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Abstract

Hyperbolic linear theory of heat propagation has been established in the framework of a Caputo
time fractional order derivative. The solution of a system of integer and fractional order initial value
problems is achieved by employing the Adomian decomposition approach. The obtained solution
is in convergent infinite series form, demonstrating the method’s strengths in solving fractional
differential equations. Moreover, the double Laplace transform method is employed to acquire the
solution of a system of integer and fractional order boundary conditions in the Laplace domain. An
inversion of double Laplace transforms has been achieved numerically by employing the Xiao al-
gorithm in the space-time domain. Considering the non-Fourier effect of heat conduction, the finite
speed of thermal wave propagation has been attained. The role of the fractional order parameter
has been examined scientifically. The results obtained by considering the fractional order theory
and the integer order theory perfectly coincide as a limiting case of fractional order parameter
approaches one.

Keywords: System of partial differential equation; Adomian decomposition method; Fractional
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2 S. Sankeshwari and V. Kulkarni

1. Introduction

Adomian (1996) demonstrated how to get a solution for the system of coupled non-linear differen-
tial equations. Nonlinear PDEs serve an important role in describing and analyzing real-life pro-
cesses and occurrences as shown by Nisar et al. (2021). Bougoffa and Bougouffa (2006) employed
the Adomian decomposition method (ADM) to get a solution of coupled systems first-second-order
differential equations. Gu and Li (2007) employed the modified ADM to get a solution for a system
of non-linear differential equations and demonstrated that the method of calculating speed is faster
than the original ADM. Nagy et al. (1994) investigated how hyperbolic heat equation solutions
behaved at their parabolic limits.

Following Kai (2010), many scientists and engineers are interested in fractional differential equa-
tions (FDEs) because they have been used in different fields such as control engineering, bioengi-
neering, mechanics, signal processing, viscoelasticity, and polymer networks. Duan et al. (2007)
studied a system of differential equations based on Caputo and Riemann Liouville’s fractional
derivatives definitions. In a rectangular domain, Mamchuev (2008) demonstrated a closed-form
solution for a system of fractional PDEs subject to boundary conditions. Parthiban and Balachan-
dran (2013) employed ADM to get a solution of the system of FPDEs. Dhunde and Waghmare
(2022) obtained a solution for a linear system of integer and FPDEs under initial and boundary
conditions.

Nisar et al. (2023) demonstrated the existence and uniqueness of a solution to the functional inte-
grodifferential equation with nonlocal conditions and a finite delay function. It includes the con-
tinuous dependency of the integral solution as well as the existence of the solution, which were
demonstrated utilizing integrated resolvent operator theory with Lipschitz continuous support.
Ravichandran et al. (2022) derived the existence of a solution for the neutral partial integrodif-
ferential nonlocal system. Zada et al. (2021) implemented a new iterative method for the solutions
of inhomogeneous FPDEs. The heat transfer properties and uses of various nanofluids have been
explored by Kumar et al. (2020). In a finite Cartesian system, Kulkarni and Mittal (2021) intro-
duced and investigated two temperature dual phase lag concepts in the framework of fractional
order by considering thermal stress analysis.

In this paper, a linear hyperbolic system of equations for heat propagation has been established in
the framework of Caputo (1967) fractional derivative of order α ∈ (0, 1]. The solutions of a system
of integer and FPDEs with respect to initial conditions are obtained by using the Adomian (1996)
decomposition approach. The obtained solutions are in convergent infinite series form. Also, the
method of DLT developed by Sneddon (1972) is implemented to acquire a solution for the system
of integer and FPDEs with respect to initial and boundary conditions in the Laplace domain. An
inversion of the double Laplace transforms has been achieved numerically by employing Xiao
and Zhang (2011) algorithm in the space-time domain. Graphical representations are used to show
numerical results.

The non-Fourier effect of heat conduction results in attaining the finite speed of thermal wave
propagation. The fractional order parameter α is not only a mathematical parameter but it also
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plays an important role in the rate of heat transfer and hence categorizes the material as per its
ability of heat conduction. As a limiting case α → 1, the results obtained by considering the
fractional order theory and the integer order theory perfectly coincide.

The whole manuscript is classified into two sections viz system of integer order PDE and system
of fractional order PDE. Both sections are again classified into two subsections viz the initial value
problem and the boundary value problem. The convergence theorem of the infinite series solution
is demonstrated mathematically. The manuscript is concluded by the illustrative example and the
results obtained are shown graphically.

2. Basic Equations

Following Biot (1956), the conservation of heat energy is represented as

−∇ · q(x, t) = c
dT

dt
, (1)

where T denotes temperature, c > 0 represents specific heat, x stands for a material point, q
represents heat flux, and t is time.

