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Abstract

A nonlinear mathematical model to study the effect of transmission dynamics of COVID-19 virus
in a population with variable size structure is proposed and analyzed. The model divides the total
human population into five subclasses: susceptibles, self-protected susceptibles, infectives, quar-
antined infectives, and recovered population including a class representing cumulative density of
coronavirus in the environmental reservoir. The model exhibits two equilibria, namely, the disease-
free and the endemic equilibrium. Model analysis reveals the global dynamics of the spread of
COVID-19 is completely determined by the basic reproduction number. If basic reproduction num-
ber is greater than one, the endemic equilibrium is locally asymptotically stable and is globally
asymptotically stable under certain conditions showing that the disease becomes endemic. It is
found that the infective population can be decreased if the individuals from susceptible population
self protect themselves and do not come in direct contact with viral density deposited on surfaces
or airborne droplets accumulated in the environmental reservoir. However, if higher number of
individuals from infective class are quarantined at home or hospital, the spread of the disease can
further be slowed down. Numerical analysis of the model is also performed to investigate the in-
fluence of certain key parameters on the spread of the disease and to support the analytical results.

Keywords: COVID-19; Quarantine; Self-protection; Reproduction number; Local stability;
Global stability; Sensitivity
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2 D. Sharma et al.

1. Introduction

COVID-19, an infectious disease which has severely affected the entire world in different forms,
is caused by the coronavirus SARS-CoV-2. An outbreak of the COVID-19 disease was first estab-
lished in Wuhan, China and eventually invaded almost every nation due to fast modern air trans-
portation. According to the World Health Organization (WHO) report, more than 131,472,605
people were infected worldwide and about 2,861,373 people were expired due to COVID-19 till
April 4, 2021. In India, the first confirmed case was reported in March 2020, and as of April 4,
2021, approximately 12,392,260 cases were detected and 164,110 people died due to COVID-19
disease (Corona Virus Statistics (2020)).

The fast spread of the disease and lack of approved medicines made it a challenging problem for
public health. Despite the fact that numerous vaccines were created in order to address the chal-
lenge, the inherent mutability of the coronavirus made the situation much more difficult to manage.
Therefore, the focus was shifted to study the impact of non-pharmaceutical interventions such as
lock down, isolation, social and physical distancing, avoidance of public gatherings, sanitization,
quarantine of infectives, etc., to prevent further escalation of the disease.

Mathematical models play an important role in the study of transmission of any infectious dis-
ease for short-and long-term prediction of disease incidence. In the past few decades, several re-
searchers have developed various mathematical models to investigate the transmission dynamics
of infectious diseases and their control measures (Tripathi et al. (2007); Chavez and Song (2004);
Brauer (1990); Aris (2012); Naresh et al. (2009); Singh et al. (2021)). These models try to ac-
commodate the effects of various parameters on the spread of a disease, such as the presence of a
disease vector, the phenomenon of relapse and reinfection, symptomatic and asymptomatic cases,
analysis of the success of interventions with limited costs, etc., others and predicting the behavior
of the epidemic and its short- and long-term effects.

Since COVID-19 is a recent pandemic and has rapidly spread in many countries across the globe,
few mathematical studies have been conducted (Yang and Wang (2020); Ngonghala et al. (2020);
Gurmu et al. (2020); Saldana et al. (2020); Sarkar et al. (2020); Obsu and Balcha (2020); Hu
and Nie (2020); Pang et al (2020); Shao et al. (2020); Khanjanchi and Sarkar (2020); Bugalia et
al. (2020); Chen et al. (2020); Sardar et al. (2020); Li et al. (2020)) to capture the transmission
mechanism of COVID-19 and the effect of preventive measures. Chen et al. (2020) developed a
Bats-Hosts-Reservoir-People transmission network model for simulating the potential transmission
from the infection source (probably bats) to humans. Yang et al. (2020) proposed a mathematical
model for COVID-19 incorporating multiple transmission pathways, including both human-to-
human and environment-to-human transmission routes. They employed a bilinear incidence rate
based on the law of mass action and fitted the model with Wuhan city (China ) data and estimated
the reproduction number. Li et al. (2020) proposed a model based on the transmission mechanism
of COVID-19 in the population and implemented prevention and control measures. Ngonghala
et al. (2020) developed a model of COVID-19 pandemic in US (particularly, in New York) for
assessing the population-level impact of the mitigation strategies. The authors performed the rigor-
ous analysis of the model and the impact of non-pharmaceutical intervention strategies. Garba et al.
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(2020) proposed a compartmental model to analyze the dynamics of COVID-19 in South Africa.
The model system (Sarkar et al. (2020)) was used to estimate the effect of mitigation strategies.
Their study indicates the disease may die out if control measures are implemented early for a sus-
tainable period of time. However, the effectiveness of self-isolation reduces the number of cases.

Sarkar et al. (2020) studied the dynamics of COVID-19 in India along with its 17 provinces and
suggested that the contact rate between susceptible and infected individuals could be reduced by a
strict isolation imposed on susceptible individuals. Moreover, the complete elimination of COVID-
19 is possible via suitable combination of contact tracing and restrictive social distancing but it
depends largely on how and when precautionary measures, isolation, and quarantine strategies are
enforced. Bugalia et al. (2020) proposed a model to investigate the role of intervention strategies
including lockdown on the transmission dynamics of COVID-19. They found that faster testing,
to identify the infection quickly so that the infected individuals do not spread the disease further,
can restrict the disease up to a certain level. Gurmu et al. (2020) analyzed a model and found the
parameter which has high impact to decrease the disease in the community. In this direction, Sar-
dar et al. (2020) also considered a mathematical model on COVID-19 to analyze the impact of
social distancing and lockdown. Pang et al. (2020) presented a model to understand the transmis-
sion dynamics and control strategies of COVID-19 in Wuhan, China and shown that early control
measures can prevent a larger outbreak of COVID-19. Obsu and Balcha (2020) performed the
optimal control strategies for the transmission risk of COVID-19 and shown that the comprehen-
sive impacts of prevention, intensive medical care and surface disinfection strategies outperform
in reducing the disease epidemic with optimum implementation cost.

