩX − (d+ ϵZ)U

+
(d+ ϵZ0)

m
(mU − rG− qGA)

+
(d+ ϵZ0)q

mc

(
1− A0

A

)
(η + cAG− δA) +

ϵ

w

(
1− Z0

Z

)
(γ + wUZ − αZ)

+
Ω(1− ν)

θ + Ω

∫ κ1

0

ϖ1(τ)e
−κ1τ

(
bGW

1 + πG
− bG(t− τ)W (t− τ)

1 + πG(t− τ)

)
dτ

+ νb

∫ κ2

0

ϖ2(τ)e
−κ2τ

(
bGW

1 + πG
− bG(t− τ)W (t− τ)

1 + πG(t− τ)

)
dτ

=
Ψ

θ + Ω

(
1− W0

W

)
(ξW0 − ξW ) +

(
Ψ

θ + Ω

)
bW0G

1 + πG

− (d+ ϵZ0)rG

m
− (d+ ϵZ0)qA0G

m

+
(d+ ϵZ0)q

mc

(
1− A0

A

)
(δA0 − δA) +

ϵ

w

(
1− Z0

Z

)
(αZ0 − αZ)

= − ξΨ

θ + Ω

(W −W0)
2

W
− (d+ ϵZ0)qδ

mc

(A− A0)
2

A
− ϵα

w

(Z − Z0)
2

Z

+
(d+ ϵZ0)(rδ + qη)

m

(
Ψbmµδα

ξ(θ + Ω)(1 + πG)(αd+ ϵγ)(rδ + qη)
− 1

)
G

= − ξΨ

θ + Ω

(W −W0)
2

W
− (d+ ϵZ0)qδ

mc

(A− A0)
2

A
− ϵα

w

(Z − Z0)
2

Z

+
(αd+ ϵγ)(rδ + qη)

mαδ
(RD

0 − 1)G− (αd+ ϵγ)(rδ + qη)RD
0 πG

2

mαδ(1 + πG)
. (18)

Therefore,
dY D

0

dt
≤ 0 holds if RD

0 ≤ 1. Furthermore,
dY D

0

dt
= 0 if and only if W = W0, A = A0,

Z = Z0, and G = 0. The solutions of system (1)-(6) converge to Γ, the largest invariant set of

{(W,X,U,G,A, Z) :
dY D

0

dt
= 0}. For any element in Γ satisfies G(t) = Ġ(t) = 0. Then, from

Equation (4) we have U(t) = 0.According to the LaSalle’s invariance principle (Hale and Verduyn
Lunel (1993)), Q0 is proven to exhibit global asymptotic stability. ■

Theorem 3.2.

Suppose that Q1 exists. Then, it is globally asymptotically stable.
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10 T.O. Alade et al.

Proof:

Define the function

Y D
1 (W,X,U,G,A, Z) =

Ψ

θ + Ω
W1H

(
W

W1

)
+

Ω

θ + Ω
X1H

(
X

X1

)
+ U1H

(
U

U1

)
+

(d+ ϵZ1)

m
G1H

(
G

G1

)
+

(d+ ϵZ0)q

mc
A1H

(
A

A1

)
+
ϵ

w
Z1H

(
Z

Z1

)
+

Ω(1− ν)

θ + Ω

bW1G1

1 + πG1

∫ κ1

0

ϖ1(τ)e
−κ1τ

×
∫ τ

0

H

(
G(t− ϱ)W (t− ϱ)(1 + πG1)

W1G1 (1 + πG(t− ϱ))

)
dϱdτ

+
νbW1G1

1 + πG1

∫ κ2

0

ϖ2(τ)e
−κ2τ

∫ τ

0

H

(
G(t− ϱ)W (t− ϱ)(1 + πG1)

W1G1 (1 + πG(t− ϱ))

)
dϱdτ.

We have Y D
1 (W,X,U,G,A, Z) > 0 for all W,X,U,G,A, Z > 0 and

Y D
1 (W1, X1, U1, G1, A1, Z1) = 0.

