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Abstract

The current investigation seeks to identify the response of buoyancy and heat source mechanisms
on chemically reacting and magnetized nanofluid. The stagnation point flows through the shrinking
porous surface assumed as an air-based fluid conveying nanoparticles under Buongiorno’s model.
This article contributes to the existing literature with the introduction of nonlinear convection of
the nanofluid, triggered by the heat source, which accelerates the temperature of the fluid particles,
thus resulting in airflow upstream. Subject to these conditions, the mathematical model is presented
in PDE systems. An approach of similarity variable is employed to arrive at the ODE systems,
which is then approximated via the collocation method with assumed Legendre functions of the
first kind. The effect of various physical properties was obtained subsequently to the results when
compared, validated, and illustrated through tables and graphs. The computed results show that a
rise in the buoyancy parameter diminished the temperature and increased the velocity profiles. It is
also displayed that the temperature is intensified with higher thermophoresis parameters and heat
source values. The presence of thermophoresis shoots up the fluid concentration away from the
wall surface but significantly affects the fluid concentration negatively near the surface.

Keywords: Nanofluid; Buoyancy; Thermophoresis; Chemical reaction; Legendre polynomial;
shrinking surface
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2 T.L. Oyekunle et al.

1. Introduction

In a dynamical system, the stagnation point flow refers to the motion of a fluid in the closeness
of a region at which the flow of the liquid is stationary, which is associated with an inviscid or
potential flow. The study of stagnation point flow is essential because of its physical significance
and a more comprehensive range of applications in sciences, engineering, etc. It is found relevant
in the design of the bearing, wire drawings, plastic sheet drawings, electronic device cooling and
polymer extrusion, etc. (Muhammad, 2019).

In view of its wide application range, researchers like Rakesh and Shilpa (2016) examined the ef-
fect of the magnetic field and quadratic on 2D stagnation point flow through a shrinking medium.
It was noticed that the range of solution increases while examining quadratic convection param-
eters and magnetic field. Nirwana et al. (2020) studied the impact of heat transfer on stagnation
point while flowing through a channel over a shrinking surface. From their study, it was observed
that the range of solution increases with mass transfer. The response of MHD on the stagnation
point flow of a nanofluid past a plate was carried out by Muhammad (2019). It was found that
the presence of slip and magnetic parameters accelerated the velocity. A study on the electrically
conducting flow of nanofluid subject to buoyancy effect was examined by Makinde et al. (2013).
The influence of viscous dissipation and Joule heating on the MHD flow of micropolar fluid past
an exponentially shrinking sheet was examined by Lund et al. (2020). It was revealed that triple so-
lutions were obtained for non-Newtonian fluid and dual solutions for a Newtonian fluid. Based on
MHD, Mohamad et al. (2019) presented stagnation point flow in a porous medium past a stretch-
ing/ shrinking sheet while investigating the effect of suction with stability analysis on heat transfer.
The stagnation point flow of various classes of fluid on a shrinking surface for different geometries
has attracted the attention of researchers like Yian et al. (2011), Bachok et al. (2013), Chrishnendu
et al. (2014), Kamal et al. (2018), Lund et al. (2019), Rahman et al. (2019) to mention but a few.

The fluid containing nanoparticles, known as nanofluid, is an advanced heat transfer fluid that im-
proves heat transfer by introducing nanoparticle materials with higher thermal conductivity char-
acteristics. The novel properties of the fluid make it potentially useful in many industrial fields,
such as refrigerators, engine cooling, electronic cancer therapeutics, domestic refrigerators, trans-
portation, nuclear reactors, etc. (Nazar et al., 2004). In line with this importance, the MHD stag-
nation point flow of nanofluid with activation energy was dealt with by Muhammad et al. (2018).
Their study shows that species concentration accelerates with the activation energy variable. Fahad
and Muthtamilselvan (2020) analysed the response of thermophoresis with Brownian effect and
micro-organisms on nanofluid’s MHD. They concluded that the rise in temperature distribution
increased the Brownian motion parameter. The effect of chemical reaction and dissipation on Cas-
son nanofluid past a vertical porous plate was analysed by Oyekunle et al. (2021). Elelamy et al.
(2020), Yusuf et al. (2020), and others also showed their interest in the importance of nanofluid
flow through different geometries.

