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Abstract

This paper aims to provide an exact solution in the Laplace domain and related analytic approxi-
mations in short time limits for the class of boundary value problems of the one-dimensional linear
parabolic equation with constant coefficients. The problem’s most general form involves a param-
eterized equation on a bounded interval, with unified specification of the three classical types of
boundary conditions: Dirichlet, Neumann, and Robin. Under certain integrability assumptions, we
have proven that a unique solution exists in the Laplace domain. This operational solution can be
obtained in a closed form by using classical integral transforms. Four distinct cases have been iden-
tified based on the operational solution. Innovative formulas have been derived from these cases,
which provide precise approximations within short timescales. These time-domain expressions are
particularly useful for understanding the behavior of the solution at the boundaries. The formulas
consist of elementary functions obtained from asymptotic expansions, and the estimation error can
be minimized to the desired order of magnitude. The analytical approximations in short time limits
can open up new perspectives and applications. Improved numerical efficiency in simulations of
reaction-diffusion problems and of one-dimensional Stefan models are envisaged.

Keywords: Reaction–diffusion equation; Fourier and Laplace transforms; Existence and unique-
ness; Exact operational solution; Asymptotic expansions; Time step; Error estimate;
Series solutions; Numerical efficiency
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2 K. Anani

1. Introduction

Initial-boundary value problems for linear parabolic equations are still much used as first model
approximations of nonlinear and time-dependent problems in bounded domains (see, for exam-
ples, Kacur (1999), Kumar and Umavathi (2013), and Brenn (2017)). As shown in Chapter 6 of
Henner et al. (2019), any one-dimensional linear parabolic equation with constant coefficients and
containing a convection term can be reduced to an equation without a convection term. We will
therefore consider the most general form of the reaction-diffusion equation with constant coef-
ficients, i.e., the nonhomogenous equation with no convection term. Until now, exact analytical
solutions to such linear boundary value problems are mainly obtained as infinite series of func-
tions, as in Luikov (2012) or in Henner et al. (2019). These series solutions are generally obtained
via the Fourier decomposition method, by means of separation of variables and using the Sturm-
Liouville theory, as presented in many textbooks of which Han (2016) and Dobrushkin (2017)
can be cited among others. But, accurate analytic approximations in short time limits are hardly
derivable from such infinite series solutions (see Chapter 8 in Brenn (2017) and Carr and March
(2018)).

Compared to classical numeric schemes as reported in Minkowycz et al. (2006), recent numerical
approaches to boundary value problems for heat transfer equations have much gained in sophis-
tication and accuracy as it can be seen in Lin et al. (2020), Tassaddiq et al. (2021), and Li et al.
(2022) for examples. However, apart from the Fourier decomposition method mentioned above,
there is no other established method for finding exact analytical solutions to boundary value prob-
lems involving linear reaction-diffusion equations, even with constant coefficients. According to
Luikov (2012), the Laplace integral transform and its inversion formula are found to be not ap-
propriate for solving boundary value problems with a non-uniform function as initial condition.
Moreover, the classical Fourier integral transform applied to space coordinates is validated only
for infinite and semi-infinite solids. Concerning other analytical and semi-approximate methods,
some powerful techniques have been used to handle heat transfer problems in finite domains, but
without exhibiting new exact solution. One can cite the Adomian’s decomposition method as in
Bougoffa et al. (2015) and Turkyilmazoglu (2019a), the variational iteration method as in Liu and
Zhao (2010), the homotopy perturbation method (see Ghasemia and Kajani (2010) and Turkyil-
mazoglu (2019b)), Bessel collocation method as in Yüzbaşı and Şahin (2013), etc. More details
on analytical methods applicable to all types of equations are available in the book by Zheng and
Zhang (2017).

In this paper, an exact solution in the Laplace domain and analytical approximations in short time
limits are obtained for the boundary value problem of the linear reaction-diffusion equation with
constant coefficients. In Section 2, the general form of the problem is introduced and the assump-
tions are briefly commented. Section 3 presents the application of the Fourier integral transform
to the unified problem, and a resulting equation of the solution in a form of integrals. In Section
4, the exact solution is found in the Laplace domain from the previous relation. Then, analytical
solutions in short time limits are obtained in Section 5, especially with respect to the behavior of
the solution at the ends points of the domain. Each of these analytical approximations is important
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and useful in its own way, and its error estimate can be improved. However, analytical approx-
imations are only obtained in the short term, not the long term, as they result from asymptotic
developments of the exact operational solution. Applications of the results to specific examples of
initial-boundary value problems for parabolic equations are shown in Section 6, and the unified
solution in the Laplace domain is also extended to unbounded domains. Finally, Section 7 outlines
the conclusion.

2. The reaction–diffusion equation

We generalize the boundary value problem referenced by Equations (6.43), (6.44), and (6.65) in
Henner et al. (2019) to the nonhomogenous linear equation now expressed on a generic bounded
interval. That is, for space variable x, l1 ≤ x ≤ l2, and for time t, 0 ≤ t ≤ T , (we’ll assume that
all intervals are open at T in the case where T = +∞), the reaction-diffusion equation:

∂u

∂t
(x, t)− a2

∂2u

∂x2
(x, t) + bu(x, t) = f(x, t), l1 < x < l2, 0 < t ≤ T, (1)

is subject to the initial condition

u(x, 0) = φ(x), l1 ≤ x ≤ l2, (2)

and to the boundary conditions:

α1u(l1, t) + β1
∂u

∂x
(l1, t) = g1(t), α1, β1 ∈ R, α2

1 + β2
1 ̸= 0, (3)

α2u(l2, t) + β2
∂u

∂x
(l2, t) = g2(t), α2, β2 ∈ R, α2

2 + β2
2 ̸= 0, (4)

for 0 ≤ t ≤ T . The four terms in Equation (1) represent respectively transient, diffusion, reaction
and source terms. The function u(x, t) is to be determined, and may represent species concentration
for mass transfer or temperature for heat transfer, while the functions f(x, t), g1(t) and g2(t) are
given. The coefficient a > 0 is related to the constant diffusivity of the mass or heat transfer.
The reaction term (linear term in u) indicates the possibility of mass or heat exchange with the
environment through the lateral surface of the body, at some rates proportional to the concentration
or to the temperature (Henner et al. (2009)). In a process of mass diffusion for example, b is the
coefficient of disintegration (b < 0) or multiplication (b > 0). In this paper we will limit ourselves
to the case of the multiplication coefficient, and from now on we will assume that b ≥ 0.

In order to consider homogeneous as well as nonhomogeneous equations, the source term f(x, t)
may be null or not, while the function φ(x) may indicate zero or non-zero initial condition. The
Dirichlet, Neumann and Robin boundary conditions are expressed in a unified way by Equations
(3) and (4), that is, both homogeneous and nonhomogeneous forms of those three types of boundary
conditions can be taken into account. It is sufficient to give some acceptable values to the real
parameters α1, β1, α2, β2, and some convenient expressions to the time-dependent functions g1(t)
and g2(t). Thus, Dirichlet conditions are satisfied when α1 = α2 = 1 and β1 = β2 = 0, while
Neumann conditions can be obtained on the boundaries if α1 = α2 = 0 and β1 = β2 = 1.
Likewise, Robin boundary conditions are obtained when α1 = α2 = 1 and β1 ̸= 0, β2 ̸= 0. As
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4 K. Anani

it can be noted, a given combination of these three classical types of boundary conditions can also
be obtained.

In order to make physical sense of the problem (1)-(4), certain restrictions on the sign of the
coefficients in the boundary conditions (3)-(4) are necessary. Most often, physical limitations lead
to the restriction β1/α1 < 0 and β2/α2 > 0, as discussed in Henner et al. (2019) for example (see
Chapters 4 and 6). The classical solution of the initial-boundary value problem (1)-(4) is defined as
any function u(x, t) continuous on [l1, l2] × [0, T ], such that u(x, .) is continuously differentiable
for x ∈ (l1, l2), and u(., t) is twice continuously differentiable for t ∈ (0, T ], and u satisfies
(1)-(4) pointwise. It can be proven (see Cioranescu et al. (2018) and references therein) that the
problem admits at most a unique classical solution under the following assumptions: the source
term f(x, t) and the function φ(x) are respectively continuous on (l1, l2)×(0, T ] and [l1, l2]; the two
related-to-boundary expressions g1(t) and g2(t) are continuous on [0, T ]; the initial and boundary
conditions are compatible, that is, u(l1, 0) = φ(l1), and u(l2, 0) = φ(l2). In the case where the
compatibility condition is not satisfied, the initial and boundary conditions are not consistent (they
are contradictory) and only a weak or generalized solution can be obtained. The weak solution,
especially in two- or multi-dimensional spaces, when defined on sufficiently regular bounded open
sets, can be called a classical solution depending on the so-called regularity conditions.