Calculating
dY D

1

dt
along the system (1)-(6), we get

dY D
1

dt
=

Ψ

θ + Ω

(
1− W1

W

)(
µ− ξW − bGW

1 + πG

)
+

Ω

θ + Ω

(
1− X1

X

)(
(1− ν)b

∫ κ1

0

ϖ1(τ)e
−κ1τ

G(t− τ)W (t− τ)

1 + πG(t− τ)
dτ − (θ + Ω)X

)
+

(
1− U1

U

)(
νb

∫ κ2

0

ϖ2(τ)e
−κ2τ

G(t− τ)W (t− τ)

1 + πG(t− τ)
dτ + ΩX − (d+ ϵZ)U

)
+

(d+ ϵZ1)

m

(
1− G1

G

)
(mU − rG− qGA) +

(d+ ϵZ1)q

mc

(
1− A1

A

)
(η + cAG− δA)

+
ϵ

w

(
1− Z1

Z

)
(γ + wUZ − αZ)

+
Ω(1− ν)

(θ + Ω)

∫ κ1

0

ϖ1(τ)e
−κ1τ

(
bGW

1 + πG
− bG(t− τ)W (t− τ)

1 + πG(t− τ)

)
dτ

+
Ω(1− ν)

(θ + Ω)

bW1G1

1 + πG1

∫ κ1

0

ϖ1(τ)e
−κ1τ ln

(
G(t− τ)W (t− τ)(1 + πG)

GW (1 + πG(t− τ))

)
dτ

+ ν

∫ κ2

0

ϖ2(τ)e
−κ2τ

(
bGW

1 + πG
− bG(t− τ)W (t− τ)

1 + πG(t− τ)

)
dτ

+
νbW1G1

1 + πG1

∫ κ2

0

ϖ2(τ)e
−κ2τ ln

(
G(t− τ)W (t− τ)(1 + πG)

GW (1 + πG(t− τ))

)
dτ. (19)

Applying

µ = ξW1 +
bW1G1

1 + πG1

, η = δA1 − cA1G1, γ = αZ1 − wU1Z1,
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we obtain

dY D
1

dt
=

Ψ

θ + Ω

(
1− W1

W

)
(ξW1 − ξW )

+

(
Ψ

θ + Ω

)
bW1G1

1 + πG1

(
1− W1

W

)
+

Ψ

θ + Ω

bW1G

1 + πG

− Ω(1− ν)b

θ + Ω

∫ κ1

0

ϖ1(τ)e
−κ1τ

G(t− τ)W (t− τ)X1

(1 + πG(t− τ))X
dτ

+ ΩX1 − νb

∫ κ2

0

ϖ2(τ)e
−κ2τ

G(t− τ)W (t− τ)U1

(1 + πG(t− τ))U
dτ

− ΩXU1

U
+ (d+ ϵZ)U1

− (d+ ϵZ1)UG1

G
− (d+ ϵZ1)rG

m

+
(d+ ϵZ1)rG1

m
+

(d+ ϵZ1)qAG1

m
+

(d+ ϵZ1)q

mc

(
1− A1

A

)
(δA1 − δA)

− (d+ ϵZ1)qA1G

m
− (d+ ϵZ1)qA1G1

m

+
(d+ ϵZ1)qA1G1

m

(
A1

A

)
− ϵU1Z1 + ϵU1Z1

(
Z1

Z

)
+
ϵ

w

(
1− Z1

Z

)
(αZ1 − αZ)

+
Ω(1− ν)

θ + Ω

bW1G1

1 + πG1

∫ κ1

0

ϖ1(τ)e
−κ1τ ln

(
G(t− τ)W (t− τ)(1 + πG)

GW (1 + πG(t− τ))

)
dτ

+
νbW1G1

1 + πG1

∫ κ2

0

ϖ2(τ)e
−κ2τ ln

(
G(t− τ)W (t− τ)(1 + πG)

GW (1 + πG(t− τ))

)
dτ.

The components forming the steady state Q1 satisfy the conditions

E(1− ν)
bW1G1

1 + πG1

= (θ + Ω)X1,

Kν
bW1G1

1 + πG1

+ ΩX1 = (d+ ϵZ1)U1,

mU1 = rG1 + qA1G1,

then

(d+ ϵZ1)U1 =
Ψ

θ + Ω

bW1G1

(1 + πG1)
,

(d+ ϵZ1)rG1

m
=

Ψ

θ + Ω

bW1G1

(1 + πG1)
− (d+ ϵZ1)qA1G1

m
,
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and

dY D
1

dt
= − ξΨ

θ + Ω

(W −W1)
2

W
+
EΩ(1− ν)