It may be noted that providing medical attention in hospitals in the era of pandemic to all COVID-
19 affected persons was found to be a challenging task. It is, therefore, necessary that vulnerable
individuals be advised to follow COVID-19 guidelines/Standard Operating Procedure (SOP) to self
protect themselves. Thus, we have assumed that a large number of susceptibles follow COVID ap-
propriate behavior and self protect themselves. This allows us to introduce a separate class of self-
protected susceptibles who strictly follow the COVID protocal such as applying face cover/mask
in public places, adopt social distancing, avoid public gatherings, wash hands frequently etc. and
other guidelines issued from time to time. The objective of the present study is to understand the
impact of self-protection, quarantine strategy and sanitization at public places towards minimizing
the escalation of transmission of COVID-19.

The structure of the paper is organized as follows. In Section 2, we describe the model formulation,
non-negativity and boundedness of solutions. The basic reproduction number with respect to model
parameters is computed in Section 3. Section 4 provides the existence of equilibrium points and
stability analysis. In Section 5, we present numerical simulations and discussions followed by
conclusion in Section 6.
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4 D. Sharma et al.

2. Mathematical Model

Consider a human population of size N(t) at time t with constant immigration of susceptibles
at a rate Λ. The total population size N(t) is divided into five subclasses of susceptibles X(t),
self-protected susceptibles Y(t), infectives I(t), quarantined Q(t) and the recovered class R(t). Self-
protected susceptibles Y(t) constitute the segment of population who are assumed to strictly follow
the COVID-19 guidelines/Standard Operating Procedure (SOP) such as applying face cover/mask
in public place, maintaining social distancing, avoiding public gatherings, washing hands fre-
quently. The infectives I(t) are assumed to be infectious with strong infectivity but are not quaran-
tined. The quarantined class Q(t) consists of individuals who are diagnosed to be infected and have
been quarantined either at home or at a hospital, due to the fact that they are isolated and, as a re-
sult, do not contribute to the spread of viruses. The class of recovered individuals from COVID-19
disease is represented by R(t). The class V(t) denotes the cumulative density of corona virus in the
environmental reservoir.

We assume that susceptibles X(t) become infected when they come in direct contact with infec-
tives I(t) with a transmission rate β as well as by exposure to viral density V(t) deposited on
surfaces/objects or airborne droplets accumulated in the environmental reservoir with transmis-
sion rate λ1. The constant d is the natural mortality rate in all the classes, l is the rate by which
susceptible individuals join the self-protected susceptible class whereas µ is the rate by which self-
protected susceptibles loose their protection and again become susceptible to join the susceptible
class. The increase in quarantined class is assumed to be directly proportional to the infective class
where constant δ denotes the rate of transfer of infectives into quarantined class. The quarantined
individuals after recovery move to recovered class with a rate constant η. It is also assumed that
some of the infectives recover with self medication without being quarantined and join the recov-
ered class with a rate ρ.

It is further assumed that some of the recovered individuals remain vulnerable to COVID-19 infec-
tion and become susceptible to increase the population of susceptibles with a rate constant ν. The
constant α denotes the disease-induced death rate of infective and quarantined individuals. The
growth of viral density V (t) in the environmental reservoir is assumed to be directly proportional
to the infectives where γ is the rate of increase of V. The constant σ is the rate by which viral
density declines due to control/preventive measures like mass sanitization in the environment. The
schematic diagram of disease transmission is shown in Figure 1.

With the above assumptions and considerations, the dynamics of viral transmission is assumed to
be governed by the following system of nonlinear ordinary differential equations,

dX(t)

dt
= Λ− βXI

N
− λ1V X − dX − lX + µY + νR, (1)

dY (t)

dt
= lX − (µ+ d)Y, (2)

dI(t)

dt
=

βXI

N
+ λ1V X − (δ + ρ+ α + d)I, (3)
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Figure 1. Schematic diagram of the model system (1) - (6)

dQ(t)

dt
= δI − (η + α + d)Q, (4)

dR(t)

dt
= ηQ+ ρI − (ν + d)R, (5)

dV (t)

dt
= γI − σV, (6)

with initial conditions X(0) = X0 ≥ 0, Y (0) = Y0 ≥ 0, I(0) = I0 ≥ 0, Q(0) = Q0 ≥ 0, R(0) =
R0 ≥ 0, and V (0) = V0 ≥ 0.

For convenience, let us take b = (µ+d), c = (δ+ρ+α+d), e = (η+α+d). The above equations
can now be written as follows, using N = X + Y + I +Q+R,

dN(t)

dt
= Λ− dN − αI − αQ, (7)

dY (t)

dt
= l(N − Y − I −Q−R)− bY, (8)

dI(t)

dt
= (

βI

N
+ λ1V )(N − Y − I −Q−R)− cI, (9)

dQ(t)

dt
= δI − eQ, (10)

dR(t)

dt
= ηQ+ ρI − (ν + d)R, (11)

dV (t)

dt
= γI − σV. (12)
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6 D. Sharma et al.

2.1. Non-negativity of Solutions

An important feature of any epidemiological model is to show that all the population variables are
nonnegative for all t≥0, which implies that any trajectory starting with positive initial condition
will remain positive for t≥0. The following lemma describes this fact,

Lemma 2.1.

If X(0) ≥ 0, Y (0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0 and V (0) ≥ 0, the solution of X(t), Y (t),
I(t), Q(t), R(t) and V (t) in the system (1) - (6) remain positive.

Proof:

We shall prove this lemma using contradiction by assuming that the total population N(t) ̸= 0 for
all t ≥ 0.

Positivity of X(t):

Assume that X(t1) = 0, dX(t1)
dt

< 0, X(0) ≥ 0, Y (0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0 and
V (0) ≥ 0, 0 ≤ t ≤ t1,

dX(t1)

dt
< 0,(

dX(t1)

dt

)
t=t1

= Λ− βI(t1)X(t1)

N(t1)
− λ1V (t1)X(t1)− (d+ l)X(t1) + µY (t1) + νR(t1)

= Λ + µY (t1) + νR(t1) ≤ 0,

which is a contradiction as Λ + µY (t1) + νR(t1) > 0. Hence, it can be concluded that X(t) ≥ 0
for t ≥ 0.