By replacing the time derivative in Equation (1) by Caputo (1967) fractional derivative of order α,
then the generalized heat energy equation is represented as

−∇ · q = c
∂αT

∂tα
, 0 < α ≤ 1. (2)

Following Cattaneo (1948), short-tail memory with an exponential kernel is given by

q(t) = − κ

τ0

∫ t

0

e−( t−ξ

τ0
) ∇T (ξ) dξ, (3)

where τ0 is a non-negative constant and denotes the delay time translation in the heat flux.

The Cattaneo (1958) and Vernotte (1961) form is represented by

q + τ0
∂q
∂t

= −κ grad T. (4)

The generalization of Equation (4) in the context of the Caputo time fractional order derivative of
order α is given by

q + τ0
∂αq
∂tα

= −κ grad T, 0 < α ≤ 1. (5)

In one dimension, Equations (2) and (5) are in the form of

c
∂αT

∂tα
= −∂q

∂x
, 0 < α ≤ 1, (6)

τ0
∂αq

∂tα
= −κ

∂T

∂x
− q, 0 < α ≤ 1. (7)
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4 S. Sankeshwari and V. Kulkarni

Dividing Equation (6) by c and Equation (7) by -κ, and considering U = T and V = −q/c, the
above equations become

∂αU

∂tα
=

∂V

∂x
, t > 0, 0 ≤ x < ∞, 0 < α ≤ 1, (8)

ϵ2
∂αV

∂tα
=

∂U

∂x
− V

a
, t > 0, 0 ≤ x < ∞, 0 < α ≤ 1, (9)

where ϵ =
1

c∗
=

√
τ0
a

> 0 represents the reciprocal of the characteristic speed of the system, and

a =
κ

c
represents the thermal diffusivity.

Equations (8)− (9) represent the system of fractional PDEs which is hyperbolic when α → 1.

3. System of Integer Order PDEs

3.1. Initial Value Problem

Consider the symmetric hyperbolic system developed by Nagy et al. (1994),

Ut = Vx, (10)

ϵ2Vt = Ux −
V

a
. (11)

Assume initial conditions are

U(x, 0) = f1(x), V (x, 0) = f2(x), 0 ≤ x < ∞, (12)

where f1(x) and f2(x) are continuous functions.

The main objective is to analyze the initial value problem defined in the Equations (10)− (12).

3.1.1. General Solution

Let U and V be the solutions of Equations (10) through (12) of the form

U =
∞∑
n=0

Un, (13)

V =
∞∑
n=0

Vn. (14)

Using Equations (10) and (11), then one can express U and V as follows,

U = U(x, 0) +

∫ t

0

∂V (x, ξ)

∂x
dξ = f1 + L −1

(
RV

)
, (15)
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V = V (x, 0) +
1

ϵ2

[∫ t

0

∂U(x, ξ)

∂x
dξ − 1

a

∫ t

0

V (x, ξ)dξ

]

= f2 +
1

ϵ2

[
L −1

(
RU

)
− 1

a
L −1(V )

]
,

(16)

where R represents a linear operator involving partial derivative at spatial coordinate x and L ≡
dk

dtk
implies that k fold integration as L −1(·) =

∫ t

0
· · ·

∫ t

0
(·) dξ.

Take initial approximations as

U0 = U(x, 0) = f1, V0 = V (x, 0) = f2. (17)

By using the Adomian (1996) decomposition, one can write

Un+1(x, t) =

∫ t

0

∂Vn

∂x
dξ, n ≥ 0, (18)

Vn+1(x, t) =
1

ϵ2

[∫ t

0

∂Un

∂x
dξ − 1

a

∫ t

0

Vndξ

]
, n ≥ 0. (19)

From Equation (18), one obtains

U1 = ḟ2t,

U2 =

[
f̈1
ϵ2

− ḟ2
aϵ2

]
t2

2!
,

U3 =

[ ...
f2
ϵ2

− f̈1
aϵ4

+
ḟ2
a2ϵ4

]
t3

3!
,

U4 =

[ ....
f1
ϵ4

− 2
...
f2
aϵ4

+
f̈1
a2ϵ6

− ḟ2
a3ϵ6

]
t4

4!
,

(20)

and so on.