Patil and Kulkami (2019) stated some applications of nonlinear thermal and solutal convective flow
that are useful when operating in industries, the field of engineering, and sciences. Researchers
like Akolade et al. (2021a) and Idowu et al. (2021) examined the impact of quadratic convection
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on MHD Casson fluid flow through different geometries. It was recorded that a hike in nonlinear
convection increases both velocity and temperature, while a decrease is realised in concentration
fields. Ibrahim et al. (2017), Upadhya et al. (2018b), Nagaendramma et al. (2018), and Upadhya et
al. (2018a), among others, revealed their interest in the impacts of the nonlinear convective flow of
fluid through different geometries.

As a result of the relative scarcity of studies on the effects of buoyancy on chemically reacting
MHD nanofluid stagnation point flow with a porous medium over a shrinking surface, the present
work was motivated to perform thorough work in this particular area. Then, the dynamics flow
problem was formulated by utilising the Collocation technique with the aid of assumed Legendre
functions of the first kind. The present model is helpful in hydrology, heat exchangers, clothing
science, the human body for the delivery of therapeutics, boosting exergy and minimising energy
loss in the thermal system, and forestalling systems from overheating, among others.

2. Mathematical Analysis

The study considered a 2D laminar, incompressible, electrically conducting stagnation point flow
of nanofluid flowing through a porous medium past a shrinking sheet, as shown in Figure 1. It is
assumed that the fluid surface velocity and the free stream velocity are in the form Fw (x

∗) = bx∗

and Fe (x∗) = ax∗, where a and b are constant, such that, b>0 and b<0 represents stretching
and shrinking of the surface accordingly, and a>0 is the stagnation flow strength. The x-axis is
taken along the direction of the shrinking surface, and the y-axis is perpendicular to it. This study
neglected the role of generated magnetic field B0 because it is assumed to be small. In contrast, the
application of the uniform strength magnetic field B0 is normal to the surface and parallel to the
y-axis. θ∗ = θ∗w and θ∗ = θ∗∞ are taken to be the shrinking sheet and ambient temperatures, while
ϕ∗ = ϕ∗

w and ϕ∗ = ϕ∗
∞ are the shrinking sheet and ambient concentrations respectively.

Based on the stated assumptions, and following the work of Rakesh and Shilpa (2016), Nirwana
et al. (2020), and Fahad and Muthtamilselvan (2020), our model equations for the stagnation point
flow of nanofluids consisting of continuity, momentum, and concentration equation becomes:

∂f ∗

∂x∗
+
∂g∗

∂y∗
= 0, (1)

f ∗∂f
∗

∂x∗
+ g∗

∂f ∗

∂y∗
= Fe

∂Fe
∂x∗

+ ν
∂2f ∗

∂y∗2
+

[
σB2

0

ρ
+
ν

k

]
(Fe − f ∗)

+ g
[
β0(θ

∗ − θ∗∞) + β1(θ
∗ − θ∗∞)2+β2(ϕ

∗ − ϕ∗
∞) + β3(ϕ

∗ − ϕ∗
∞)2

]
,

(2)

f ∗ ∂θ
∗

∂x∗
+ g∗

∂θ∗

∂y∗
= α

∂2θ∗

∂y∗2
+ τ

[
DB

∂ϕ∗

∂y∗
∂θ∗

∂y∗
+
Dθ

θ∞

(
∂θ∗

∂y∗

)2
]

+
σB2

0

ρcp
(Fe − f ∗)2 +

Q

ρcp
(θ∗ − θ∗∞),

(3)
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Figure 1. Model configuration of stagnation point flow.