Positivity of Y(t):

Assume that Y (t2) = 0, dY (t2)
dt

< 0, X(0) ≥ 0, Y (0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0 and
V (0) ≥ 0, 0 ≤ t ≤ t2,

dY (t2)

dt
< 0,(

dY (t2)

dt

)
t=t2

= lX(t2)− (µ+ d)Y (t2)

= lX(t2) ≤ 0,

which is a contradiction as lX(t2) > 0. Hence, it can be concluded that Y (t) ≥ 0 for t ≥ 0.
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Positivity of I(t):

Assume that I(t3) = 0, dI(t3)
dt

< 0, X(0) ≥ 0, Y (0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0 and
V (0) ≥ 0, 0 ≤ t ≤ t3,

dI(t3)

dt
< 0,(

dI(t3)

dt

)
t=t3

=
βI(t3)X(t3)

N(t3)
+ λ1V (t3)X(t3)− (δ + ρ+ α + d)I(t3)

=
βI(t3)X(t3)

N(t3)
+ λ1V (t3)X(t3) ≤ 0,

which is a contradiction as βI(t3)X(t3)
N(t3)

+ λ1V (t3)X(t3) > 0 . Hence, it can be concluded that I(t) ≥
0 for t ≥ 0.

Positivity of Q(t):

Assume that Q(t4) = 0, dQ(t4)
dt

< 0, X(0) ≥ 0, Y (0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0 and
V (0) ≥ 0, 0 ≤ t ≤ t4,

dQ(t4)

dt
< 0,(

dI(t4)

dt

)
t=t4

= δI(t4)− (η + α + d)Q(t4)

= δI(t4) ≤ 0,

which is a contradiction as δI(t4) > 0. Hence, it can be concluded that Q(t) ≥ 0 for t ≥ 0.

Positivity of R(t):

Assume that R(t5) = 0, dR(t5)
dt

< 0, X(0) ≥ 0, Y (0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0 and
V (0) ≥ 0, 0 ≤ t ≤ t5,

dR(t5)

dt
< 0,(

dR(t5)

dt

)
t=t5

= ηQ(t5) + ρI(t5)− (ν + d)R(t5)

= ηQ(t5) + ρI(t5) ≤ 0,

which is a contradiction as ηQ(t5) + ρI(t5) > 0. Hence, it can be concluded that R(t) ≥ 0 for t ≥
0.
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Positivity of V(t):

Assume that V (t6) = 0, dV (t6)
dt

< 0, X(0) ≥ 0, Y (0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0 and
V (0) ≥ 0, 0 ≤ t ≤ t6,

dV (t6)

dt
< 0,(

dV (t6)

dt

)
t=t6

= γI(t6)− σV (t6)

= γI(t6) ≤ 0,

which is contradiction as γI(t6) > 0. Hence, it can be concluded that V(t) ≥ 0 for t ≥ 0. ■

3. Computation of Basic Reproduction Number

The basic reproduction number R0, defined as the effective number of secondary infectives gen-
erated by a primary infected individual. We calculate R0 by closely following the approach in
Driessche and Watmough (2002, 2008). We first compute the new infectious matrix F and transfer
matrix W (Diekmann et al. (2010)), according to formula

[F −W ] =

[
∂(dI/dt)

∂I
∂(dI/dt)

∂V
∂(dV/dt)

∂I
∂(dV/dt)

∂V

]
. (13)

To calculate F and W , we only consider Equations (9) and (12), which correspond to the groups
(I, V ) capable of transmitting the disease. The non-negative matrix F , corresponding to new in-
fections in the population at disease-free equilibrium is,

F =

[
bβ

(l+b)
λ1Λ
d

b
(l+b)

0 0

]
. (14)

The non-singular matrix W , corresponding to the transfer of individuals into and out of compart-
ment is,

W =

[
c 0
−γ σ

]
(15)

where W−1 is given by W−1 = 1
cσ

[
σ 0
γ c

]
.

Here, FW−1 is the next generation matrix of the system (7) - (12).

FW−1 =
1

cσ

[
bβσ
(l+b)

+ λ1Λ
d

bγ
(l+b)

λ1Λ
d

cb
(l+b)

0 0

]
,

8

Applications and Applied Mathematics: An International Journal (AAM), Vol. 19 [2024], Iss. 1, Art. 8

https://digitalcommons.pvamu.edu/aam/vol19/iss1/8



AAM: Intern. J., Vol. 19, Issue 1 (June 2024) 9

ρ(FW−1) =
1

cσ

(
βσ +

λ1Λ

d
γ

)
b

(l + b)
,

R0 =
β

c

b

(l + b)
+

λ1Λ

d

γ

cσ

b

(l + b)
. (16)

According to van den Driessche and Watmough (2002, 2008), the basic reproduction number (after
putting value of b and c) of the system (7) - (12) is

R0 =

[
β

(δ + ρ+ d+ α)

(µ+ d)

(l + µ+ d)
+

λ1Λγ

d(δ + ρ+ d+ α)σ

(µ+ d)

(l + µ+ d)

]
. (17)

It is possible to rewrite the expression of R0 to account for the source of infection as follows,

R0 = RInfectives +Rvirus.

This expression shows infections resulting from two sources, namely, the infectives and the virus.
Increasing the value of denominator reduces the reproduction number. Since the parameters α, d
(disease-induced death rate due to COVID-19 and natural death rate respectively) and ρ (depends
upon the immune system of the infectives) cannot be increased, the reproduction number can be
reduced by increasing δ , the growth rate of quarantined class. This implies that if higher num-
ber of infectives are quarantined, the spread of COVID-19 infection can be reduced. Further, the
reproduction number R0 can also be decreased by increasing the values of l and σ. As a result,
this suggests that if a greater number of vulnerable persons adhere to the COVID-19 criteria in a
stringent manner, then the population of individuals who are self-protected will increase, which
will result in a reduction in the transmission of infection. Moreover, with increase in the rate of
elimination of viral density due to sanitization and other preventive measures, the reproduction
number due to virus decreases and hence the spread of disease is reduced.