From Equation (19), one obtains

V1 =

[
ḟ1
ϵ2

− f2
aϵ2

]
t,

V2 =

[
f̈2
ϵ2

− ḟ1
aϵ4

+
f2
a2ϵ4

]
t2

2!
,

V3 =

[ ...
f1
ϵ4

− 2f̈2
aϵ4

+
ḟ1
a2ϵ6

− f2
a3ϵ6

]
t3

3!
,

V4 =

[ ....
f2
ϵ4

− 2
...
f1
aϵ6

+
3f̈2
a2ϵ6

− ḟ1
a3ϵ8

+
f2
a4ϵ8

]
t4

4!
,

(21)

and so on.
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6 S. Sankeshwari and V. Kulkarni

Then, the solution is represented by

U(x, t) =f1 + ḟ2t+

[
f̈1
ϵ2

− ḟ2
aϵ2

]
t2

2!
+

[ ...
f2
ϵ2

− f̈1
aϵ4

+
ḟ2
a2ϵ4

]
t3

3!

+

[ ....
f1
ϵ4

− 2
...
f2
aϵ4

+
f̈1
a2ϵ6

− ḟ2
a3ϵ6

]
t4

4!
+ · · · ,

(22)

and

V (x, t) =f2 +

[
ḟ1
ϵ2

− f2
aϵ2

]
t+

[
f̈2
ϵ2

− ḟ1
aϵ4

+
f2
a2ϵ4

]
t2

2!
+

[ ...
f1
ϵ4

− 2f̈2
aϵ4

+
ḟ1
a2ϵ6

− f2
a3ϵ6

]
t3

3!

+

[ ....
f2
ϵ4

− 2
...
f1
aϵ6

+
3f̈2
a2ϵ6

− ḟ1
a3ϵ8

+
f2
a4ϵ8

]
t4

4!
+ · · · ,

(23)

where the dot represents the derivative at spatial coordinate x.

3.2. Boundary Value Problem

Consider the symmetric hyperbolic system developed by Nagy et al. (1994),

Ut = Vx, (24)

ϵ2Vt = Ux −
V

a
. (25)

Assume initial conditions as

U(x, 0) = f1(x), V (x, 0) = f2(x), 0 ≤ x < ∞, (26)

and boundary conditions as

U(0, t) = h(t), V (0, t) = k(t), lim
x→∞

U(x, t) = lim
x→∞

V (x, t) = 0, t > 0, (27)

where f1(x), f2(x), h(t) and k(t) are continuous functions.

The main objective is to analyze the boundary value problem defined by the Equations (24) through
(27).

3.2.1. General Solution

Applying the double Laplace transform on both sides of the equations (24) and (25), one obtains

s̃Ū(s, s̃)− Ū(s, 0) = sV̄ (s, s̃)− V̄ (0, s̃), (28)

ϵ2
[
s̃V̄ (s, s̃)− V̄ (s, 0)

]
= sŪ(s, s̃)− Ū(0, s̃)− V̄ (s, s̃)

a
. (29)

Applying a single Laplace transform to Equations (26) and (27), one obtains

Ū(s, 0) = F1(s), V̄ (s, 0) = F2(s), (30)

6
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Ū(0, s̃) = H(s̃), V̄ (0, s̃) = K(s̃), (31)

where F1(s), F2(s), H(s̃) and K(s̃) are Laplace transform of functions f1(x), f2(x), h(t) and k(t),
respectively.

From Equations (28) and (29) by using Equations (30) and (31), one obtains

Ū(s, s̃) =

[
ϵ2s̃+ 1

a

]{
s
[
K(s̃)− F1(s)

]
+ s̃

[
H(s̃)− ϵ2F2(s)

]}
s
[
s2 − (ϵs̃)2 − s̃

a

] +
H(s̃)

s
− ϵ2F2(s)

s
, (32)

V̄ (s, s̃) =
s
[
K(s̃)− F1(s)

]
+ s̃

[
H(s̃)− ϵ2F2(s)

][
s2 − (ϵs̃)2 − s̃

a

] . (33)

Applying double inverse Laplace transform on both sides of equations (32) and (33), one obtains

U(x, t) = L −1
s L −1

s̃

〈[
ϵ2s̃+ 1

a

]{
s
[
K(s̃)− F1(s)

]
+ s̃

[
H(s̃)− ϵ2F2(s)

]}
s
[
s2 − (ϵs̃)2 − s̃

a

] +
H(s̃)

s
− ϵ2F2(s)

s

〉
,

(34)
and

V (x, t) = L −1
s L −1

s̃

〈
s
[
K(s̃)− F1(s)

]
+ s̃

[
H(s̃)− ϵ2F2(s)

][
s2 − (ϵs̃)2 − s̃

a

] 〉
, (35)

provided the inverse double Laplace transform exists for all terms on the right side of Equations
(34) and (35).