Practically, the problem (1)-(4) is first solved for homogeneous equation and boundary conditions
(f(x, t) = 0 and g1(t) = g2(t) = 0), using the separation of variables and Fourier decomposition
methods, together with the Sturm-Liouville theory of self-adjoint operators. Then, the principle
of Duhamel intervenes in addition, when accounting for a non-zero source term f(x, t). Like-
wise, in the case of nonhomogeneous boundary conditions, the problem (1)-(4) is first reduced to
a problem with boundary conditions equal to zero by the means of the so-called auxiliary func-
tions (see Henner et al. (2019) for example). The application of the above-mentioned techniques
to the problem (1)-(4) will lead to an exact series solution, which converges uniformly as well as
the series obtained by differentiating twice by x and once by t. For this, it is sufficient that φ(x)
and f(x, t) are continuous respectively on [l1, l2] and on (l1, l2) × (0, T ], and g1(t) and g2(t) are
continuously differentiable on [0, T ]. The uniqueness of the series solution can be proven by using
the maximum principle. In one or more dimensional spaces, existence and uniqueness theorems
of classical, as well as generalized solutions for such initial-boundary value problems, have been
proven only for specific classes of functions under certain assumptions (see Marin and Öchsner
(2018) for example). In our present approach, we admit here that the source term f(x, t) is contin-
uous on (l1, l2) × (0, T ], and the function φ(x) satisfies at least the so-called Dirichlet conditions
relatively to the space variable x on [l1, l2]. That is, this function is piece-wise continuous or can
be expressed in a unique way as a convergent series of eigenfunctions forming a complete basis
of the related Sturm-Liouville problem. Similarly, the time-dependent functions g1(t) and g2(t)
are assumed here to be at least once piece-wise differentiable. Thus, they are continuous and their
derivatives are piece-wise continuous on [0, T ]. In addition, all the involved functions are assumed
to be integrable with respect to the time and space variables. The source term f(x, t) is considered
to be of exponential order with respect to the time variable t, as are the functions g1(t) and g2(t)
and their respective derivatives. Standing on these assumptions, we propose a novel approach that
combines Fourier and Laplace integral transformations to obtain an exact operational solution for
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the boundary value problem (1)-(4), and accurate approximations in short time limits. Under the
hypotheses specified above, the operational solution is also proven to be unique. The use of inte-
gral transform methods in the solution of partial differential equations can be found in Debnath
and Bhatta (2014) and Meddahi et al. (2021), among others.

3. Method of Fourier integral transform

In this section, the Fourier integral transform (abbreviated FIT from now on) and its inverse are
used in relation to the space variable x. We first recall that for any absolutely integrable function
ϕ(x), i.e.,

∫ +∞
−∞ |ϕ(x)|dx < ∞, the FIT Φ is defined as:

Φ(λ) =
1√
2π

∫ +∞

−∞
ϕ(x) exp(−iλx)dx, (5)

where i2 = −1, λ ∈ R and x ∈ R. The inverse Fourier transform of Φ is:

ϕ(x) =
1√
2π

∫ +∞

−∞
Φ(λ) exp(iλx)dλ. (6)

As a basic property, the FIT tends to 0 when |λ| goes to ∞.

The homogeneous form of equation (1) reads:
∂u

∂t
= a2

∂2u

∂x2
− bu. (7)

Let u1(x, t) be a solution for the boundary value problem formed by the homogeneous equation (7)
together with the initial condition (2), and the boundary conditions (3) and (4). Assuming that the
functions u1(x, t), ∂u1

∂t
(x, t), and ∂2u1

∂x2 (x, t) are absolutely integrable with respect to the variables x
and t, they can be identified to their extension by 0 outside the rectangle [l1, l2] × [0, T ], without
lost of generality. The Fourier integral transform (FIT) with respect to the space variable x can be
applied to u1(x, t) and will give:

F (λ, t) =
1√
2π

∫ +∞

−∞
u1(x, t) exp(−iλx)dx

=
1√
2π

∫ l2

l1

u1(x, t) exp(−iλx)dx.

The FIT applied to the transient term ∂u1

∂t
(x, t) leads to:

A(λ, t) =
1√
2π

∫ l2

l1

∂u1

∂t
(x, t) exp(−iλx)dx

=
1√
2π

∂

∂t

∫ l2

l1

u1(x, t) exp(−iλx)dx

=
∂F

∂t
(λ, t).

Similarly, the FIT of the diffusion term a2 ∂
2u1

∂x2 (x, t) can be written as:

B(λ, t) =
a2√
2π

∫ l2

l1

∂2u1

∂x2
(x, t) exp(−iλx)dx.

5
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6 K. Anani

Using two successive integration by parts in which ∂2u1

∂x2 (x, t) and ∂u1

∂t
(x, t) are respectively consid-

ered as derivatives, and exp(−iλx) as primitive, B(λ, t) can be expressed as:

B(λ, t) =− a2λ2F (λ, t) +
a2√
2π

[
∂u1

∂x
(l2, t) exp(−iλl2)−

∂u1

∂x
(l1, t) exp(−iλl1)

]
+

a2√
2π

[iλu1(l2, t) exp(−iλl2)− iλu1(l1, t) exp(−iλl1)] .

(8)

The FIT of the linear term −bu1(x, t) is simply

C(λ, t) = −bF (λ, t).

Now, according to the application of the FIT to the terms of the homogeneous equation, if u1(x, t)
considered to be null outside [l1, l2] × [0, T ] is the solution of Equation (7), then F (λ, t) is the
solution of the following equation: A(λ, t)−B(λ, t)− C(λ, t) = 0; i.e.,

∂F

∂t
(λ, t) + (b+ a2λ2)F (λ, t) =

a2√
2π

[
∂u1

∂x
(l2, t) exp(−iλl2)−

∂u1

∂x
(l1, t) exp(−iλl1)

]
+

a2√
2π

[iλu1(l2, t) exp(−iλl2)− iλu1(l1, t) exp(−iλl1)] ,

(9)

for λ ∈ R and 0 ≤ t ≤ T .

In order to integrate Equation (9), we multiply each member by exp[(b+ a2λ2)t] and obtain:

∂

∂t
(F (λ, t) exp[(b+ a2λ2)t]) =

a2√
2π

exp[(b+ a2λ2)t]

×
[
∂u1

∂x
(l2, t) exp(−iλl2)−

∂u1

∂x
(l1, t) exp(−iλl1)

]
+

a2√
2π

exp[(b+ a2λ2)t] [iλu1(l2, t) exp(−iλl2)− iλu1(l1, t) exp(−iλl1)] .

(10)

Proceeding by integration of Equation (10) relatively to the time variable, from η = 0 to η = t ≤ T ,
we obtain:

F (λ, t) exp[(b+ a2λ2)t]− F (λ, 0) =
a2√
2π

×
∫ t

0

[
∂u1

∂x
(l2, η) exp(−iλl2)−

∂u1

∂x
(l1, η) exp(−iλl1)

]
exp[(b+ a2λ2)η]dη

+
a2√
2π

∫ t

0

[iλu1(l2, η) exp(−iλl2)− iλu1(l1, η) exp(−iλl1)] exp[(b+ a2λ2)η]dη.

(11)

Due to the initial condition (2), F (λ, 0) = F (λ, t = 0) can be calculated as

F (λ, 0) =
1√
2π

∫ l2

l1

φ(ξ) exp(−iλξ)dξ, (12)

where the variable of integration is replaced by ξ in order to avoid confusion. Equation (11) can
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then be rewritten as:

F (λ, t) =
a2√
2π

×
∫ t

0

[
∂u1

∂x
(l2, η) exp(−iλl2)−

∂u1

∂x
(l1, η) exp(−iλl1)

]
exp[−(b+ a2λ2)(t− η)]dη

+
a2√
2π

∫ t

0

[iλu1(l2, η) exp(−iλl2)− iλu1(l1, η) exp(−iλl1)] exp[−(b+ a2λ2)(t− η)]dη

+
1√
2π

exp[−(b+ a2λ2)t]

∫ l2

l1

φ(ξ) exp(−iλξ)dξ.