If R0 < 1, then, on average an infected individual produces less than one infected individual over
the course of its infectious period and hence infection cannot grow. Conversely, if R0 > 1, then, on
average an infected individual produces more than one new infection and the disease can invade
the population.

3.1. Sensitivity Analysis

Sensitivity indices allow us to measure the relative change in a variable when a parameter changes.
The derivatives are the rate of change of predictions with respect to a parameter. This work adopts
the normalized forward sensitivity index to conduct the sensitivity analysis (Gurmu et al. (2020);
Pang et al. (2020); Marino (2008)). The normalized forward sensitivity index of a variable with
respect to a parameter is the ratio of relative change in the parameter. When variable is a differ-
entiable function of the parameter, the sensitivity index may be alternatively defined using partial

9
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10 D. Sharma et al.

derivative. For instance, the normalized forward sensitivity index is,

Y R0

M =
∂R0

∂M
× M

R0

.

The parameter values displayed in the Table 1 below are taken as the baseline and they are used
to evaluate the sensitivity indices of some parameters which are responsible for the transmission
dynamics of COVID-19 disease to four places of decimal in relation to the effective reproduction
number R0 using Equation (17). The results so obtained are given in Table 1,

R0 =

[
β

(δ + ρ+ d+ α)

(µ+ d)

(l + µ+ d)
+

λ1Λγ

d(δ + ρ+ d+ α)σ

(µ+ d)

(l + µ+ d)

]
,

∂R0

∂β

β

R0

=
βdσ

βdσ + λ1Λγ
,

∂R0

∂λ1

λ1

R0

=
λ1Λγ

βdσ + λ1Λγ
,

∂R0

∂γ

γ

R0

=
λ1Λγ

βdσ + λ1Λγ
,

∂R0

∂σ

σ

R0

= − λ1Λγ

(βdσ + λ1Λγ)
,

∂R0

∂δ

δ

R0

= − δ

(δ + α + d)
,

∂R0

∂l

l

R0

= − l

(l + µ+ d)
,

∂R0

∂µ

µ

R0

=
lµ

(l + µ+ d) (µ+ d)
.

From Table 1, we can see that the positive indices, i.e., β, λ1, γ and µ, show the great impact on
expanding the disease in the population, since R0 increases with increase in their values. Further,
the parameter σ, δ and l, for which the sensitivity indices is negative, show that increasing σ, δ and
l leads to decrease the basic reproduction number, which ultimately reduces the spread of disease
in the population.

Table 1. Sensitivity indices

Parameter Symbol Sensitivity indices
β 1.9x10−7

λ1 0.9999
γ 0.9999
σ -0.9999
δ -0.9861
l -0.9705
µ 0.9695

4. Equilibria and Stability Analysis of the Model

4.1. Equilibria of the Model

The model (7) - (12) has two non-negative equilibria namely,

10
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(i) E0

(
Λ
d
, Λl
d(l+b)

, 0, 0, 0, 0
)

, the disease-free equilibrium, which exists without any condition.
This equilibrium implies that in the absence of any infection, the total population size remains at
its equilibrium value Λ/d.

(ii) E∗(N∗, Y ∗, I∗, Q∗, R∗, V ∗), the endemic equilibrium. The equilibrium values of different vari-
ables are given as,

Q∗ =
δ(Λ− dN)

α (e+ δ)
, V ∗ =

γe(Λ− dN)

σα(e+ δ)
, R∗ =

(ηδ + ρe) (Λ− dN)

(ν + d)α(e+ δ)
, I∗ =

e(Λ− dN)

α(e+ δ)
,

Y ∗ =
l

(l + b)

[
N −

(
e+ δ +

ηδ + ρe

ν + d

)
(Λ− dN)

α (e+ δ)

]
, (18)

and we get a quadratic equation in N ,

b

l + b

(
β +

λγ

σ
N

)[
N −

(
e+ δ +

ηδ + ρe

ν + d

)
(Λ− dN)

α (e+ δ)

]
− cN = 0. (19)

To show the existence of E∗, Equation (19) can be written as,

F (N) =
b

l + b

(
β +

λγ

σ
N

)[
N −

(
e+ δ +

ηδ + ρe

ν + d

)
(Λ− dN)

α (e+ δ)

]
− cN = 0. (20)

It would be sufficient if we show that F (N) = 0 has one and only one positive root. To prove this,
from Equation (20) we have,

F (0) = − βb

l + b

(
e+ δ +

ηδ + ρe

ν + d

)
Λ

α (e+ δ)
< 0, (21)

F

(
Λ

d

)
= c

[
b

l + b

(
β

c
+

λγ

σc

Λ

d

)
− 1

]
Λ

d
> 0,

F

(
Λ

d

)
= c [R0 − 1]

Λ

d
> 0. (22)

Thus, if R0 > 1 then F (Λ
d
) > 0 . Using Equations (17) and (22), we can see that if l, the rate of

increase of self- protected susceptibles is sufficiently large, the reproduction number R0 < 1 and
hence the endemic equilibrium does not exist,

F
′
(N) =

b

l + b

 λγ
σ

{
N −

(
e+ δ + ηδ+ρe

ν+d

) (Λ−dN)
α(e+δ)

}
+
(
β + λγ

σ
N
){

1 +
(
e+ δ + ηδ+ρe

ν+d

)
d

α(e+δ)

}− c. (23)
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It is noted that F ′(N) > 0, provided

b

l + b
[
λγ

σ
(N − (e+ δ +

ηδ + ρe

ν + d
)
(Λ− dN)

α(e+ δ)
)+(β+

λγ

σ
N)(1 +

(
e+ δ +

ηδ + ρe

ν + d

)
d

α(e+ δ)
)] > c.