θ + Ω

bW1G1

1 + πG1

(
1− W1

W

)
+Kν

bW1G1

(1 + πG1)

(
1− W1

W

)
+

(
Ψ

θ + Ω

)
bW1G1

1 + πG1

(
(1 + πG1)G

(1 + πG)G1

− G

G1

)
− Ω(1− ν)

θ + Ω

bW1G1

1 + πG1

∫ κ1

0

ϖ1(τ)e
−κ1τ

G(t− τ)W (t− τ)(1 + πG1)X1

(1 + πG(t− τ))W1G1X
dτ

+
EΩ(1− ν)

θ + Ω

bW1G1

(1 + πG1)

− νbW1G1

1 + πG1

∫ κ2

0

ϖ2(τ)e
−κ2τ

G(t− τ)W (t− τ)(1 + πG1)U1

(1 + πG(t− τ))W1G1U
dτ

− EΩ(1− ν)

θ + Ω

bW1G1

1 + πG1

U1X

X1U

+
EΩ(1− ν)

θ + Ω

bW1G1

(1 + πG1)
+Kν

bW1G1

(1 + πG1)

− EΩ(1− ν)

θ + Ω

bW1G1

1 + πG1

UG1

U1G

−Kν
bW1G1

1 + πG1

UG1

U1G
+
EΩ(1− ν)

θ + Ω

bW1G1

(1 + πG1)
+Kν

bW1G1

(1 + πG1)

− 2(d+ ϵZ1)qA1G1

m
+

(d+ ϵZ1)qAG1

m
+

(d+ ϵZ1)qA1G1

m

(
A1

A

)
− (d+ ϵZ1)qδ

mc

(A− A1)
2

A
− 2ϵU1Z1 + ϵU1Z + ϵU1Z1

(
Z1

Z

)
− ϵα

w

(Z − Z1)
2

Z

+
Ω(1− ν)

(θ + Ω)

bW1G1

1 + πG1

∫ κ1

0

ϖ1(τ)e
−κ1τ ln

(
G(t− τ)W (t− τ)(1 + πG)

GW (1 + πG(t− τ))

)
dτ

+
νbW1G1

1 + πG1

∫ κ2

0

ϖ2(τ)e
−κ2τ ln

(
G(t− τ)W (t− τ)(1 + πG)

GW (1 + πG(t− τ))

)
dτ.

By using the subsequent equalities,

ln

(
G(t− τ)W (t− τ)(1 + πG)

GW (1 + πG(t− τ))

)
= ln

(
W1

W

)
+ ln

(
UG1

U1G

)
+ ln

(
1 + πG

1 + πG1

)
+ ln

(
XU1

X1U

)
+ ln

(
G(t− τ)W (t− τ)(1 + πG1)X1

(1 + πG(t− τ))W1G1X

)
,

ln

(
G(t− τ)W (t− τ)(1 + πG)

GW (1 + πG(t− τ))

)
= ln

(
W1

W

)
+ ln

(
UG1

U1G

)
+ ln

(
1 + πG

1 + πG1

)
+ ln

(
G(t− τ)W (t− τ)(1 + πG1)U1

(1 + πG(t− τ))W1G1U

)
,
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we have

dY D
1

dt
= − ξΨ

θ + Ω

(W −W1)
2

W
+

Ψ

θ + Ω

bW1G1

1 + πG1

(
−1 +

(1 + πG1)G

(1 + πG)G1

− G

G1

+
1 + πG

1 + πG1

)
+
EΩ(1− ν)

(θ + Ω)

bW1G1

(1 + πG1)

[
1− W1

W
+ ln

(
W1

W

)]
+
EΩ(1− ν)

(θ + Ω)

bW1G1

(1 + πG1)

[
1− UG1

U1G
+ ln

(
UG1

U1G

)]
+
EΩ(1− ν)

θ + Ω

bW1G1

1 + πG1

1

E

∫ κ1

0

ϖ1(τ)e
−κ1τ

[
1− G(t− τ)W (t− τ)(1 + πG1)X1

(1 + πG(t− τ))W1G1X

+ ln

(
G(t− τ)W (t− τ)(1 + πG1)X1

(1 + πG(t− τ))W1G1X

)]
dτ

+
EΩ(1− ν)