(13)

In order to obtain u1(x, t), the inversion formula (6) will be applied to the above function F (λ, t)
expressed by Equation (13), the Fourier variable λ running from −∞ to +∞. First, by the defini-
tion of the convolution of two functions, the three terms of the right hand side of Equation (13) can
be respectively rewritten as:

F1(λ, t) =
a2√
2π

×
∫ t

0

[
∂u1

∂x
(l2, t− η) exp(−iλl2)−

∂u1

∂x
(l1, t− η) exp(−iλl1)

]
exp[−(b+ a2λ2)η]dη,

F2(λ, t) =
a2√
2π

×
∫ t

0

[iλu1(l2, t− η) exp(−iλl2)− iλu1(l1, t− η) exp(−iλl1)] exp[−(b+ a2λ2)η]dη,

and

F3(λ, t) =
1√
2π

exp[−(b+ a2λ2)t]

∫ l2

l1

φ(ξ) exp(−iλξ)dξ.

Changing the order of integration due to the convergence of the integrals involved, the inverse I1
of the first term F1 is calculated as:

I1(x, t) =
a2

2π

∫ t

0

∂u1

∂x
(l2, t− η)

∫ ∞

−∞
exp(−iλl2) exp(iλx) exp[−(b+ a2λ2)η]dλdη

− a2

2π

∫ t

0

∂u1

∂x
(l1, t− η)

∫ ∞

−∞
exp(−iλl1) exp(iλx) exp[−(b+ a2λ2)η]dλdη.

By means of computations, I1 is reduced to:

I1(x, t) =7
a

2
√
π

∫ t

0

∂u1

∂x
(l2, t− η)

[
exp

(
−(l2 − x)2

4a2η

)]
exp(−bη)

√
η

dη

− a

2
√
π

∫ t

0

∂u1

∂x
(l1, t− η)

[
exp

(
−(l1 − x)2

4a2η

)]
exp(−bη)

√
η

dη.

(14)

Similarly, I2 is obtained as:

I2(x, t) =
a2

2π

∫ t

0

u1(l2, t− η)

∫ ∞

−∞
iλ exp(−iλl2) exp(iλx) exp[−(b+ a2λ2)η]dλdη

− a2

2π

∫ t

0

u1(l1, t− η)

∫ ∞

−∞
iλ exp(−iλl1) exp(iλx) exp[−(b+ a2λ2)η]dλdη,

7
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8 K. Anani

i.e.,

I2(x, t) =
1

4a
√
π

∫ t

0

u1(l2, t− η)

[
(l2 − x) exp

(
−(l2 − x)2

4a2η

)]
exp(−bη)

η3/2
dη

− 1

4a
√
π

∫ t

0

u1(l1, t− η)

[
(l1 − x) exp

(
−(l1 − x)2

4a2η

)]
exp(−bη)

η3/2
dη.

(15)

And, the inverse I3 of F3 is calculated as:

I3(x, t) =
exp(−bt)

2a
√
πt

∫ l2

l1

φ(ξ)

[
exp

(
−(ξ − x)2

4a2t

)]
dξ. (16)

From the calculations above, the expression of u1 is deduced as u1(x, t) = I1(x, t) + I2(x, t) +
I3(x, t), that is:

u1(x, t) =
a

2
√
π

∫ t

0

∂u1

∂x
(l2, t− η)

[
exp

(
−(l2 − x)2

4a2η

)]
exp(−bη)

√
η

dη

− a

2
√
π

∫ t

0

∂u1

∂x
(l1, t− η)

[
exp

(
−(l1 − x)2

4a2η

)]
exp(−bη)

√
η

dη

+
1

4a
√
π

∫ t

0

u1(l2, t− η)

[
(l2 − x) exp

(
−(l2 − x)2

4a2η

)]
exp(−bη)

η3/2
dη

− 1

4a
√
π

∫ t

0

u1(l1, t− η)

[
(l1 − x) exp

(
−(l1 − x)2

4a2η

)]
exp(−bη)

η3/2
dη

+
exp(−bt)

2a
√
πt

∫ l2

l1

φ(ξ)

[
exp

(
−(ξ − x)2

4a2t

)]
dξ.

(17)

By hypothesis, u1(x, t) as expressed by the integral form (17), satisfies the homogeneous equation
(7). It can also be verified that the initial condition (2) is satisfied by the right-hand side of the
expression (17). Indeed, when t → 0, I1(x, t) and I2(x, t) vanish, and lim

t→0
u1(x, t) reduces to

lim
t→0

I3(x, t). Now, if we write

G(x, ξ, t) =
exp(−bt)

2a
√
πt

exp

(
−(ξ − x)2

4a2t

)
,

then, for t and ξ given, G(x, ξ, t) is related to the probability density of the normal or Gaussian
distribution and:

lim
t→0

∫ ∞

−∞
G(x, ξ, t)dξ = lim

t→0
exp(−bt) = 1.

Moreover, G(x, ξ, t) → 0 as t → 0 at all points (x, ξ) ∈ R2, with the exception of the diagonal
x = ξ, where it becomes infinitely large. Thus, G(x, ξ, t) is analogous to Green’s function and

lim
t→0

G(x, ξ, t) = δ(x− ξ),

where δ(x− ξ) is the Dirac delta function. If I[l1,l2] denotes the indicator function of interval [l1, l2],
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one has:
lim
t→0

u1(x, t) = lim
t→0

I3(x, t),

= lim
t→0

∫ l2

l1

φ(ξ)G(x, ξ, t)dξ,

= lim
t→0

∫ ∞

−∞
I[l1,l2](ξ)φ(ξ)G(x, ξ, t)dξ,

=

∫ ∞

−∞
I[l1,l2](ξ)φ(ξ)δ(x− ξ)dξ,

= φ(x),

(18)

and the initial condition (2) is satisfied by the expression (17) of u1(x, t). In fact, this has just
proved that the function I3 satisfies the non-zero initial condition (2). It can be also checked that
I3 is an exact solution for the homogeneous equation (7). According to the Duhamel’s principle, a
solution of the nonhomogeneous equation (1) with zero initial condition can be written as:

u2(x, t) =

∫ t

0

dθ

∫ l2

l1

G(x, ξ, t− θ)f(ξ, θ)dξ.

Finally, using the superposition principle, a solution u of the nonhomogeneous equation (1) subject
to the initial condition (2) can be expressed as u = u1 + u2, namely by the equation:

u(x, t) =
a

2
√
π

∫ t

0

∂u

∂x
(l2, t− η)

[
exp

(
−(l2 − x)2

4a2η

)]
exp(−bη)

√
η

dη

− a

2
√
π

∫ t

0

∂u

∂x
(l1, t− η)

[
exp

(
−(l1 − x)2

4a2η

)]
exp(−bη)

√
η

dη

+
1

4a
√
π

∫ t

0

u(l2, t− η)

[
(l2 − x) exp

(
−(l2 − x)2

4a2η

)]
exp(−bη)

η3/2
dη

− 1

4a
√
π

∫ t

0

u(l1, t− η)

[
(l1 − x) exp

(
−(l1 − x)2

4a2η

)]
exp(−bη)

η3/2
dη

+ r(x, t),

(19)

where

r(x, t) =
exp(−bt)

2a
√
πt

∫ l2

l1

φ(ξ)

[
exp

(
−(ξ − x)2

4a2t

)]
dξ

+
1

2a
√
π

∫ t

0

dθ

∫ l2

l1

exp(−b(t− θ))√
(t− θ)

exp

(
− (ξ − x)2

4a2(t− θ)

)
f(ξ, θ)dξ.

(20)

Note that u1 is replaced by u under the integrals of Equation (19) according to the first assumption
on u1. Since as solutions, both functions verified the same boundary conditions (3)-(4), it can be
assumed that their values and derivatives with respect to x coincide at the two boundaries l1 and l2.