Equations (32) and (33) represent a general solution in the Laplace domain. To find a solution in
the space-time domain, an inversion of the double Laplace transform of the solution obtained in
Equations (34) and (35) has been performed numerically by employing Xiao and Zhang (2011)
algorithm.

4. System of Fractional PDEs

4.1. Initial Value Problem

Consider the system of equations
∂αU

∂tα
=

∂V

∂x
, 0 < α ≤ 1, (36)

ϵ2
∂αV

∂tα
=

∂U

∂x
− V

a
, 0 < α ≤ 1. (37)

Assume initial conditions as

U(x, 0) = f1(x), V (x, 0) = f2(x), 0 ≤ x < ∞, (38)

where f1(x) and f2(x) are continuous functions.

The main purpose is to analyze the initial value problem as defined by the equations (36) through
(38).

7
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8 S. Sankeshwari and V. Kulkarni

4.1.1. General Solution

From equations (36) and (37), one can write

DtU = D1−α
t (Vx), (39)

DtV = D1−α
t

(
Ux

ϵ2

)
−D1−α

t

(
V

aϵ2

)
. (40)

Let’s denote Ux by Lx(U), Vx by Lx(V ), and Dt by Lt is invertible in the above equations.

Then, L −1
t =

∫ t

0
(·) dξ. One obtains

U(x, t) = U(x, 0) + L −1
t

{
D1−α

t

[
Lx

(
V
)]}

, (41)

V (x, t) = V (x, 0) + L −1
t

{
D1−α

t

[
Lx

(
U

ϵ2

)]}
− L −1

t

{
D1−α

t

(
V

aϵ2

)}
. (42)

Take initial approximations as

U0 = U(x, 0) = f1(x), V0 = V (x, 0) = f2(x). (43)

By Adomian (1996) decomposition method, one can write

Un+1 = L −1
t

{
D1−α

t

[
Lx

(
Vn

)]}
, n ≥ 0, (44)

Vn+1 = L −1
t

{
D1−α

t

[
Lx

(
Un

ϵ2

)]}
− L −1

t

{
D1−α

t

(
Vn

aϵ2

)}
, n ≥ 0. (45)

From Equation (44), one obtains

U1 = ḟ2
tα

Γ(α + 1)
,

U2 =

[
f̈1
ϵ2

− ḟ2
aϵ2

]
t2α

Γ(2α + 1)
,

U3 =

[ ...
f2
ϵ2

− f̈1
aϵ4

+
ḟ2
a2ϵ4

]
t3α

Γ(3α + 1)
,

U4 =

[ ....
f1
ϵ4

− 2
...
f2
aϵ4

+
f̈1
a2ϵ6

− ḟ2
a3ϵ6

]
t4α

Γ(4α + 1)
,

(46)

and so on.
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From Equation (45), one obtains

V1 =

[
ḟ1
ϵ2

− f2
aϵ2

]
tα

Γ(α + 1)
,

V2 =

[
f̈2
ϵ2

− ḟ1
aϵ4

+
f2
a2ϵ4

]
t2α

Γ(2α + 1)
,

V3 =

[ ...
f1
ϵ4

− 2f̈2
aϵ4

+
ḟ1
a2ϵ6

− f2
a3ϵ6

]
t3α

Γ(3α + 1)
,

V4 =

[ ....
f2
ϵ4

− 2
...
f1
aϵ6

+
3f̈2
a2ϵ6

− ḟ1
a3ϵ8

+
f2
a4ϵ8

]
t4α

Γ(4α + 1)
,

(47)

and so on.

Then, the solution is represented by

U(x, t) =
∞∑
n=0

Un

= f1 + ḟ2
tα

Γ(α + 1)
+

[
f̈1
ϵ2

− ḟ2
aϵ2

]
t2α

Γ(2α + 1)
+

[ ...
f2
ϵ2

− f̈1
aϵ4

+
ḟ2
a2ϵ4

]
t3α

Γ(3α+ 1)

+

[ ....
f1
ϵ4

− 2
...
f2
aϵ4

+
f̈1
a2ϵ6

− ḟ2
a3ϵ6

]
t4α

Γ(4α + 1)
+ · · · ,

(48)

and

V (x, t) =
∞∑
n=0

Vn

= f2 +

[
ḟ1
ϵ2

− f2
aϵ2

]
tα

Γ(α + 1)
+

[
f̈2
ϵ2

− ḟ1
aϵ4

+
f2
a2ϵ4

]
t2α

Γ(2α + 1)

+

[ ...
f1
ϵ4

− 2f̈2
aϵ4

+
ḟ1
a2ϵ6

− f2
a3ϵ6

]
t3α

Γ(3α+ 1)

+

[ ....
f2
ϵ4

− 2
...
f1
aϵ6

+
3f̈2
a2ϵ6

− ḟ1
a3ϵ8

+
f2
a4ϵ8

]
t4α

Γ(4α + 1)
+ · · · ,

(49)

where dot represents the derivative at spatial coordinate x.