f ∗∂ϕ
∗

∂x∗
+ g∗

∂ϕ∗

∂y∗
= DB

∂2ϕ∗

∂y∗2
+
Dθ

θ∞

∂2θ∗

∂y∗2
− k1(ϕ

∗ − ϕ∗
∞), (4)

subjected to

f ∗ = Fw(x
∗), g∗ = 0 , θ∗ = θ∗w(x

∗), ϕ∗ = ϕ∗
w(x

∗) = ϕ∗
∞ + dx∗ at y∗ = 0,

f ∗ → Fe(x
∗) , θ∗ → θ∗∞ , ϕ∗ → ϕ∗

∞ as y∗ → ∞,
(5)

where α and g are the thermal diffusivity and acceleration due to gravity, respectively; β0 and β1
are the coefficient of thermal expansion, respectively; DB and B0 are the Brownian diffusion coef-
ficient and applied magnetic field, respectively; τ is the ratio of the heat capacity of the nanoparticle
to the base fluid, f ∗ and g∗ are the velocity component in the directions of x and y, respectively; k1
and Q are the chemical reaction constant and heat source/sink, respectively; µ is the coefficient of
viscosity, β3 and β4 are the coefficient of solutal expansion, respectively; ρ and Dθ are the density
and thermophoresis diffusion coefficient, respectively; ν = µ

ρ
is the kinematic viscosity, θ∗and ϕ∗

are the fluid temperature and fluid concentration, respectively; k is the permeability of the porous
medium.

Introduction of the stream function f ∗ = ∂ψ
∂y∗
, g∗ = − ∂ψ

∂x∗ and employing the following similarity
transformation,

η =

(
Fe
νx∗

) 1

2

y∗, ψ = (aν)
1

2x∗f(η), θ(η) =
θ∗ − θ∗w
θ∗w − θ∗∞

, ϕ(η) =
ϕ∗ − ϕ∗

w

ϕ∗
w − ϕ∗

∞
, (6)

then, Equations (1) through (5) are reduced to a simpler form. By simplification, the following
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nonlinear differential equations were obtained:

f ′′′(η) + f(η)f ′′(η)− [f ′(η)]2 + (H +B)[1− f ′(η)]

+ αθ(η)[1− γθ(η)] + βϕ(η)[1− δϕ(η)] + 1 = 0,
(7)

θ′′(η) + Pr [f(η) θ
′(η)− θ(η) f ′(η)] +Nb ϕ

′(η) θ′(η) +Nt (θ
′(η))2

+HPrEc [1− 2 f ′(η) + (f ′(η))2] + Pr ε θ(η) = 0,
(8)

ϕ′′(η) + Sc [f(η)ϕ
′(η)− ϕ(η) f ′(η)−Gϕ(η)] +

Nt

Nb

θ′′(η) = 0, (9)

with boundary conditions{
f(η) = 0, f

′
(η) = b

a
= Z, θ(η) = 1, ϕ(η) = 1 at η = 0,

f
′
(η) → 1, θ(η) → 0, ϕ(η) → 0 as η → ∞,

(10)

where

H = σB2
0

ρa
, B = ν

ak
, Gtx∗ = gβ0(θ∗w−θ∗∞)x∗3

ν2 , Rex∗ = x∗Fe

ν
, λ = Grx∗

Re2x∗
, γ = β1

β0
(θ∗w − θ∗∞),

Gcx∗ = gβ2(ϕ∗
w−ϕ∗

∞)x∗3

ν2 , δ = β3

β2
(ϕ∗

w − ϕ∗
∞), Nb =

τDB(ϕ∗
w−ϕ∗

∞)
α

, Nt =
τDθ∗ (θ∗w−θ∗∞)

θ∗∞α

τ = ρcp
ρcf
, Ec =

(ax∗)2

cp(θ∗w−θ∗∞)
, ε = Q

ρcp
, Sc =

ν
DB
, G = k1

a
, Z = b

a
, Pr =

ν
α
, β = Gcx∗

Re2x∗
,

 (11)

such that: G, Pr represent the chemical reaction parameter and Prandtl number, H represents the
magnetic field, Rex∗ represents the Reynolds number, B represents the permeability parameter, δ
and Nb are the solutal nonlinear parameter and Brownian motion parameter, respectively; Schmidt
number (Sc), magnetic field (H), Gtx∗ and Gcx∗ are Grashof numbers, respectively; α and β are the
buoyancy parameters, respectively; Reynolds number (Rex∗), τ represents ratio of the heat capacity
of nanoparticle to the base fluid, Ec represents the Eckert number, ε and Z are the heat source/sink
parameter and velocity ratio parameter, respectively; Nt and γ are the thermophoresis parameter
and thermal nonlinear parameter, respectively.