In brief, the FIT method has allowed us to determine an expression in integrals form of the temper-
ature field u(x, t), that satisfies equation (1) and the initial condition (2). But, this expression (19)
of u depends on the values of the same function u at the boundaries. The boundary conditions (3)
and (4) will now be taken into account via the Laplace integral transform (abbreviated LIT).
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10 K. Anani

4. Exact solution in the Laplace domain

If f(t) is a function defined for t ≥ 0, then its unilateral Laplace integral transform (LIT) is given
in the complex p-plane by (see Herron and Foster (2008)):

F (p) = L{f(t)} =

∫ ∞

0

f(t)e−ptdt, (21)

provided that f(t) be of exponential order, that is, there are constants C and σ so that |f(t)| < Ceσt,
when t is sufficiently large. The inversion, from the Laplace domain p to the time domain t is given
by the complex integral:

f(t) = L−1{F (p)} =
1

2πi

∫ γ+i∞

γ−i∞
F (p)eptdp, (22)

where γ > σ is chosen so that F (p) converges absolutely on the real part of the p-line ℜ(p) = γ,
and F (p) is analytic at the right of this line. Also, analytical expressions of LIT and inverses can
be obtained for many usual functions by using some tables of transforms as in Poularikas (2018).
In the case where p is real, as considered in the sequel, the inequality p ≥ σ needs to be satisfied.
An important property relatively to the LIT is the convolution theorem (see Debnath and Bhatta
(2014)):
Let f(t) and g(t) be functions defined for t ≥ 0. If L{f(t)} = F (p) and L{g(t)} = G(p), then

L{f(t) ∗ g(t)} = F (p)G(p),

where f(t) ∗ g(t) is called the convolution of f(t) and g(t), and is defined by the integral

f(t) ∗ g(t) =
∫ t

0

f(t− η)g(η)dη.

For the application of the LIT, all time-dependent functions involved in the problem (1)-(4) are
assumed to be original, i.e., the transforms of these functions exist. Thus, the LIT of temperature
distribution u(x, t), source term f(x, t), boundary functions g1(t) and g2(t) are respectively de-
noted in the Laplace domain by U(x, p), F (x, p), G1(p) and G2(p). Under these assumptions, the
analog of the initial-boundary value problem (1)-(4) in the Laplace domain can be written in the
form of an ordinary differential equation as follows:

−a2
d2U

dx2
(x, p) + (b+ p)U(x, p) = F (x, p) + φ(x), (23)

since the Laplace transform of the time derivative of u is equal to:

L
{
∂u

∂t
(x, t)

}
= pU(x, p)− φ(x). (24)

Equation (23) is subjected to the boundary conditions:

α1U(l1, p) + β1
dU

dx
(l1, p) = G1(p), α1, β1 ∈ R, α2

1 + β2
1 ̸= 0, (25)

α2U(l2, p) + β2
dU

dx
(l2, p) = G2(p), α2, β2 ∈ R, α2

2 + β2
2 ̸= 0. (26)
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Due to the convolution theorem, the integral form expressed by Equation (19) can also be trans-
formed by the LIT to be written as:

U(x, p) =
a

2
√
b+ p

×
[
Ux(l2, p) exp

(
−(l2 − x)

√
b+ p

a

)
− Ux(l1, p) exp

(
−(x− l1)

√
b+ p

a

)]
+

1

2

[
U(l2, p) exp

(
−(l2 − x)

√
b+ p

a

)
+ U(l1, p) exp

(
−(x− l1)

√
b+ p

a

)]
+R(x, p),

(27)

where Ux denotes the derivative dU
dx

, and R(x, p) stands for the Laplace transform of the remaining
term r(x, t) expressed by Equation (20), namely, R(x, p) = L{r(x, t)}. Substituting respectively
x = l1 and then x = l2 in the above expression of U(x, p), we have the following equations:

1

2
U(l1, p) +

a

2
√
b+ p

Ux(l1, p)−
1

2
exp

(
−(l2 − l1)

√
b+ p

a

)
U(l2, p)

− a

2
√
b+ p

exp

(
−(l2 − l1)

√
b+ p

a

)
Ux(l2, p) = R(l1, p),

(28)

and

−1

2
exp

(
−(l2 − l1)

√
b+ p

a

)
U(l1, p) +

a

2
√
b+ p

exp

(
−(l2 − l1)

√
b+ p

a

)
Ux(l1, p)

+
1

2
U(l2, p)−

a

2
√
b+ p

Ux(l2, p) = R(l2, p),
(29)

Now, Equations (25), (26), (28) and (29) form a system (S) of four linear equations with four un-
known functions that are U(l1, p), Ux(l1, p), U(l2, p) and U(l2, p). Therefore, the function U(x, p)
is the solution of the analog problem (23)-(26) in the Laplace domain, or equivalently, u(x, t) is the
solution of the problem (1)-(4) in the time domain, if and only if the system (S) admits a unique
solution. The determinant of the system is calculated as:

det(S) =

∣∣∣∣∣∣∣∣∣∣∣∣

α1 β1 0 0
0 0 α2 β2

1

2

a

2
√
b+ p

−χ(l2 − l1, p)

2

−aχ(l2 − l1, p)

2
√
b+ p

−χ(l2 − l1, p)

2

aχ(l2 − l1, p)

2
√
b+ p

1

2

−a

2
√
b+ p

∣∣∣∣∣∣∣∣∣∣∣∣
, (30)

where the function χ(x, p) is defined as χ(x, p) = exp
(

−x
√
b+p

a

)
. This determinant is reduced by

computations to:

det(S) = −1

4
(a2α1α2 − aα1β2 + aα2β1)

χ(2(l2 − l1), p)

b+ p
+

1

4
β1β2χ(2(l2 − l1), p)

+
1

4

a2α1α2 + aα1β2 − aα2β1

b+ p
− 1

4
β1β2.

(31)
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12 K. Anani

Thus, the determinant of the system is null if and only if, all the coefficients of the functions of p
appearing in Equation (31) are null. This will imply:

a2α1α2 − aα1β2 + aα2β1 = 0,
a2α1α2 + aα1β2 − aα2β1 = 0,

β1β2 = 0.
(32)

Using the third equation β1β2 = 0, the system (32) can be split into two systems, since it is
equivalent to: 

a2α1α2 − aα1β2 = 0,
a2α1α2 + aα1β2 = 0,

β1 = 0,
(33)

or 
a2α1α2 + aα2β1 = 0,
a2α1α2 − aα2β1 = 0,

β2 = 0.
(34)

Now a ̸= 0, and by adding and subtracting its two first equations, the sub-system (33) can be
shown equivalent to: 

α1α2 = 0,
α1β2 = 0,
β1 = 0.

(35)

The system (35) leads to a contradiction with the hypotheses on the coefficients α1, β1, α2 and
β2, since it implies that α1 = β1 = 0 or α2 = β2 = 0. The same contradiction is reached when
trying to solve the sub-system (34). So, det(S) ̸= 0 in all cases. Consequently, the analog boundary
value problem in the Laplace domain (Equations (23)-(26)), or equivalently the problem in the time
domain (Equations (1)-(4)), admits a unique solution whenever α2

1+β2
1 ̸= 0, and α2

2+β2
2 ̸= 0. The

exact solution in the Laplace domain of the problem (1)-(4) is U(x, p), given by Equation (27),
with the functions U(l1, p), U(l2, p), Ux(l1, p) and Ux(l2, p) expressed by using determinants as:

U(l1, p) =

∣∣∣∣∣∣∣∣∣∣∣∣

G1(p) β1 0 0
G2(p) 0 α2 β2

R(l1, p)
a

2
√
b+ p

−χ(l2 − l1, p)

2

−aχ(l2 − l1, p)

2
√
b+ p

R(l2, p)
aχ(l2 − l1, p)

2
√
b+ p

1

2

−a

2
√
b+ p

∣∣∣∣∣∣∣∣∣∣∣∣
det(S)

, (36)

Ux(l1, p) =

∣∣∣∣∣∣∣∣∣∣∣∣

α1 G1(p) 0 0
0 G2(p) α2 β2

1

2
R(l1, p)

−χ(l2 − l1, p)

2

−aχ(l2 − l1, p)

2
√
b+ p

−χ(l2 − l1, p)