4.2. Boundary Value Problem

Consider the system of equations

∂αU

∂tα
=

∂V

∂x
, 0 < α ≤ 1, (50)

ϵ2
∂αV

∂tα
=

∂U

∂x
− V

a
, 0 < α ≤ 1. (51)

9
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Assume initial conditions as

U(x, 0) = f1(x), V (x, 0) = f2(x), 0 ≤ x < ∞, (52)

and boundary conditions as

U(0, t) = h(t), V (0, t) = k(t), lim
x→∞

U(x, t) = lim
x→∞

V (x, t) = 0, t > 0, (53)

where f1(x), f2(x), h(t) and k(t) are continuous functions.

The main objective is to analyze the boundary value problem defined by the equations (50) through
(53).

4.2.1. General Solution

Applying the double Laplace transform on both sides of the equations (50) and (51), one obtains

s̃αŪ(s, s̃)− s̃α−1Ū(s, 0) = sV̄ (s, s̃)− V̄ (0, s̃), (54)

ϵ2
[
s̃αV̄ (s, s̃)− s̃α−1V̄ (s, 0)

]
= sŪ(s, s̃)− Ū(0, s̃)− V̄ (s, s̃)

a
. (55)

Applying a single Laplace transform to Equations (52) and (53), one obtains

Ū(s, 0) = F1(s), V̄ (s, 0) = F2(s), (56)

Ū(0, s̃) = H(s̃), V̄ (0, s̃) = K(s̃), (57)

where F1(s), F2(s), H(s̃) and K(s̃) are Laplace transform of functions f1(x), f2(x), h(t) and k(t),
respectively.

From Equations (54) and (55) by using Equations (56) and (57), one obtains

Ū(s, s̃) =

[
ϵ2s̃α + 1

a

]{
s
[
K(s̃)− s̃α−1F1(s)

]
+ s̃α

[
H(s̃)− ϵ2s̃α−1F2(s)

]}
s
[
s2 − ϵ2s̃2α − s̃α

a

] +
H(s̃)− ϵ2F2(s)s̃

α−1

s
,

(58)

V̄ (s, s̃) =
s
[
K(s̃)− s̃α−1F1(s)

]
+ s̃α

[
H(s̃)− ϵ2s̃α−1F2(s)

][
s2 − ϵ2s̃2α − s̃α

a

] . (59)

Applying the double inverse Laplace transform on both sides of Equations (58) and (59), one
obtains

U(x, t) =L −1
s L −1

s̃

〈[
ϵ2s̃α + 1

a

]{
s
[
K(s̃)− s̃α−1F1(s)

]
+ s̃α

[
H(s̃)− ϵ2s̃α−1F2(s)

]}
s
[
s2 − ϵ2s̃2α − s̃α

a

]
+

H(s̃)

s
− ϵ2F2(s)s̃

α−1

s

〉
,

(60)

and

V (x, t) = L −1
s L −1

s̃

〈
s
[
K(s̃)− s̃α−1F1(s)

]
+ s̃α

[
H(s̃)− ϵ2s̃α−1F2(s)

][
s2 − ϵ2s̃2α − s̃α

a

] 〉
, (61)
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provided that the inverse double Laplace transform exists for all terms on the right side of Equations
(60) and (61).

Equations (58) and (59) represent a general solution in the Laplace domain. To find a solution in
the space-time domain, an inversion of the double Laplace transform of the solution obtained in
Equations (60) and (61) has been performed numerically by employing the Xiao and Zhang (2011)
algorithm.

5. Convergence Analysis

A sufficient condition for the convergence of the method according to the approach proposed in
the previous section is proved.

Theorem 5.1.

Series solutions U and V are defined in Equations (13) and (14) of Equations (36) and (38) and
converge if 0 < θ1, θ2, θ3 < 1 and ||Uñ||, ||Vm̃|| < ∞.

Proof:

From Equations (8) and (9), one has

L αU =
∂V

∂x
, 0 < α ≤ 1, (62)

L αV =
1

ϵ2
∂U

∂x
− V

aϵ2
, 0 < α ≤ 1, (63)

where L denotes fractional order derivative.

Define a sequence of partial sums of a sequences {Cñ}∞ñ=0 and {Dm̃}∞m̃=0 are as follows

Cñ =
ñ∑

i=0

Ui and Dm̃ =
m̃∑
j=0

Vj, (64)

to show that {Cñ}∞ñ=0 and {Dm̃}∞m̃=0 are Cauchy sequences in the Hilbert space H .