2.1. Flow characteristics

As a result of practical applications of flow characteristics, the following physical parameters Cf ,
Nux∗ , and Shx∗ are defined:

Cf =
µ
(
∂f∗

∂y∗

)
y∗=0

ρF 2
e

, Nux∗ =
−x∗

(
∂θ∗

∂y∗

)
y∗=0

(θ∗w − θ∗∞)
and Shx∗ =

−x∗
(
∂ϕ∗

∂y∗

)
y∗=0

(ϕ∗
w − ϕ∗

∞)
. (12)

The following flow characteristics were obtained while applying Equation (6) to Equation (12):

CfRe
1/2
x∗ = f ′′(0), Nux∗Re

−1/2
x∗ = −θ′(0), Shx∗Re

−1/2
x∗ = −ϕ′(0), (13)

where Rex = Fex
ν

denotes Reynolds number.
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3. Method of Solution

Numerous researchers have proven the accuracy of the Collocation Method. The approach is easy
to use, efficient, and rapid convergence in estimating systems of PDEs and ODEs. The CCM is fully
documented in the works of Idowu et al. (2021), Babatin (2018), Parand et al. (2017), Akolade et
al. (2021b), Uddin et al. (2018), Mallawi et al. (2019), and Javed and Mustafa (2016). Further
studies on this collocation include the work of Kürkçü (2021) and Adel et al. (2021), where a
matrix Bernoulli polynomial is constructed with the implementation of the collocation method.

In this section, the solution to Equations (7) through (9) subjected to the boundary condition (10)
was obtained via the Legendre collocation method with polynomial as the basis function. Also, the
interval [0,∞) is truncated while employing the domain truncation approach [0, L]. Through the
following algebraic mapping:

ξ =
2η

L
− 1, ξ ∈ [−1, 1], (14)

the interval [0, L] is transformed to [-1,1] as defined on the Legendre polynomial. The scaling
parameter L is assumed sufficiently large relative to the boundary layer thickness (Olagunju et al
(2013), Aysun and Sali (2013)).

Employing the Legendre polynomial pj(η), the unknown functions f(η), θ(η)and ϕ(η) are approx-
imated to give a sum of a finite series:

f(η)≈fN(ξ) =
N∑
j=0

ajpj (η) , θ(η)≈θN(ξ) =
N∑
j=0

bjpj (η) , ϕ(η)≈ϕN(ξ) =
N∑
j=0

cjpj (η), (15)

where j= 0, 1, ..., N Newton iteration technique is used with MATHEMATICA 11.0 symbolic
package to generate the 3N+3 algebraic system and determine the 3N+3 unknown coefficients (aj ,
bj and cj), which are then substituted back into equation (15) as an approximate solution.

4. Results and Discussion

Here, numerical results for the flow field and characteristics solutions were obtained while solving
the differential equations (7) through (9) subject to the boundary condition (10) through the use of
the Legendre collocation method with a polynomial as the basis function. For clarity, the effects
of important parameters involved in the flow distributions are shown in Figures 2 through 13. The
numerical results of this work are obtained based on the following fixed data α=0.5, Nt=0.1, δ=0.5,
β=0.5, H=0.5, B=0.5, ε=0.5, Sc=1.0, G=0.5, Ec=0.1, Nb=0.1, Z= -1.0, Pr =1.0 and γ=0.5 as used
by Rakesh and Shilpa (2016) and Nirwana et al. (2020), except otherwise stated. The Skin friction
coefficient is tabulated in Table 1, and the result was found to be in excellent agreement when
compared with those of Wang (2008), Rakesh and Shilpa (2016), and Nirwana et al. (2020) while
setting the embedded parameters to zero with different values of Z for Pr=1.

Apparently, the effect of the Buoyancy parameter α and β on (a) velocity and (b) temperature dis-
tributions is shown in Figures 2 and 3. We noticed that a hike in Buoyancy parameters α and β
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Table 1. Comparison of the Skin friction f ′′(0) values with respect to Z when α, γ, δ, β, H, B, G, ε, Sc, Nt, Ec, Nb are
set to zero and Pr=1.