2
R(l2, p)

1

2

−a

2
√
b+ p

∣∣∣∣∣∣∣∣∣∣∣∣
det(S)

, (37)
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U(l2, p) =

∣∣∣∣∣∣∣∣∣∣∣∣

α1 β1 G1(p) 0
0 0 G2(p) β2

1

2

a

2
√
b+ p

R(l1, p)
−aχ(l2 − l1, p)

2
√
b+ p

−χ(l2 − l1, p)

2

aχ(l2 − l1, p)

2
√
b+ p

R(l2, p)
−a

2
√
b+ p

∣∣∣∣∣∣∣∣∣∣∣∣
det(S)

, (38)

and

Ux(lx, p) =

∣∣∣∣∣∣∣∣∣∣∣∣

α1 β1 0 G1(p)
0 0 α2 G2(p)
1

2

a

2
√
b+ p

−χ(l2 − l1, p)

2
R(l1, p)

−χ(l2 − l1, p)

2

aχ(l2 − l1, p)

2
√
b+ p

1

2
R(l2, p)

∣∣∣∣∣∣∣∣∣∣∣∣
det(S)

. (39)

In brief, the exact solution in the Laplace domain for the boundary value problem (1)-(4) is ex-
pressed in a unified way by the function U(x, p) given by Equation (27) together with those given
in Equations (36)-(39). Exact series solutions in the time domain of such linear boundary value
problems are well established by using the Fourier decomposition method, as in Anani (2022) for
example. Thus, the exact Laplace transform of those series solutions performed via the Sturm-
Liouville theory, can be recovered in a closed form by the expression of the function U(x, p).

5. Analytical approximations in short time limits

In this section, we aim to derive from the exact operational solution (27), approximate analytical
solutions to the problem (1)-(4) at the earliest times of the process. As in many schemes in nu-
merical analysis (see Fu et al. (2018) and Izadi and Yuzbasi (2022) among others), we assume a
subdivision of the time interval [0, T ], such that the magnitude of the dimensionless time step ∆t is
sufficiently small, for example ∆t ≤ 10−2. These approximate analytical solutions are valid during
the first time step of the reaction–diffusion process, namely for t ∈ [0,∆t].

The limiting case of a short time duration (∆t tending to 0) corresponds to a very large value
of the Laplace domain variable (p tending to +∞). In order to minimize calculations, some prior
simplifications can be done on the determinant of the system det(S) before deriving the asymptotic
expansions of the solution, and the related truncated expansions in the time domain. For y > 0, the
inverse Laplace transform of χ(y, p) is written as:

L−1{χ(y, p)} = L−1

{
exp

(
−y

√
b+ p

a

)}

=
1

2

y exp
(
−bt− y2

4a2t

)
a
√
πt3/2

= µ(t).

(40)
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14 K. Anani

When p → ∞, χ(y, p) is negligible compared to 1/pn for all positive integers n ≥ 1, whereas
when t → 0, the inverse Laplace transform µ(t) is negligible compared to tn. Indeed,

lim
p→∞

pnχ(y, p) = lim
t→0

µ(t)

tn
= 0,

implying χ(y, p) = o(1/pn) at p = ∞, and µ(t) = o(tn) at t = 0, where the Little-o is the
asymptotic notation. Again, these relations are valid for arbitrary order n ≥ 1. When p → ∞,
the term χ(l2 − l1, p) and its asymptotic expansions are negligible in the Laplace domain, as well
as their inverses in the time domain when t → 0. Therefore, when p is sufficiently large, the
asymptotic solution can be obtained by using the following determinant of the system formed by
Equations (25), (26), (28) and (29):

det(Sa) =

∣∣∣∣∣∣∣∣∣∣∣

α1 β1 0 0
0 0 α2 β2

1

2

a

2
√
b+ p

0 0

0 0
1

2

−a

2
√
b+ p

∣∣∣∣∣∣∣∣∣∣∣
. (41)

Assuming that the function χ(y, p) is negligible for all y > 0 when p is sufficiently large, we can
deduce an asymptotic expansion of the exact solution U(x, p) from Equation (27) for l1 < x < l2
to any order n ≥ 1:

Ua(x, p) = R(x, p) + o

(
1

pn

)
. (42)

For 0 < t < ∆t, Equation (42) corresponds to the following truncated expansion ua(x, t) of the
solution u(x, t) in the time domain:

ua(x, t) = r(x, t) + o ((∆t)n) , (43)

where r(x, t) is given by equation (20) and o ((∆t)n) can be considered as an upper bound of
the truncation error o (tn). But, at x = l1 and x = l2, some refined asymptotic expansions in
the Laplace domain Ua(l1, p), Ua(l2, p), Ua

x (l1, p), and Ua
x (l2, p) can be obtained for the boundary-

related functions U(l1, p), U(l2, p), Ux(l1, p), and Ux(l2, p). We distinguish four different cases with
respect to the values of the two coefficients β1 and β2. For each case, the analytical approximations
in the time domain, namely ua(l1, t), ua(l2, t), ua

x(l1, t), and ua
x(l2, t) are also given for t ∈ [0,∆t].

Although this can be improved, the asymptotic expansions retained here are at the second order,
while the corresponding approximations in the time domain are given at the first order.

• Case β1β2 ̸= 0

(1) For the approximation of U(l1, p) and u(l1, t), the system is solved by using the reduced
determinant det(Sa) expressed in formula (41) leads to:

U(l1, p) = − a

β1

√
b+ p− aα1

G1(p) +
2
√
b+ pβ1

β1

√
b+ p− aα1

R(l1, p),
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and if the Big-O denotes the asymptotic notation, one has for the above coefficient of G1(p):

− a

β1

√
b+ p− aα1

= U1l1(p) +O

(
1

p2

)
,

and for that of R(l1, p):

2
√
b+ pβ1

β1

√
b+ p− aα1

= 2 + U2l1(p) +O

(
1

p2

)
,

where

U1l1(p) = − a

β1

√
1

p
− a2α1

β1
2p

− 1

β1

(
−1

2
ab+

a3α1
2

β1
2

)(
1

p

)3/2

,

and

U2l1(p) = 2
aα1

β1

√
1

p
+ 2

a2α1
2

β1
2p

+
2

β1

(
−1

2
aα1b+

a3α1
3

β1
2

)(
1

p

)3/2

.

According to the properties of the LIT, G1(p) and R(l1, p) are bounded functions in the
Laplace domain for p > 0, and an asymptotic expansion of the solution U(l1, p) can then
be written as:

Ua(l1, p) = U1l1(p)G1(p) + U2l1(p)R(l1, p) + 2R(l1, p) +O

(
1

p2

)
.

The corresponding analytical approximation in the time domain during a short time step
t ∈ [0,∆t] reads

ua(l1, t) = u1l1(t) ∗ g1(t) + u2l1(t) ∗ r(l1, t) + 2r(l1, t) +O (∆t) ,

where O (∆t) instead of O (t) is considered as an upper bound of the truncation error of the
approximation, ∗ denotes the convolution product, r(l1, t) is calculated through equation
(20), g1(t) is the given function related to the boundary x = l1,

u1l1(t) = L−1{U1l1(p)} = −a2α1

β1
2 − a√

π tβ1

+

(
−2 a2α1

2 + bβ1
2
)
a

β1
3

√
t

π
,

and

u2l1(t) = L−1{U2l1(p)} = 2
aα1√
π tβ1

+ 2
a2α1

2

β1
2 + 2

aα1

(
2 a2α1

2 − bβ1
2
)

β1
3

√
t

π
.

(2) For the approximation of U(l2, p) and u(l2, t), similar calculations as above give:

U(l2, p) =
G2 (p) a

β2

√
b+ p+ α2a

+ 2
R (l2, p)

√
b+ pβ2

β2

√
b+ p+ α2a

,

and

Ua(l2, p) = U1l2(p)G2(p) + U2l2(p)R(l2, p) + 2R(l2, p) +O

(
1

p2

)
,

where

U1l2(p) =
a

β2

√
1

p
− a2α2

β2
2p

+
1

β2

(
−1

2
ab+

a3α2
2

β2
2

)(
1

p

)3/2

,
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and

U2l2(p) = −2
α2a

β2

√
1

p
+ 2

a2α2
2

β2
2p

+
2

β2

(
1

2
α2ab−

α2
3a3

β2
2

)(
1

p

)3/2

.