Expanding function RU about U0, one can write

RU =
∞∑

k1=0

Āk1
. (65)

Therefore, it can be arranged as

Ā0 = R(U0) = R(C0), Ā0 + Ā1 = R(U0 + U1) = R(C1), · · · ,
ñ−1∑
i=0

Āi = R(Cñ)− Āñ. (66)

Expanding function RV about V0, one can write

RV =
∞∑

k2=0

B̄k2
. (67)
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Therefore, it can be arranged as

B̄0 = R(V0) = R(D0), B̄0 + B̄1 = R(V0 + V1) = R(D1), · · · ,
m̃−1∑
j=0

B̄j = R(Dm̃)− B̄m̃. (68)

Consider

||Cñ+p̃ − Cñ|| = max
t∈I

{∣∣∣∣L −α

( m̃+p̃∑
j=m̃+1

RVj−1

)∣∣∣∣
}

= max
t∈I

{∣∣∣∣L −α

( m̃+p̃−1∑
j=m̃

RVj

)∣∣∣∣
}

= max
t∈I

{∣∣∣∣L −α
[
R
(
Dm̃+p̃−1

)
− R

(
Dm̃−1

)]∣∣∣∣
}

≤ max
t∈I

{
L −α

[∣∣R(
Dm̃+p̃−1

)
− R

(
Dm̃−1

)∣∣]}.

(69)

Since R is the Lipschitzian function, one obtains

≤ L1max
t∈I

{
L −α

[∣∣Dm̃+p̃−1 −Dm̃−1

∣∣]}, (70)

where L1 is Lipschitz constant.

Hence,

||Cñ+p̃ − Cñ|| ≤ θ1||Dm̃+p̃−1 −Dm̃−1||, (71)

where θ1 =
L1tα

α!
.

Consider

||Dm̃+p̃ −Dm̃|| = max
t∈I

{∣∣∣∣ 1ϵ2L −α

( ñ+p̃∑
i=ñ+1

RUi

)
− 1

aϵ2
L −α

( m̃+p̃∑
j=m̃+1

Vj−1

)∣∣∣∣
}

= max
t∈I

{∣∣∣∣ 1ϵ2L −α

( ñ+p̃−1∑
i=ñ

RUi+1

)
− 1

aϵ2
L −α

( m̃+p̃−1∑
j=m̃

Vj

)∣∣∣∣
}

= max
t∈I

{∣∣∣∣ 1ϵ2L −α
[
R
(
Cñ+p̃−1

)
− R

(
Cñ−1

)]
− 1

aϵ2
L −α

[
Dm̃+p̃−1 −Dm̃−1

]∣∣∣∣
}

≤ max
t∈I

{
1

ϵ2
∣∣L −α

[
R
(
Cñ+p̃−1

)
− R

(
Cñ−1

)]∣∣+ 1

aϵ2
∣∣L −α

[
Dm̃+p̃−1 −Dm̃−1

]∣∣}.

(72)

Since R is the Lipschitzian function, one obtains

≤ max
t∈I

{
L2

ϵ2
L −α

[∣∣Cñ+p̃−1 − Cñ−1

∣∣]+ 1

aϵ2
L −α

[∣∣Dm̃+p̃−1 −Dm̃−1

∣∣]}, (73)
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where L2 is Lipschitz constant;

≤ L2

ϵ2
max
t∈I

{
L −α

[∣∣Cñ+p̃−1 − Cñ−1

∣∣]}+
1

aϵ2
max
t∈I

{
L −α

[∣∣Dm̃+p̃−1 −Dm̃−1

∣∣]},
≤ L2t

α

ϵ2α!
max
t∈I

{∣∣Cñ+p̃−1 − Cñ−1

∣∣}+
tα

aϵ2α!
max
t∈I

{∣∣Dm̃+p̃−1 −Dm̃−1

∣∣}. (74)

Hence,

||Dm̃+p̃ −Dm̃|| ≤ θ2||Cñ+p̃−1 − Cñ−1||+ θ3||Dm̃+p̃−1 −Dm̃−1||, (75)

where θ2 =
L2tα

ϵ2α!
and θ3 =

tα

aϵ2α!
.

Fix p = 1, from Equations (71) and (75),

||Cñ+1 − Cñ|| ≤ θ1||Dm̃ −Dm̃−1|| ≤ θ1||Vm̃||, and
||Dm̃+1 −Dm̃|| ≤ θ2||Cñ − Cñ−1||+ θ3||Dm̃ −Dm̃−1|| ≤ θ2||Uñ||+ θ3||Vm̃||.