θ + Ω

bW1G1

1 + πG1

[
1− 1 + πG

1 + πG1

+ ln

(
1 + πG

1 + πG1

)]
+
EΩ(1− ν)

θ + Ω

bW1G1

(1 + πG1)

[
1− XU1

X1U
+ ln

(
XU1

X1U

)]
+Kν

bW1G1

(1 + πG1)

[
1− W1

W
+ ln

(
W1

W

)]
+Kν

bW1G1

1 + πG1

[
1− UG1

U1G
+ ln

(
UG1

U1G

)]
+Kν

bW1G1

1 + πG1

1

K

∫ κ2

0

ϖ2(τ)e
−κ2τ

[
1− G(t− τ)W (t− τ)(1 + πG1)U1

(1 + πG(t− τ))W1G1U

+ ln

(
G(t− τ)W (t− τ)(1 + πG1)U1

(1 + πG(t− τ))W1G1U

)]
dτ

+Kν
bW1G1

(1 + πG1)

[
1− 1 + πG

1 + πG1

+ ln

(
1 + πG

1 + πG1

)]
− (d+ ϵZ1)qδ

mc

(A− A1)
2

A
− (d+ ϵZ1)qA1G1

m

[
2− A

A1

− A1

A

]
− ϵα

w

(Z − Z1)
2

Z

− ϵU1Z1

[
2− Z

Z1

− Z1

Z

]
(20)

= −ξ
(

Ψ

θ + Ω

)
(W −W1)

2

W
−

(
Ψ

θ + Ω

)
πbW1(G−G1)

2

(1 + πG)(1 + πG1)2
− (d+ ϵZ1)qη

mcA1

(A− A1)
2

A

− ϵγ

wZ1

(Z − Z1)
2

Z
− EΩ(1− ν)

θ + Ω

bW1G1

1 + πG1

[
H

(
W1

W

)
+H

(
UG1

U1G

)
+H

(
1 + πG

1 + πG1

)
+H

(
XU1

X1U

)
+

1

E

∫ κ1

0

ϖ1(τ)e
−κ1τH

(
G(t− τ)W (t− τ)(1 + πG1)X1

(1 + πG(t− τ))W1G1X

)
dτ

]
−Kν

bW1G1

(1 + πG1)

[
H

(
W1

W

)
+H

(
UG1

U1G

)
+H

(
1 + πG

1 + πG1

)
+

1

K

∫ κ2

0

ϖ2(τ)e
−κ2τH

(
G(t− τ)W (t− τ)(1 + πG1)U1

(1 + πG(t− τ))W1G1U

)
dτ

]
.

It can be seen that if Q1 exists, then W1, X1, U1, G1, A1, Z1 > 0 and
dY D

1

dt
≤ 0 for all
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W,X,U,G,A, Z > 0. We have
dY D

1

dt
= 0 if and only if W = W1, X = X1, U = U1,

G = G1, A = A1, Z = Z1, and H = 0. Then, from LaSalle’s invariance principle, Q1 is globally
asymptotically stable. ■

4. Numerical simulations

We perform numerical simulations for the system (1)-(6) with particular distribution functions
ϖ1(τ) and ϖ2(τ) as:

ϖi(τ) = δ(τ − κi), i = 1, 2, (21)

where δ(.) is the Dirac delta function, κ1 and κ2 are positive constants. Then, we can see that,∫ κ1

0

ϖ1(τ)dτ =

∫ κ2

0

ϖ2(τ)dτ = 1,

E =

∫ κ1

0

δ(τ − κ1)e
−κ1τdτ = e−κ1τ1 ,

K =

∫ κ2

0

δ(τ − κ2)e
−κ2τdτ = e−κ2τ2 . (22)

∫ κi

0

δ(τ − δi)e
−δτζ(t− τ)dτ = e−δiτiζ(t− τi), i = 1, 2, (23)

for any function ζ . From Equations (21), (22) and (23), system (1)-(6) leads to:

Ẇ (t) = µ− ξW (t)− bG(t)W (t)

1 + πG(t)
, (24)

Ẋ(t) =
(1− ν)e−κ1τ1bG(t− τ1)W (t− τ1)

1 + πG(t− τ1)
− (θ + Ω)X(t), (25)

U̇(t) =
νe−κ2τ2bG(t− τ2)W (t− τ2)

1 + πG(t− τ2)
+ ΩX(t)− (d+ ϵZ(t))U(t), (26)

Ġ(t) = mU(t)− rG(t)− qA(t)G(t), (27)

Ȧ(t) = η + cA(t)G(t)− δA(t), (28)

Ż(t) = γ + wU(t)Z(t)− αZ(t). (29)

The basic reproduction number for system (24)-(29) is defined as:

R0 =
βmbµδα

ξ(αd+ ϵγ)(rδ + qη) (θ + Ω)
,

where β = Ω(1− ν)e−κ1τ1 + νe−κ2τ2(θ + Ω).