The corresponding approximation in the time domain during a short time step t ∈ [0,∆t]
is:

ua(l2, t) = u1l2(t) ∗ g2(t) + u2l2(t) ∗ r(l2, t) + 2r(l2, t) +O (∆t) ,

where

u1l2(t) = L−1{U1l2(p)} = −a2α2

β2
2 +

a√
π tβ2

+
a
(
2 a2α2

2 − bβ2
2
)

β2
3

√
t

π
,

and

u2l2(t) = L−1{U2l2(p)} = −2
α2a√
π tβ2

+ 2
a2α2

2

β2
2 + 2

(
−2 a2α2

2 + bβ2
2
)
α2a

β2
3

√
t

π
.

(3) Likewise, for the analytical approximations of Ux(l1, p) and ux(l1, t), the results are:

Ux(l1, p) =

√
b+ pG1 (p)

β1

√
b+ p− aα1

− 2
α1

√
b+ pR (l1, p)

β1

√
b+ p− aα1

,

and

Ua
x (l1, p) = β1

−1G1(p) + U1l1
x (p)G1(p) + U2l1

x (p)R(l1, p)− 2
α1

β1

R(l1, p) +O

(
1

p2

)
,

where

U1l1
x (p) =

aα1

β1
2

√
1

p
+

a2α1
2

β1
3p

+
1

β1

(
−1

2

aα1b

β1

+
a3α1

3

β1
3

)(
1

p

)3/2

,

and

U2l1
x (p) = −2

α1
2a

β1
2

√
1

p
− 2

α1
3a2

β1
3p

− 2

β1

(
−1

2

α1
2ab

β1

+
α1

4a3

β1
3

)(
1

p

)3/2

.

The related approximation in the time domain during a short time step t ∈ [0,∆t] is:

ua
x(l1, t) = β1

−1 g1(t) + u1l1
x (t) ∗ g1(t) + u2l1

x (t) ∗ r(l1, t)− 2
α1

β1

r(l1, t) +O (∆t) ,

where

u1l1
x (t) = L−1{U1l1

x (p)} =
aα1√
π tβ1

2
+

a2α1
2

β1
3 +

aα1

(
2 a2α1

2 − bβ1
2
)

β1
4

√
t

π
,

and

u2l1
x (t) = L−1{U2l1

x (p)} = −2
α1

2a√
π tβ1

2
− 2

α1
3a2

β1
3 + 2

(
−2 a2α1

2 + bβ1
2
)
α1

2a

β1
4

√
t

π
.

(4) Finally for approximating Ux(l2, p) and ux(l2, t), calculations give:

Ux(l2, p) =

√
b+ pG2 (p)

β2

√
b+ p+ α2a

− 2
α2

√
b+ pR (l2, p)

β2

√
b+ p+ α2a

,
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and

Ua
x (l2, p) = β2

−1G2(p) + U1l2
x (p)G2(p) + U2l2

x (p)R(l2, p)− 2
α2

β2

R(l2, p) +O

(
1

p2

)
,

where

U1l2
x (p) = −α2a

β2
2

√
1

p
+

a2α2
2

β2
3p

+
1

β2

(
1

2

α2ab

β2

− α2
3a3

β2
3

)(
1

p

)3/2

,

and

U2l2
x (p) = 2

α2
2a

β2
2

√
1

p
− 2

α2
3a2

β2
3p

− 2

β2

(
1

2

α2
2ab

β2

− α2
4a3

β2
3

)(
1

p

)3/2

.

The corresponding truncation in the time domain during a short time step t ∈ [0,∆t] is
written as:

ua
x(l2, t) = β2

−1 g2(t) + u1l2
x (t) ∗ g2(t) + u2l2

x (t) ∗ r(l2, t)− 2
α2

β2

r(l2, t) +O (∆t) ,

where

u1l2
x (t) = L−1{U1l2

x (p)} = − α2a√
π tβ2

2
+

a2α2
2

β2
3 +

(
−2 a2α2

2 + bβ2
2
)
α2a

β2
4

√
t

π
,

and

u2l2
x (t) = L−1{U2l2

x (p)} = 2
α2

2a√
π tβ2

2
− 2

α2
3a2

β2
3 + 2

α2
2a

(
2 a2α2

2 − bβ2
2
)

β2
4

√
t

π
.

• Case β1 ̸= 0 and β2 = 0

(1) As in the first case, the system is solved using the reduced determinant det(Sa). This leads
to:

U(l1, p) = − G1 (p) a

β1

√
b+ p− aα1

+ 2

√
b+ pR (l1, p) β1

β1

√
b+ p− aα1

,

and U(l1, p) and its asymptotic expansion Ua(l1, p), as well as u(l1, t) and its truncation
expansion ua(l1, t) are the same as in the case β1β2 ̸= 0, point (1).

(2) Concerning U(l2, p) and u(l2, t), the results are reduced to:

U(l2, p) =
G2 (p)

α2

,

and the exact inverse in the time domain during a short time step t ∈ [0,∆t] is:

u(l2, t) =
g2(t)

α2

.

(3) The functions Ux(l1, p), ux(l1, t) and their asymptotic and truncation expansions Ua
x (l1, p),

ua
x(l1, t) are the same as in the case β1β2 ̸= 0, point (3), since

Ux(l1, p) =

√
b+ pG1 (p)

β1

√
b+ p− aα1

− 2
α1

√
b+ pR (l1, p)

β1

√
b+ p− aα1

.
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(4) About Ux(l2, p) and ux(l2, t), one has:

Ux(l2, p) =

√
b+ pG2 (p)

α2a
− 2

√
b+ pR (l2, p)

a
,

and the calculations will need here the assumptions that r(l2, t) and g2(t) are once piece-
wise differentiable on t ∈ [0,∆t], and their respective derivatives r′(l2, t) and g′2(t) verify

the relations: r(l2, t) − r(l2, 0) =

∫ t

0

r′(l2, τ)dτ , and g2(t) − g2(0) =

∫ t

0

g′2(τ)dτ. Their

derivatives are assumed to be of exponential order, so that if Rq(l2, p) and Gq
2(p) are the

Laplace transforms of the derivatives, we have according to the transform properties:

R(l2, p) = L
{∫ t

0

r′(l2, τ)dτ

}
+

r(l2, 0)

p
=

Rq(l2, p)

p
+

r(l2, 0)

p
,

and

G2(p) = L
{∫ t

0

g′2(τ)dτ

}
+

g2(0)

p
=

Gq
2(p)

p
+

g2(0)

p
.

Then, Ux(l2, p) can be rewritten as

Ux(l2, p) =

√
b+ p (Gq

2(p) + g2(0))

α2a p
− 2

√
b+ p (Rq(l2, p) + r(l2, 0))

a p
,

and

Ua
x (l2, p) = U l2

x (p)

(
Gq

2(p) + g2(0)

aα2

− 2
Rq(l2, p) + r(l2, 0)

a

)
+O

(
1

p5/2

)
,

where

U l2
x (p) =

√
1

p
+

b

2

(
1

p

)3/2

.

In this sub-case, a truncation expansion in the time domain during a short time step t ∈
[0,∆t] is:

ua
x(l2, t) =

1

a

(
g2(0)

α2

− 2r(l2, 0)

)
ul2
x (t) +

1

a
ul2
x (t) ∗

(
g′2(t)

α2

− 2r′(l2, t)

)
+O (∆t) ,

where

ul2
x (t) = L−1{U l2

x (p)} =
bt+ 1√

π t
.