(76)

Since solutions U and V are bounded, this implies that ||Uñ|| < ∞, ||Vm̃|| < ∞ and 0 <
θ1, θ2, θ3 < 1. As ñ, m̃ → ∞, ||Cñ+1 − Cñ|| → 0 and ||Dm̃+1 −Dm̃|| → 0.

Hence {Cñ}∞ñ=0 and {Dm̃}∞m̃=0 are Cauchy sequences in Hilbert space H . Therefore, series solu-
tions U and V converge. Hence, proof of Theorem 5.1. ■

6. Illustrative Example

Consider a piece of iron having physical properties a = 2.1×10−1 cm2/s and ϵ = 2.0×10−6 s/cm.

6.1. Initial Value Problem

Consider the system of fractional partial differential equations (8) and (9) subjected to the initial
conditions,

U(x, 0) = e−x, V (x, 0) = ex, 0 ≤ x < ∞. (77)
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6.1.1. Integer Order

The solution of the problem defined in Equation (77) is obtained for the integer order derivative by
applying the equations (20) and (21). One obtains

U1 = ext,

U2 =

[
e−x

ϵ2
− ex

aϵ2

]
t2

2!
,

U3 =

[
ex

ϵ2
− e−x

aϵ4
+

ex

a2ϵ4

]
t3

3!
,

U4 =

[
e−x

ϵ4
− 2ex

aϵ4
+

e−x

a2ϵ6
− ex

a3ϵ6

]
t4

4!
,

(78)

and so on.

From Equation (21), one obtains

V1 =

[
− e−x

ϵ2
− ex

aϵ2

]
t,

V2 =

[
ex

ϵ2
+

e−x

aϵ4
+

ex

a2ϵ4

]
t2

2!
,

V3 =

[
− e−x

ϵ4
− 2ex

aϵ4
− e−x

a2ϵ6
− ex

a3ϵ6

]
t3

3!
,

V4 =

[
ex

ϵ4
+

2e−x

aϵ6
+

3ex

a2ϵ6
+

e−x

a3ϵ8
+

ex

a4ϵ8

]
t4

4!
,

(79)

and so on.

From Equations (22) and (23), then the solution is written as

U(x, t) = e−x+ext+
[

e−x

ϵ2
− ex

aϵ2

]
t2

2!
+

[
ex

ϵ2
− e−x

aϵ4
+

ex

a2ϵ4

]
t3

3!
+

[
e−x

ϵ4
− 2ex

aϵ4
+

e−x

a2ϵ6
− ex

a3ϵ6

]
t4

4!
+· · · ,

(80)
and

V (x, t) = ex +
[
− e−x

ϵ2
− ex

aϵ2

]
t+

[
ex

ϵ2
+

e−x

aϵ4
+

ex

a2ϵ4

]
t2

2!

+

[
− e−x

ϵ4
− 2ex

aϵ4
− e−x

a2ϵ6
− ex

a3ϵ6

]
t3

3!

+

[
ex

ϵ4
+

2e−x

aϵ6
+

3ex

a2ϵ6
+

e−x

a3ϵ8
+

ex

a4ϵ8

]
t4

4!
+ · · · .

(81)

The numerical calculations have been done by considering values of a, ϵ, α = 1. The numerically
computed results are hereby plotted and demonstrated in Figure 1 and Figure 2.
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Figure 1. Temperature U(x, t) at integer order α = 1

Figure 2. Heat flux V (x, t) at integer order α = 1

6.1.2. Fractional Order

The solution of the problem defined in the equation (77) is obtained for the fractional order deriva-
tive by applying the equations (48) and (49), and one obtains

U(x, t) = e−x + ex
tα

Γ(α + 1)
+

[
e−x

ϵ2
− ex

aϵ2

]
t2α

Γ(2α + 1)
+

[
ex

ϵ2
− e−x

aϵ4
+

ex

a2ϵ4

]
t3α

Γ(3α+ 1)

+

[
e−x

ϵ4
− 2ex

aϵ4
+

e−x

a2ϵ6
− ex

a3ϵ6

]
t4α

Γ(4α + 1)
+ · · · ,

(82)

and

V (x, t) = ex +

[
− e−x

ϵ2
− ex

aϵ2

]
tα

Γ(α + 1)
+

[
ex

ϵ2
+

e−x

aϵ4
+

ex

a2ϵ4

]
t2α

Γ(2α + 1)

+

[
− e−x

ϵ4
− 2ex

aϵ4
− e−x

a2ϵ6
− ex

a3ϵ6

]
t3α

Γ(3α + 1)

+

[
ex

ϵ4
+

2e−x

aϵ6
+

3ex

a2ϵ6
+

e−x

a3ϵ8
+

ex

a4ϵ8

]
t4α

Γ(4α + 1)
+ · · · .