Thus, F (N) = 0 has exactly one root (say N∗) between 0 and Λ
d

. Using the value of N∗, the values
of Y ∗, I∗, Q∗, R∗ and V ∗ can be found from Equation (18).

4.2. Local Stability of the Equilibria

To determine the local stability of E0, the following variational matrix of the system (7) - (12) is
computed about E0 as,

J(E0) =



−d 0 −α −α 0 0
l −(l + b) −l −l −l 0
0 0 − (c− βw) 0 0 λ1Λw

d

0 0 δ −e 0 0
0 0 ρ η − (ν + d) 0
0 0 γ 0 0 −σ

 ,

where w = b
l+b

,

The four roots of the characteristic equation are λ = −d, λ = − (l + b), λ = − (ν + d), λ = −e.
The other two roots of the variational matrix are determined by the following equation,

f(λ) = λ2 + (c+ σ − βw)λ+ cσ − σβw − Λλ1γw

d
= 0, (24)

f(λ) = λ2 + (c+ σ − βw)λ+ cσ(1−R0) = 0. (25)

We can see if R0 > 1, then J(E0) has at least one eigenvalue with positive real part. Therefore,
disease-free equilibrium E0 of the system (7) - (12) is locally asymptotically stable if R0 < 1.
Under this condition disease dies out, i.e., infection does not persist in the population. For R0 > 1
the disease free equilibrium is locally unstable and the endemic euilibriumm E∗ exists, i.e., the
disease always persists in the population.

Now the variational matrix corresponding to E∗ is given by,

J(E∗) =



−d 0 −α −α 0 0
l −(l + b) −l −l −l 0
n1 −n2 −n3 −n2 −n2 n4

0 0 δ −e 0 0
0 0 ρ η −d1 0
0 0 γ 0 0 −σ

 ,
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n1 = −βI∗(N∗ − Y ∗ − I∗ −Q∗ −R∗)

N∗2 +
βI∗

N∗ + λV ∗, n2 =
βI∗

N∗ + λV ∗, d1 = ν + d,

n3 = −β(N∗ − Y ∗ − I∗ −Q∗ −R∗)

N∗ +
βI∗

N∗ + λV ∗ + c, n4 = λ(N∗ − Y ∗ − I∗ −Q∗ −R∗).

The roots of variational matrix are determined by the following characteristic equation,

f(λ) =
(
λ6 + a1λ

5 + a2λ
4 + a3λ

3 + a4λ
2 + a5λ+ a6

)
= 0, (26)

a1 = l + b+ n3 + e+ d+ σ + d1,

a2 = (l + b) {n3 + e+ d+ σ + d1)}+ n3(e+ d+ σ + d1) + e(d+ σ + d1)
+d(σ + d1) + (σd1 + n2δ + n2l) + n1α + n2ρ− n4γ,

a3 = (l + b)n3(e+ d+ σ + d1) + (l + b) e(d+ σ + d1) + (l + b) d (σ + d1)
+ (l + b)σd1 + n3e(d+ σ + d1) + n3d (σ + d1) + n3σd1 + eσd1
+ed (σ + d1) + dσd1 + n2δ(d1 + d+ σ + l + b) + n2δη
+n2l(e+ d1 + d+ σ + ρ+ δ − α) + n1α(l + b+ e+ σ + d1 − δ)
+n2ρ(l + b+ d+ σ + e)− n4γ(d1 + e+ d+ l + b),

a4 =(l + b)n3e(d+ σ + d1) + (l + b) de(σ + d1) + (l + b) dσd1 + n2lδη

+ (l + b) eσd1 + (l + b)n3d(σ + d1) + n3dσd1 + (l + b)n3σd1

+ n3ed(σ + d1) + n3eσd1 + edσd1 + n2δ(l + b)(d+ d1 + σ)

+ n2δη(l + b+ d+ σ) + n2l {e(d+ σ + d1) + d1(σ + d) + σd}
+ n2lδ(σ + d+ d1) + l n2ρ(σ + e+ d) + n2δ(d(d1 + σ) + d1σ)

− n4γ {ed1 + d(e+ d1) + (d1 + d+ e)(b+ l)} − αn2l(e+ σ + d1

− αδn1(d1 + l + b+ σ) + αδn2l

+ αn1 {e(l + b+ σ + d1) + d1(l + b+ σ) + σ(l + b)}
+ n2ρ {(l + b)(d+ e+ σ) + d(e+ σ) + eσ} ,

a5 =(l + b)n3ed (σ + d1) + (l + b)n3dσd1 + (l + b) eσdd1 + n3edσd1

+ (l + b) eσd1n3 + n2δ {d(d1 + σ)(l + b) + (l + b)d1σ + dd1σ}
+ n2δη {(σ + d)(l + b) + dσ}+ n2lδη(σ + d)

− n4γ {ed1(l + b) + ded1 + d(e+ d1)(l + b)}
+ n2lδ {d1σ + d(d+ σ)}+ n2l {edσ + ed1(σ + d) + d1σd}
− αn2l {e(σ + d1) + σd1}+ ρn2 {(σ + e)(l + b)d+ (l + b)σe+ dσe}
+ n2ρl {dσ + (d+ σ)e}+ αn1 {ed1(σ + l + b) + d1σ(l + b) + eσ(l + b)}
+ αδn2l(σ + d1)− αδn1 {(l + b)(d1 + σ) + d1σ} ,

a6 = (l + b)n3edσd1 + n2δdσ(l + b)d1 + n2δησ(l + b) d+ n2ledσd1
+n2lδσdd1 + n2lδησd+ αn1e(l + b)d1 + αδn2lσd1 + lσnρn2d

+n2ρeσ(l + b)d− n4γed(l + b)d1 − αn2leσd1 − αδn1(l + b)σd1.
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Therefore, ai > 0 for i = 1, 2, 3, 4, 5, 6. Thus, by Routh-Hurwitz criteria as stated below, the
equilibrium E∗ is locally asymptotically stable if the remaining conditions,

∣∣∣∣a1 1
a3 a2

∣∣∣∣ > 0,

∣∣∣∣∣∣
a1 1 0
a3 a2 a1
0 a4 a3

∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣
a1 1 0 0
a3 a2 a1 1
a5 a4 a3 a2
0 0 a5 a4

∣∣∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣∣∣
a1 1 0 0 0
a3 a2 a1 1 0
a5 a4 a3 a2 a1
0 a6 a5 a4 a3
0 0 0 a6 a5

∣∣∣∣∣∣∣∣∣∣
> 0,

are satisfied.