• Case β1 = 0 and β2 ̸= 0

(1) The function U(l1, p) and its inverse u(l1, t) in the time domain (t ∈ [0,∆t]) are respec-
tively:

U(l1, p) =
G1 (p)

α1

,

and

u(l1, t) =
g1(t)

α1

.
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(2) For U(l2, p) and u(l2, t), the results are identical to those obtained in the case β1β2 ̸= 0,
point (2) since:

U(l2, p) =
G2 (p) a

β2

√
b+ p+ α2a

+ 2
R (l2, p)

√
b+ pβ2

β2

√
b+ p+ α2a

,

(3) For Ux(l1, p) and ux(l1, t), calculations give:

Ux(l1, p) = −
√
b+ pG1 (p)

α1a
+ 2

√
b+ pR (l1, p)

a
,

and the assumptions are that r(l1, t) and g1(t) are once piece-wise differentiable for t ∈
[0,∆t]. The respective derivatives r′(l1, t) and g′1(t) can be related to the original functions

by the relations: r(l1, t)−r(l1, 0) =

∫ t

0

r′(l1, τ)dτ , and g1(t)−g1(0) =

∫ t

0

g′1(τ)dτ. Since

the derivatives are assumed to be of exponential order, their Laplace transforms Rq(l1, p)
and Gq

1(p) verify the properties:

R(l1, p) = L
{∫ t

0

r′(l1, τ)dτ

}
+

r(l1, 0)

p
=

Rq(l1, p)

p
+

r(l1, 0)

p
,

and

G1(p) = L
{∫ t

0

g′1(τ)dτ

}
+

g1(0)

p
=

Gq
1(p)

p
+

g1(0)

p
.

Then,

Ux(l1, p) = −
√
b+ p (Gq

1(p) + g1(0))

α1a p
+ 2

√
b+ p (Rq(l1, p) + r(l1, 0))

a p
,

and

Ua
x (l1, p) = U l1

x (p)

(
−Gq

1(p) + g1(0)

aα1

+ 2
Rq(l1, p) + r(l1, 0)

a

)
+O

(
1

p5/2

)
,

where

U l1
x (p) =

√
1

p
+

b

2

(
1

p

)3/2

.

A truncation expansion in the time domain during a short time step t ∈ [0,∆t] corresponds
to:

ua
x(l1, t) =

1

a

(
−g1(0)

α1

+ 2r(l1, 0)

)
ul1
x (t) +

1

a
ul1
x (t) ∗

(
−g′1(t)

α1

+ 2r′(l1, t)

)
+O (∆t) ,

where

ul1
x (t) =

bt+ 1√
π t

.

(4) Since:

Ux(l2, p) =

√
b+ pG2 (p)

β2

√
b+ p+ α2a

− 2
α2

√
b+ pR (l2, p)

β2

√
b+ p+ α2a

,

the results for Ux(l2, p) and ux(l2, t) in this sub-case are identical to those obtained in the
case β1β2 ̸= 0, point (4).
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• Case β1 = 0 and β2 = 0

(1) The expression of U(l1, p) and its inverse u(l1, t) are identical to those obtained in the case
β1 = 0 and β2 ̸= 0, point (1).

(2) The expression of U(l2, p) and of its inverse u(l2, t) are the same as those obtained in the
case β1 ̸= 0 and β2 = 0, point (2).

(3) The expansions of Ux(l1, p) and of its inverse ux(l1, t) are equal to those obtained in the
case β1 = 0 and β2 ̸= 0, point (3).

(4) The expansions of Ux(l2, p) and of its inverse ux(l2, t) are identical to those obtained in the
case β1 ̸= 0 and β2 = 0, point (4).

6. Discussion of the results and applications

First, the results mentioned above can be compared and discussed on a specific example. Some
powerful PDE toolbox functions exist in MATLAB software, for example, and scripts based on
Gauss-Seidel and finite difference methods are available online. The curves obtained by the Fourier
decomposition method, when using partial sums of the infinite series solution, and those obtained
from the present method of approximate analytical solutions in short time limits, can both be
compared to Matlab solution curves, when using toolbox functions. For this purpose, the example
titled "Example 6.1." is considered from Henner et al. (2019). It consists of solving a problem
where the initial condition matches with the boundary conditions. The equation is specified as:

∂u

∂t
− a2

∂2u

∂x2
= 0, 0 < x < l, t > 0, (44)

subject to consistent initial and boundary conditions

u(x, 0) = φ(x), u(0, t) = u(l, t) = 0, (45)

where

φ(x) =


x

l
u0 for 0 ≤ x ≤ l

2
,

l − x

l
u0 for

l

2
< x ≤ l,

(46)

with u0 being a constant. The exact solution obtained by the Fourier decomposition method can be
reported as the following infinite series:

u(x, t) =
4u0

π2

+∞∑
k=1

(−1)k+1

(2k − 1)2
exp

(
−a2(2k − 1)2π2

l2
t

)
sin

(2k − 1)πx

l
. (47)

Assigning the corresponding values to parameters in the general problem (1)-(4), that is, l1 =
0, l2 = l, b = 0, f(x, t) = 0, β1 = β2 = 0, α1 = α2 = 1, g1(t) = g2(t) = 0, the p-domain
solution (27) is reduced to:

U(x, p) =
a

2
√
p

[
Ux(l, p) exp

(
−(l − x)

√
p

a

)
− Ux(0, p) exp

(
−x

√
p

a

)]
+ L

{
1

2a
√
πt

∫ l

0

φ(ξ)

[
exp

(
−(ξ − x)2

4a2t

)]
dξ

}
.

(48)
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Then, for the case where l = 10, u0 = 5 and a2 = 0.25 as in the Example 6.1. from Henner et al.
(2019), the function φ is rewritten as:

φ(x) =


1

2
x for 0 ≤ x ≤ 5,

5− 1

2
x for 5 < x ≤ 10,

while the series (47) becomes:

u(x, t) =
20

π2

+∞∑
k=1

(−1)k+1

(2k − 1)2
exp

(
−(2k − 1)2π2

400
t

)
sin

(2k − 1)πx

10
. (49)

Using Equations (37) and (39) and denoting exp(x) by ex, the exact operational solution (48) can
be written as:

U(x, p) =
1

4
√
p
[Ux(10, p) exp (−2(10− x)

√
p)− Ux(0, p) exp (−2x

√
p)] +R(x, p). (50)

In the above expression,

Ux(0, p) = −Ux(10, p) = −1

2

−e−20
√
p + 2 e−10

√
p − 1

(e−20
√
p + 1) p

; (51)

and

R(x, p) =


−1

8

−4x
√
p+ 2 e2 (−5+x)

√
p − e−2x

√
p − e2 (−10+x)

√
p

p
3

2

for 0 ≤ x ≤ 5,

−1

8

4x
√
p− 40

√
p+ 2 e−2 (−5+x)

√
p − e−2x

√
p − e2 (−10+x)

√
p

p
3

2

for 5 < x ≤ 10.

The formula (23) can then be checked, and the exactness of the operational solution (50) is proved,
that is:

−a2
d2U

dx2
(x, p) + pU(x, p) = φ(x).

Now, according to the results obtained in Section 5 relatively to the present case (β1 = β2 = 0),
the corresponding truncation expansion in the time domain during the short time step t ∈ [0,∆t],
are respectively recalled as:

ua(x, t) = r(x, t) + o ((∆t)n) ,

and

ua
x(l1, t) =

1

a

(
−g1(0)

α1

+ 2r(l1, 0)

)
ul1
x (t) +

1

a
ul1
x (t) ∗

(
−g′1(t)

α1

+ 2r′(l1, t)

)
+O (∆t) ,

where

ul1
x (t) =

bt+ 1√
π t

,

and again

ua
x(l2, t) =

1

a

(
g2(0)

α2

− 2r(l2, 0)

)
ul2
x (t) +

1

a
ul2
x (t) ∗

(
g′2(t)

α2

− 2r′(l2, t)

)
+O (∆t) ,
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where

ul2
x (t) =

bt+ 1√
π t

.

By using Maple software, for example, the analytical approximation ua(x, t) ≃ r(x, t) in short
time limits (t ∈ [0,∆t]), can be explicitly computed from Equation (20) as:

ua(x, t) =
1√
πt

∫ 10

0

φ(ξ)

[
exp

(
−(ξ − x)2

t

)]
dξ

=
1

4

(
(x− 10)erf

(
−10 + x√

t

)
+ (−2x+ 10)erf

(
−5 + x√

t

)
+ x erf

(
x√
t

))
+

√
t

4
√
π

(
−2 e−

(x−5)2

t + e−
(x−10)2

t + e−
x2

t

)
.

(52)

Note that in cases where it is not possible to compute the integral explicitly, r(x, t) remains an
analytic expression that can be represented in a graphical way. From the above expressions of
ua
x(l1, t) and ua

x(l2, t), one has:

ua
x(0, t) = −ua

x(10, t)

= −1

2
erf

(
10√
t

)
+ erf

(
5√
t

)
+O (∆t) ,

(53)

where erf(x) is the Error Function defined by:

erf(x) =
2√
π

∫ x

0

ey
2

dy.