(83)

The numerical calculations have been done by considering values of a, ϵ, α = 0.5. The numerically
computed results are hereby plotted and demonstrated in Figure 3 and Figure 4.
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Figure 3. Temperature U(x, t) at fractional order α = 0.5

Figure 4. Heat flux V (x, t) at fractional order α = 0.5

Figure 1 and Figure 3 represent the temperature variations U(x, t) with respect to α = 1 and
α = 0.5. The temperature gradually decreases when parameter α increases along distance x. The
temperature distributions are attained minimum for α = 0.5 along distance x.

Figure 2 and Figure 4 represent the heat flux V (x, t) with respect to α = 1 and α = 0.5. The heat
flux gradually increases when parameter α increases along distance x. The heat flux along distance
x attains maximum for α = 1 and minimum for α = 0.5.

6.2. Boundary Value Problem

Consider the system of fractional partial differential equations (8) and (9) subjected to the initial
conditions

U(x, 0) = sin(x), V (x, 0) = cos(x), 0 ≤ x < ∞, (84)

and boundary conditions

U(0, t) = 0, V (0, t) = 0, lim
x→∞

U(x, t) = lim
x→∞

V (x, t) = 0, t > 0. (85)
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6.2.1. Integer Order

The Xiao (2023) algorithm has been implemented to Equations (34) and (35) using Equations (84)
and (85) through MATLAB programming. The numerical calculations have been done by consid-
ering values of a, ϵ, α = 1. The numerically computed results are hereby plotted and demonstrated
in Figure 5 and Figure 6.

Figure 5. Temperature U(x, t) at integer order α = 1

Figure 6. Heat flux V (x, t) at integer order α = 1

6.2.2. Fractional Order

The Xiao (2023) algorithm has been implemented to Equations (60) and (61) using Equations
(84) and (85) through MATLAB programming. The numerical calculations have been done by
considering values of a, ϵ, α = 0.5. The numerically computed results are hereby plotted and
demonstrated in Figure 7 and Figure 8.

Figure 5 and Figure 7 represent the temperature variations U(x, t) with respect to α = 1 and
α = 0.5. The temperature gradually decreases when parameter α increases along distance x. One
can be observed that the solution satisfies the boundary conditions. The temperature along distance
x attains minimum for α = 1 and maximum for α = 0.5.

17

Sankeshwari and Kulkarni: Solutions of Hyperbolic System

Published by Digital Commons @PVAMU, 2024



18 S. Sankeshwari and V. Kulkarni

Figure 7. Temperature U(x, t) at fractional order α = 0.5

Figure 8. Heat flux V (x, t) at fractional order α = 0.5

Figure 6 and Figure 8 represent the heat flux variations V (x, t) with respect to α = 1 and α = 0.5.
The heat flux along distance x attains maximum for α = 0.5 and minimum for α = 1. The heat
flux increases when parameter α decreases along distance x. It has been found that the solution
satisfies the boundary conditions.

7. Concluding Remarks

The main outcomes are as follows.

(1) The initial and boundary value problem for a linear hyperbolic system of equations for heat
propagation in the sense of Caputo fractional time derivative of order 0 < α ≤ 1 is presented
in the one-dimensional case.

(2) A system of integer and fractional order PDEs have been solved with respect to initial con-
ditions by employing the method of Adomian decomposition. The obtained solutions are in
convergent infinite series form.

(3) The solution of the initial and boundary value problem of the system of integer and fractional
order PDEs is acquired by employing the double Laplace transform method.
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(4) The results computed for the temperature U and heat flux V for the integer and fractional order
case satisfies all imposed conditions in this proposed model.

(5) The convergence theorem for the infinite series solution obtained by the Adomian Decompo-
sition Method has been proved mathematically.

(6) The finite speed of thermal wave propagation has been attained by introducing the non-Fourier
effect of heat conduction in the context of delay time translation τ0.

(7) According to numerical results, the fractional parameter α has evolved into a new measure of
its ability to conduct thermal energy.
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Nomenclature

T Absolute temperature
x Material point
x Spatial coordinate
a Thermal diffusivity
q Heat flux vector
t Time
c Specific heat of the body
ϵ Reciprocal of the characteristic speed
c∗ Characteristic speed
τ0 Constant relaxation time
α Fractional order parameter
s, s̃ Laplace transform parameters
∇ Gradient operator
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