4.3. Global Stability of the Endemic Equilibrium

To show the global stability behavior of E∗, we need the bounds of dependent variables involved.
For this, we find the region of attraction stated in the form of following lemma,

Lemma 4.1.

The region,

Ω =

{
(N, Y, I,Q, V,R) ; 0 < N(t) ≤ N ; 0 ≤ Y (t) ≤ Y ; 0 ≤ (t) ≤ I;

0 ≤ Q(t) ≤ Q; 0 ≤ V (t) ≤ V ; 0 ≤ R(t) ≤ R

}
, (27)

is a region of attraction for the system (7)-(12),

where N = Λ
d
,Y = lΛ

d(l+b)
,I = ΦΛ

d
1

(Φ+c)
,Q = δĪ

e
,R = ηQ̄+ρĪ

ν+d
,V = γΛ

σd
, and Φ =

(
β + λ1γΛ

σd

)
.

Proof:

From Equation (7),

dN(t)

dt
= Λ− dN − αI(t)− αQ(t),

dN(t)

dt
≤ Λ− dN.

Thus, limt→∞ SupN(t) ≤ N , where N̄ = Λ
d

.

From Equation (8),

dY (t)

dt
= l {N(t)− Y (t)− I(t)−Q(t)−R(t)} − bY (t),

dY (t)

dt
≤ l {N(t)− Y (t)} − bY (t),

dY (t)

dt
≤ lN(t)− (b+ l)Y (t),

14
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dY (t)

dt
≤ l

Λ

d
− (b+ l)Y (t).

Thus, limt→∞ SupY (t) ≤ Y , where Ȳ = lΛ
d(l+b)

.

From Equation (12),

dV (t)

dt
= γI(t)− σV (t),

dV (t)

dt
≤ γ

Λ

d
− σV (t),

since I(t)≤ N(t) ≤ N .

Thus, limt→∞ SupV (t) ≤ V, where V̄ = γΛ
dσ
.

From Equation (9),

dI(t)

dt
=

[
βI(t)

N(t)
+ λ1V (t)

]
{N(t)− Y (t)− I(t)−Q(t)−R(t)} − cI(t),

dI(t)

dt
≤

[
βI(t)

N(t)
+ λ1V (t)

]
{N(t)− I(t)} − cI(t),

dI(t)

dt
≤

[
β + λ1

γΛ

dσ

]
N(t)− (ϕ+ c)I(t),

dI(t)

dt
≤ ϕ

Λ

d
− (ϕ+ c)I(t).

Thus, limt→∞ SupI(t) ≤ I , where Ī = ϕΛ
d(ϕ+c)

, and Φ =
[
β + λ1

γΛ
dσ

]
.

From Equation (10),

dQ(t)

dt
= δI(t)− eQ(t),

dQ(t)

dt
≤ δĪ − eQ(t).

Thus, limt→∞ SupQ(t) ≤ Q, where Q̄ = δĪ
e

.

From Equation (11),

dR(t)

dt
= ηQ(t) + ρI(t)− (ν + d)R(t),

dR(t)

dt
≤ ηQ̄+ ρĪ − (ν + d)R(t).

Thus, limt→∞ SupR(t) ≤ R, where R̄ = ηQ̄+ρĪ
(ν+d)

. ■
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Theorem 4.1.

If the endemic equilibrium E∗ exists, it is globally asymptotically stable provided the following
sufficient conditions are satisfied in Ω,

9α2

4de
<

(β + λ1V
∗) m1

δ
, (28)

3η2δ < ρde, (29)

[λm1(N
∗ − Y ∗) + γ]2 ≤ 4σm1

5

[
λV ∗ + c− β

N∗ − Y ∗ − I∗ −Q∗ −R∗

N∗

]
, (30)

[m1(β + λ1V
∗) + k1l]

2 ≤ (l + b)m1k1
2

[
λV ∗ + c− β

N∗ − Y ∗ − I∗ −Q∗ −R∗

N∗

]
, (31)

where
m1 =

α

β + λ1V ∗ − β
[
(N∗−Y ∗−I∗−Q∗−R∗)I∗

N̄ N∗

] ,
and

k1 ≤ min

{
(l + b)dm1

3l2
,
(l + b)em1(β + λ1V

∗)

3δ l2
,
d(l + b)m1(β + λ1V

∗)

4ρ l2

}
.

Proof:

Consider the following positive definite function about E∗ (Tripathi et al. (2007)),

P = 1
2
(N −N∗)2 + 1

2
k1 (Y − Y ∗)2 + 1

2
k2 (I − I∗)2 + 1

2
k3 (Q−Q∗)2

+1
2
k4 (R−R∗)2 + 1

2
k5 (V − V ∗)2 . (32)

where ki, i = 1,...,5 are constants to be chosen appropriately.

Differentiating P with respect to t, we get

dP

dt
=(N −N∗)

dN

dt
+ k1 (Y − Y ∗)

dY

dt

+ k2 (I − I∗)
dY

dt
+ k3 (Q−Q∗)

dQ

dt

+ k4 (R−R∗)
dR

dt
+ k5 (V − V ∗)

dV

dt
.