Compared to the function φ(x) characterizing the initial condition, it’s remarkable that the deriva-
tives coincide at the boundaries l1 = 0 and l2 = 10, that is:

lim
t→0

ua
x(0, t) = φ′(0) =

1

2
, (54)

and

lim
t→10

ua
x(10, t) = φ′(10) = −1

2
. (55)

In the limits of our knowledge, the truncation expansion (53) is not available directly from the
infinite series solution (49).

Figure 1 shows curves of the solution of the problem (44)-(46) and of its derivative during the first
time step t ∈ [0,∆t], with ∆t = 10−2. The curves are obtained by using the three different methods
mentioned above. The numerical solution is computed by using toolbox functions of MATLAB,
while the series solution provided by the Fourier decomposition method is truncated at its first 20
terms. The approximate analytical solution is represented by the function ua given by the above
formula (52). The three resulting curves of the solution u are almost identical as shown on figure
1(a). Except around the peak point of abscissa x = 5, their shapes seem to be very similar to
that of the function (46) characterizing the initial condition, since the time passed from t = 0 to
t = ∆t = 10−2 is still relatively small. On Figure 1(b), the derivative curves almost coincide for
the approximate analytical and the numerical solutions, except at the domain boundaries x = 0
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and x = 10. However, the curve for the series solution exhibits deviations in the form of small
oscillations along the two former curves, especially around the peak point (x = 5). On the one
hand, this suggests the potential consistency of both numerical and approximate analytical methods
in correctly accounting for non-physical phenomena such as derivative jumps and the so-called
Gibbs phenomenon, which appears in generalized solutions of infinite series. On the other hand,
it illustrates the relevance of refined truncation expansions for the approximate solution at the
domain boundaries. Note that ua(0, t) and ua(10, t) are kept zero in the present case, and only the
derivatives ua

x(0, t) and ua
x(10, t) are concerned.

Figure 1. (a) Solution u(x, t) at t = ∆t = 10−2. (b) Partial derivative ux(x, t) at t = ∆t = 10−2

Figures 2(a) and 2(b) respectively show evolution of the derivatives ua
x(0, t) and ua

x(10, t) expressed
in formulae (53), versus that of the series solution (47) truncated at the first 20 terms. During the
short time step [0,∆t], the derivative curves obtained by the approximate and the series solutions
can be compared. While the convergence of the series solution is weak, especially at points close
to the ends of the domain, the shapes shown by the curves of ua

x(0, t) and ua
x(10, t) correspond

well to the similarity highlighted above with the function characterizing the initial condition, and
confirmed by the calculation of limits (54) and (55). Beyond its precision or consistency, another
advantage of performing the approximate analytical solutions ua

x(0, t) and ua
x(10, t) during the

short time limit [0,∆t], consists of the computational efficiency of these solutions. Indeed, at the
first execution of the code source, the computer runtime of their procedure is far reduced (about
20 times) compared to that of the series solution. More generally, the procedure for calculating
analytical approximations during the first time step t ∈ [0,∆t] can be repeated for the next time
step. All that needs to be done is to update, from the previous step, the source term f(x, t), the
functions φ(x), g1(t) and g2(t), which are linked to the initial and boundary conditions. Thus,
computational models for one-dimensional Stefan problems, as discussed in Javierre et al. (2006),
can be handled efficiently when using the truncation expansions ua(l1, t), ua

x(l1, t), u
a(l2, t) and

ua
x(l2, t) of the solution at the boundaries of the domain, as discussed in section 5. An example of

the use of similar formulas for a specific problem of spherically symmetric droplet evaporation can
be seen in Anani (2021).
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Figure 2. (a) Evolution of the derivative ux(0, t) for t ∈ [0,∆t], ∆t = 10−2. (b) Evolution of the derivative ux(10, t)
for t ∈ [0,∆t], ∆t = 10−2

Next, the exact solution in the Laplace domain can be extended to unbounded domains as infinite
or semi-infinite intervals for the space variable x. Indeed when l1 = −∞ and l2 = +∞, one has
Ux(l1, p) = Ux(l2, p) = 0, and by taking the limits in Equation (27), the exact p-domain solution
is reduced to U(x, p) = R(x, p), which corresponds to the following solution in the time domain:

u(x, t) = r(x, t) =
exp(−bt)

2a
√
πt

∫ +∞

−∞
φ(ξ)

[
exp

(
−(ξ − x)2

4a2t

)]
dξ

+
1

2a
√
π

∫ t

0

dθ

∫ +∞

−∞

exp(−b(t− θ))√
(t− θ)

exp

(
− (ξ − x)2

4a2(t− θ)

)
f(ξ, θ)dξ.

In the case where b = 0, the above solution is identical to the one reported by Henner et al. (2019)
in their book at Section 6.8 titled "The Heat Equation in an Infinite Region," where the Fourier
decomposition method was used. About semi-infinite domains, let us chose l1 = 0 and l2 = +∞
for example, then Ux(l2, p) = 0, and u(l2, t) is to be considered as constant. The p-domain solution
(27) reduces to:

U(x, p) =
1

2
U(0, p) exp

(
−x

√
b+ p

a

)
− aUx(0, p)

2
√
b+ p

exp

(
−x

√
b+ p

a

)
+R(x, p), (56)

where R(x, p) = L{r(x, t)}, and

r(x, t) =
exp(−bt)

2a
√
πt

∫ +∞

0

φ(ξ)

[
exp

(
−(ξ − x)2

4a2t

)]
dξ

+
1

2a
√
π

∫ t

0

dθ

∫ +∞

0

exp(−b(t− θ))√
(t− θ)

exp

(
− (ξ − x)2

4a2(t− θ)

)
f(ξ, θ)dξ.

(57)

Setting as in the statement of Problem a. of Chapter 8.1 in Luikov (2012), b = 0, φ(x) = t0 =
(constant), u(0, t) = g1(t) = ta = (constant) implying U(0, p) = ta/p, it can be verified for
f(x, t) = w/cγ = (constant) that:

Ux(0, p) =
2
√
p

a
R(0, p)− ta

a
√
p
,
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and

R (x, p) =
t0
p
+

w

p2cγ
− t0

2p
exp

(
−
x
√
p

a

)
− w

2p2cγ
exp

(
−
x
√
p

a

)
.

This leads to reduce the exact p-domain solution (56) into the form of:

U (x, p) =
t0
p
+

w

p2cγ
+

(ta − t0)

p
exp

(
−
x
√
p

a

)
− w

p2cγ
exp

(
−
x
√
p

a

)
,

which is identical to the solution (8.1.11) reported in Luikov (2012), provided that a is replaced
by

√
a as specified in the statement of the problem. Note in the latter reference that the Laplace

transform method was directly used to solve the problem, since the initial condition is specified as
a constant function.

7. Conclusion

This study has made it possible to compute the explicit solution in the Laplace domain and accurate
approximations in the earlier time step for initial-boundary value problems of the one-dimensional
parabolic equation with constant coefficients. The problem is solved in its most general form with
boundary conditions specified in a unified manner on an arbitrary bounded interval of the real line.
Analytical approximations in short time limits are proven to be more consistent and sufficiently
simple to improve computational efficiency in numerical schemes and simulations, compared to
classical or generalized series solutions. Early time behaviors of heat or mass reaction-diffusion
processes are of great interest in engineering, and have a wide range of applications in fields like
Computational Fluid Dynamics (CFD) and Nuclear Energy. Additionally, the operational solution
obtained for the problem can be extended to unbounded domains. This solution represents a signifi-
cant advancement in the study of linear parabolic equations. While Laplace inversion theorems can
be used to search for solutions, it is important to note that most tables and mathematical software
have a limited number of analytic inverses of the Laplace domain in the time domain. However, re-
gardless of the complexity of operational solutions, numerical inverse Laplace transforms can still
be performed. Therefore, the exact operational solution can be numerically transformed to derive
precise curves of the solution in the entire time domain. Finally, to obtain the exact solution in the
Laplace domain, it is necessary to study more precisely the largest class to which the functions
involved in the problem must belong.
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