Now, we conduct numerical simulations for system (24)-(29) with parameter values: µ = 1.826,
θ = 0.5, m = 2.02, q = 0.5964, τ1, τ2 = varied, Ω = 0.1, κ1 = 0.5, r = 0.4418, ϵ = 0.4441,
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π = 0.1, c = 0.5, γ = 0.5, η = 1.402, α = 1.2, δ = 1.251, ξ = 0.7979, κ2 = 0.5, ν = 0.5, b =
varied, w = 0.5, d = 0.5. We discuss the effect of the incidence rate constant b on the qualitative
behavior of the system by considering two sets and assume τe = τ1 = τ2 = 0.5. We perform the
following:

Set (I): We take b = 0.05, and compute R0 = 0.1381 < 1. The results depicted in Figure 1
indicate that the concentrations of uninfected cells, antibodies, and CTL cells tend to stabilize at
their normal levels of W0 = 2.2885, A0 = 1.1207 and Z0 = 0.4167, respectively. Meanwhile, the
concentrations of latently and actively infected cells as well as CHIKV particles are seen to decay
and eventually reach zero. Therefore, the system’s solutions ultimately lead to the CHIKV-free
steady state Q0, which is proven to be globally asymptotically stable in Theorem 3.1. These results
provide evidence that the CHIKV can be eradicated through this model.

Set (II): By selecting b = 1.5 and calculating R0 = 4.1421 > 1, we determine that the sys-
tem possesses two positive steady states, denoted as Q0 and Q1. Notably, the state Q1 is glob-
ally asymptotically stable (GAS). Figure 1 illustrates the changes in concentration of various
cell types and CHIKV particles over time. Specifically, the concentration of uninfected cells is
observed to decrease while the concentrations of latently and actively infected cells as well as
CHIKV particles are seen to increase. The increase in CHIKV particles and actively infected
cells results in an upsurge in the proliferation rates of both antibodies and CTL cells, leading
to an increase in their respective concentrations. Ultimately, the system reaches a steady state
Q1 = (0.8931, 0.7226, 0.6686, 0.9065, 1.7575, 0.5776), which is consistent with the findings pre-
sented in Theorem 3.2.

Subsequently, we proceed to examine the impact of time delays on the stability of the steady states.
While keeping b = 1.5 fixed, we explore the parameter τe over a range of values. We then examine
the system’s behavior using the following initial conditions:

ς1(ϱ) = 1.4, ς2(ϱ) = 0.3, ς3(ϱ) = 0.4, ς4(ϱ) = 0.4, ς5(ϱ) = 1.7, ς6(ϱ) = 0.5, ϱ ∈ [−τe, 0]

Figure 2 illustrates the temporal evolution of the states of systemW, X, U ,G,A, and Z. Observing
the system’s dynamics, we find that for smaller values of τe, specifically τe = 0.0, 0.5, 1.5, and 3.0,
the calculated R0 values all exceed 1. This implies that the system’s trajectory tends towards the
steady state Q1, in accordance with the findings of Theorem 3.2. However, as τe increases to larger
values, for instance τe = 3.5 and 5.0, the value of R0 becomes less than 1, indicating the existence
of a positive steady state Q0, in accordance with the findings of Theorem 3.1. In this scenario,
the body’s immune responses effectively eliminate CHIKV particles, leading to their successful
clearance from the host.

Let denote τ cr as the critical threshold of the parameter τe, such that

R0 =
mbµδα (Ω(1− ν)e−κ1τcr

+ νe−κ2τcr

(θ + Ω))

ξ(αd+ ϵγ)(rδ + qη) (θ + Ω)
= 1.