Using Equations (7) - (12) and simplifying, we get
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dP

dt
=− d(N −N∗)2 − k1(l + b)(Y − Y ∗)2 − k3e(Q−Q∗)2

− k4(ν + d)(R−R∗)2 − k5σ(V − V ∗)2

− k2[
βI

N
− β(N∗ − Y ∗ − I∗ −Q∗ −R∗)

N
+ λ1V

∗ + c](Y − Y ∗)2

+ k1l(N −N∗)(Y − Y ∗)− α(N −N∗)(Q−Q∗)

+ [−α +
k2βI

N
− k2β(N

∗ − Y ∗ − I∗ −Q∗ −R∗)

N
+ k2λ1V

∗](N −N∗)(I − I∗)

+ (−k2βI

N
− k2λ1V

∗ + k3δ)(R−R∗)(I − I∗)

− k1l(Q−Q∗)(Y − Y ∗)− (
k2βI

N
+ k1l + k2λ1V

∗)(Y − Y ∗)(I − I∗)

− (
k2βI

N
+ k1l + k2λ1V

∗)(Y − Y ∗)(I − I∗)

− (
k2βI

N
+ k2λ1V

∗ − k3δ)(Q−Q∗)(I − I∗)

+ (λ1k2(N − Y − I −Q−R) + k5γ)(V − V ∗)(I − I∗)

− k1l(R−R∗)(Y − Y ∗) + k4η(Q−Q∗)(R−R∗),

(33)

dP
dt

= −1
2
a11 (N −N∗)2 + a12 (N −N∗) (Y − Y ∗)− 1

2
a22 (Y − Y ∗)2

−1
2
a11 (N −N∗)2 + a13 (N −N∗) (I − I∗)− 1

2
a33 (I − I∗)2

−1
2
a11 (N −N∗)2 + a14 (N −N∗) (Q−Q∗)− 1

2
a44 (Q−Q∗)2

−1
2
a22 (Y − Y ∗)2 + a23 (Y − Y ∗) (I − I∗)− 1

2
a33 (I − I∗)2

−1
2
a22 (Y − Y ∗)2 + a24 (Y − Y ∗) (Q−Q∗)− 1

2
a44 (Q−Q∗)2

−1
2
a22 (Y − Y ∗)2 + a25 (Y − Y ∗) (R−R∗)− 1

2
a55 (R−R∗)2

−1
2
a33 (I − I∗)2 + a34 (I − I∗) (Q−Q∗)− 1

2
a44 (Q−Q∗)2

−1
2
a33 (I − I∗)2 + a35 (I − I∗) (R−R∗)− 1

2
a55 (R−R∗)2

−1
2
a33 (I − I∗)2 + a36 (I − I∗) (V − V ∗)− 1

2
a66 (V − V ∗)2

−1
2
a44 (Q−Q∗)2 + a45 (R−R∗) (Q−Q∗)− 1

2
a55 (R−R∗)2,

a11 =
2d
3
, a22 =

1
2
k1 (l + b) , a44 =

1
2
k3e, a55 =

2
3
k4 (ν + d) , a66 =

1
2
k5σ,

a33 =
2
5
k2

[
βI
N

− β(N∗−Y ∗−I∗−Q∗−R∗)
N

+ λ1V
∗ + c

]
, ,

a12 = k1l, a13 =
(
−α + k2βI

N
− k2β(N∗−Y ∗−I∗−Q∗−R∗)

N
+ k2λ1V

∗
)
,

a14 = −α, a23 = −
(
k2βI
N

+ k1l + k2λ1V
∗) , a24 = −k1l, a25 = −k1l,

a34 = −
(
k2βI
N

+ k2λ1V
∗ − k3δ

)
, a35 = k4ρ−

(
k2βI
N

+ k2λ1V
∗) ,

a36 = (λ1k2(N − Y − I −Q−R) + k5γ) , a45 = k4η

Choosing, k5 = 1, and k1 ≤ min
{

(l+b)dm1

3l2
, (l+b)em1(β+λ1V ∗)

3δ l2
, (ν+d)(l+b)m1(β+λ1V ∗)

4ρ l2

}
,

k2 = m1
α

β + λ1V ∗ − β
[
(N∗−Y ∗−I∗−Q∗−R∗)I∗

N̄ N∗

] , k3 = (β + λ1V
∗)m1

δ
,

17

Sharma et al.: Modeling the Spread of Coronavirus

Published by Digital Commons @PVAMU, 2024



18 D. Sharma et al.

k4 =
(β + λ1V

∗)m1

ρ
.

Thus, dP
dt

is negative definite under the conditions stated in theorem showing that P is a Liapunov
function, and hence, E∗ is globally asymptotically stable inside the region of attraction Ω. ■

4.4. Transcritical Bifurcation

From the above discussion, we observe that the system (7) - (12) may undergo a transcritical
bifurcation at E0 when R0 = 1. In this subsection, we establish the conditions using center manifold
theory. Here, we omit the variable R as R does not play any role in the remaining five equations in
system (7)-(12). We choose λ1 as a bifurcation parameter. By solving R0 = 1, we obtain

λ1 = λ∗
1 =

σd

Λγ
(δ + α + d)− β. (34)

We can see that transcritical bifurcation exists only if (δ + α + d) > β.

It can easily be obtained that the Jacobian J(E0, λ
∗
1) evaluated at E0 and λ1 = λ∗

1 has a simple
zero eigenvalue and other eigenvalues have negative sign. Hence, E0 is a non-hyperbolic equilib-
rium, when λ1 = λ∗

1. Now, we calculate a right eigenvector K = (w1, w2, w3, w4, w6) and a left
eigenvector M = (v1, v2, v3, v4, v6) associated to the zero eigenvalues. Here

w1 = −α

d

(
σ

γ
+ 1

)
, w2 = −l

(α
d
+ 1

)(
σ

γ
+ 1

)
, w3 =

δσ2

eγ2
, w4 =

δσ

eγ
, w6 = 1, (35)

ν1 = 0, ν2 = 0 = 0, ν3 =
γ

(δ + α + d)− β
, ν4 = 0, ν6 = 1. (36)

We need to calculate the bifurcation constants a and b. By choosing f 3 and calculating partial
derivatives of f 3 (evaluated at E0, x1 = N, x2 = Y, x3 = I, x4 = Q, x6 = V), we obtain,

a = 2v3 (w1w3
∂2f3
∂N∂I

+ w1w6
∂2f3
∂N∂V

+ w2w3
∂2f3
∂L∂I

+ w2w6
∂2f3
∂L∂V

+ w3w6
∂2f3
∂I∂V

+ w4w6
∂2f3
∂Q∂V

+ w3w4
∂2f3
∂I∂Q

)