Based on the data presented in Table 1, the critical value of τ is determined to be τ cr = 3.34243.
Subsequently, Table 2 provides the values of R0 for various values of τe. It can be observed that as
τe increases, the value of R0 decreases. Furthermore, the following scenarios can be identified:
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Figure 1. Impact of the incidence rate parameter b on the stability of the steady states
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(i) if 0 ≤ τe < 3.34243, then Q1 exists and it is globally asymptotically stable,

(ii) if τe ≥ 3.34243, then Q0 is globally asymptotically stable. Obviously, as the time delay in-
creases, the system exhibits a stabilization effect, converging towards the steady state Q0. From a
biological perspective, time delays in the CHIKV dynamics model can have a comparable effect to
that of antiviral treatment, which is used to eliminate the virus. Specifically, our findings suggest
that delays of sufficient magnitude can decrease CHIKV replication and aid in the eradication of
the virus.

Table 1. Steady state values and R0 for model (24)-(29) with different τe

τe Steady states R0

0.0 Q1 = (0.8052, 0.9863, 0.8730, 1.0864, 1.9809, 0.6549) 5.3186

0.5 Q1 = (0.8931, 0.7226, 0.6686, 0.9065, 1.7575, 0.5776) 4.1421

1.0 Q1 = (1.0114, 0.5151, 0.4920, 0.7200, 1.5736, 0.5241) 3.2259

1.5 Q1 = (1.1684, 0.3518, 0.3439, 0.5373, 1.4272, 0.4864) 2.5123

2.0 Q1 = (1.3747, 0.2235, 0.2223, 0.3666, 1.3131, 0.4592) 1.9566

2.5 Q1 = (1.6436, 0.1229, 0.1237, 0.2132, 1.2251, 0.4393) 1.5238

3.0 Q1 = (1.9924, 0.0439, 0.0447, 0.0797, 1.1576, 0.4246) 1.1867

3.34243 Q0 = (2.2885, 0, 0, 0, 1.1207, 0.4167) 1.0000

3.5 Q0 = (2.2885, 0, 0, 0, 1.1207, 0.4167) 0.9242

4.0 Q0 = (2.2885, 0, 0, 0, 1.1207, 0.4167) 0.7198

4.5 Q0 = (2.2885, 0, 0, 0, 1.1207, 0.4167) 0.5606

5.0 Q0 = (2.2885, 0, 0, 0, 1.1207, 0.4167) 0.4366
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Figure 2. Impact of delay parameter τe on the stability of the steady states (a) uninfected cells, (b) latently infected cells,
(c) actively infected cells, (d) CHIKV particles, (e) antibodies and (f) CTLs

5. Conclusion

A new mathematical model for the within-host transmission of Chikungunya virus (CHIKV) has
been formulated and analyzed. Different from the existing CHIKV mathematical models in the
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literature, the within-host CHIKV model formulated in this study was designed to capture some
features such as saturated incidence rate, adaptive immune response and distributed time delays.
We proved the nonnegativity and boundedness of the solution of the new within-host CHIKV
model describing the interaction of six mutually exclusive concentrations of healthy cells, latently
infected cells, actively infected cells, CHIKV particles, antibodies and cytotoxic T-lymphocytes
cells. More importantly, we constructed suitable Lyapunov functionals to investigate the global
dynamics of the CHIKV model about the virus-free and virus-present (endemic) steady states.
We showed that the model has a globally-asymptotically stable virus-free steady state when the
basic reproduction number is less than one, and a globally asymptotically stable endemic state was
proved when the basic reproduction number is greater than one.

Furthermore, visualization of the qualitative analysis of the model was done by conducting numer-
ical simulations to investigate the effect of time delays on the stability of the steady states. The
simulations established the asymptotic convergence of solutions to both virus-free and endemic
steady states at different initial concentrations of healthy cells, latently infected cells, actively
infected cells, CHIKV particles, antibodies and cytotoxic T-lymphocytes cells. Particularly, we
obtained the critical value of time delay, and it was revealed that the system stabilized around the
endemic state when the time delay is below the critical value. Conversely, it was shown that the
system stabilized around the virus-free steady state when the time delay is above the critical value.
In essence, simulations demonstrated that an increase in time delay corresponds to a decrease in the
basic reproduction number of the within-host CHIKV model. Thus, time delays have the capacity
to hinder the replication of within-host chikungunya virus.
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