= 2v3 (w1w3
βL0

N2
0

+ w1w6 λ1- w2w3
β
N0

- w2w6 λ1- w3w6 λ1- w4w6 λ1- w3w4
β
N0

),

a = −2ν3

{
(w3 + w4)[

λ(µ+ d)

b
(1 +

α

d
)− βl

N0

] + w3w4
β

N2
0

}
< 0, (37)

where b = 2v3 (w5
∂2f3

∂V ∂λ1
),

b = 2ν3w5(N0 − L0) > 0. (38)
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Here, w1, w2 are negative and w3, w4 are positive (from Equation 35) so that a is negative and b is
positive. Therefore, E0 changes its stability from stable to unstable at λ1 = λ∗

1 and there exists a
positive equilibrium as λ1 = λ∗

1 crosses its critical value. Hence, the system (7) - (12) undergoes
a transcritical bifurcation at λ1 = λ∗

1. Thus, the transmission rate λ1 plays an important role in the
disease spread. If λ1 is less than the critical value then it is easy to control the disease but if the
transmission rate λ1 is above the critical value then the disease may reach endemic state.

5. Numerical Simulation and Discussion

To see the dynamical behavior of the model, the system (7) - (12) is integrated numerically by
fourth order Runge - Kutta method using the following set of parameters values:

Λ = 5, d = 0.00003, α = 0.00011, β = 0.006, l = 0.1 , µ = 0.03, λ1 = 0.002,

η = 0.01, δ = 0.01, γ = 0.9, σ = 0.01, ρ = 0.8

with initial values N(0) = 1000, Y (0) = 0, I(0) = 1, Q(0) = 0, R(0) = 0 and V (0) = 1.

The results of numerical simulation are displayed graphically in Figures (2-8). In Figure 2, the
variation of infective population I(t) with time t is shown for different values of λ1, the rate of
transmission of susceptibles to infective class through direct contact with viral density present
in the environmental reservoir. It is seen that infective population increases with increase in the
value of λ1. This implies that if the individuals from susceptible population self protect themselves
and do not come in direct contact with virus deposited on surfaces/objects or airborne droplets
accumulated in the environmental reservoir, the infective population can be decreased.

In Figures (3 - 4), the variation of infective population I(t) and recovered population R(t) respec-
tively is shown with time t for different values of ρ, the recovery rate of infectives without being
quarantined. It is observed that the infective population declines with increase in the recovery rate
of infectives who are not quarantined but take self medication (Figure 3). However, the recovered
population increases with recovery rate of infectives who do not quarantine themselves but take self
medication (Figure 4). The variation of quarantined population Q(t) is shown in Figure 5 with time
t for different values of δ, the rate of transfer of infectives into quarantined class. This indicates
that if rate of transfer of infectives into quarantined class increases, the population in quarantined
class who are either isolated at home or hospital increases. Since this increased population of quar-
antined individuals is isolated, it does not contribute to viral transmission further, and hence, the
spread of the disease can be lowered.

In Figures (6 - 7), the variation of quarantined population Q(t) and recovered population R(t) re-
spectively is shown with time t for different values of η, the rate of recovery of quarantined individ-
uals. It is noted that with increase in the recovery rate of quarantined individuals, their population
decreases, (Figure 6) which ultimately increases the population of recovered individuals, (Figure
7) since the population of recovered individuals is directly proportional to that of quarantined in-
dividuals. In Figure 8, we have shown the variation of infective population I(t) with time t for
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different values of l, the rate of transfer of susceptibles to self-protected class. It is found that with
increase in the value of l, the infective population decreases. This is due to the fact that if higher
number of susceptibles opt to follow COVID-19 protocol and self protect themselves, the infective
population declines.

From the above discussion, it follows that if more and more susceptible individuals either self pro-
tect themselves by following the COVID-19 guidelines or remain quarantined at home or hospital,
the spread of the disease can be controlled.

6. Conclusion

In this paper, a nonlinear mathematical model has been proposed and analyzed to study the ef-
fect of self-protection and quarantine strategy on the spread of corona virus in a population with
variable size structure.From the analysis of the proposed model it is found that if the individuals
from susceptible population self protect themselves and do not come in direct contact with virus
deposited on surfaces/objects or airborne droplets accumulated in the environmental reservoir, the
infective population can be decreased. This decrease is further affected if the individuals from in-
fective population recover from self medication without being quarantined. Moreover, if higher
number of individuals from infective class are quarantined at home or hospital, the spread of the
disease can be slowed down.

Finally from the analysis, it may be concluded that if more and more susceptible individuals fol-
low COVID-19 protocol in the form of non-pharmaceutical interventions such as applying face
cover/mask in public places, adopt social distancing, avoid public gatherings, etc., the spread of
corona infection can be slowed down in the community. It is also observed that the viral density in
the environmental reservoir decreases due to decreased number of infectives and through frequent
sanitization of objects/surfaces which helps in keeping the epidemic under control.The implemen-
tation of these strategies can be more effective if there is a high level of individual awareness
through media campaigns. If people are educated and made aware of the importance of such inter-
ventions, they would prefer to practice these preventive measures as a result of behavioral change
due to media awareness. To understand the transmission dynamics of the disease and effect of
theses intervention strategies, extensive research using mathematical models can be of vital im-
portance. The present study can further be extended by incorporating the role of media awareness
campaigns, sanitation efforts and their economic impact, effect of vaccination, age structure, etc.
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Appendix

Figure 2. Variation of infective population for different values of λ1
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Figure 3. Variation of infective population for different values of ρ

Figure 4. Variation of recovered population for different values of ρ

Figure 5. Variation of quarantined population for different values of δ
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Figure 6. Variation of quarantined individuals for different values of η

Figure 7. Variation of recovered population for different values of η

Figure 8. Variation of infective population for different values of l
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