Z Rakesh and Shilpa (2016) Nirwana et al. (2020) Wang (2008) Present results
-0.25 1.402253 1.402241 1.40224 1.40224
-0.50 1.495685 1.49567 1.49567 1.49567
-0.75 1.489316 1.489299 1.4893 1,4893
-1.0 1.328840 1.328819 1.32882 1.32882

-1.15 1.082262 1.082244 1.08223 1.08223
-1.20 0.932512 - - 0.932474

-1.2465 - 0.584295 0.5843 0.584356
0 1.2325975 1.232588 1.232588 1.23259

0.1 1.1465699 1.146561 1.146560 1.146560
0.2 1.0511379 1.051130 1.051130 1.051130
0.5 - 0.713294 0.71330 0.713295
2.0 -1.887316 -1.887307 -1.88730 -1.88731
5.0 -10.26479 -10.264749 -10.26475 -10.26470

accelerated velocity and diminished temperature profiles. Physically, a decrease in the fluid tem-
perature θ(η) causes an increase in fluid density ρ. Therefore, the buoyancy in the fluid, which is
directly proportional to the density, increased at the cooling buoyancy rate. Figure 4 displays the
dependence of the magnetic field (H) on temperature and velocity distribution profile. The pres-
ence of H reduces the θ(η) and accelerates the momentum field accordingly. Physically, Lorentz’s
force tends to improve the fluid velocity due to the nature of the velocity ratio of the fluid. Without
repetition, the same behavior observed in Figure 4 is also experienced in Figure 5 (a and b) while
taking into consideration the variation of porosity parameter (B) with the velocity and temperature
distributions.

The influence of quadratic thermal convection (γ) on energy and velocity distribution is profiled in
Figure 6. We identified that increasing the thermal convection (γ) accelerates the temperature and
diminishes the velocity profiles. Physically, to predict an accurate transfer of heat and mass across
the flow field, thermal conductivity material needs to be improved for the convection process.
Figure 7 (a and b) presents the influence of heat source parameters on θ(η)and φ(η) profiles. It
is realized that higher values of the heating parameter ε diminished the φ(η) and accelerated the
temperature θ(η) distributions. Naturally, the temperature tends to rise due to the absorption of
heat. The response Ec on the φ(η) and θ(η) distribution is shown in Figure 8. An increase in the
temperature and a decrease in the concentration distributions is noticed with a hike in the Eckert
number. Figure 9 shows variation in Pr with temperature θ(η) and φ(η) profiles. The results show
that with a rise in the Prandtl number Pr, the θ(η) distribution rises to a particular point on the
flow field and then decreases. At the same time, the reverse is the case in the behavior of the φ(η)
profile.

Figure 10 portrays the response of Nb on θ(η) and φ(η) profiles. It is seen that with a rise in Brow-
nian motion, the temperature profile accelerated while concentration rose to a particular point on
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8 T.L. Oyekunle et al.

the flow field and then declined. Naturally, the collision caused by nanofluid particles due to a
hike in the Brownian motion generates thermal energy, which speeds up the temperature profiles.
The impact of Nt on θ(η) and φ(η) distributions is depicted in Figure 11. It is discovered that the
temperature is enhanced with an increase in Nt. In the case of concentration profiles, a decrease is
first noticed before an increase with a rise in Nt. The influence of velocity ratio (Z) on temper-
ature and nanoparticle fraction φ(η) is displayed in Figure 12. The decrease in the velocity ratio
gives rise to temperature distributions, while the nanoparticle volume fraction decreases with Z to
a particular point on the flow field and then increases. The effect of G and Sc on the nanoparti-
cle volume fraction φ(η) is presented in Figure 13a. The observations in Figure 13a show that a
hike in Sc slows down the concentration profiles. Physically, a rise in Schmidt’s number entails a
reverse trend in molecular diffusion. Likewise, in Figure 13b, a higher value of chemical reaction
accelerated the mass transfer as a result of destructive chemicals. It diminished the concentration
profiles due to an increase in mass transfer and the Solutal boundary layer thickness reduction as a
result of destructive chemicals.

5. Conclusion

In this paper, numerical solutions have been obtained to investigate MHD nanofluid stagnation flow
over a shrinking plate in a porous medium with the presence of buoyancy and heat sources. Gov-
erning partial differential equations were transformed into sets of nonlinear differential equations
using a similarity variable. The transformed equations governing the fluid flow were solved while
employing the collocation method with the aid of assumed Legendre functions of the first kind.
The solution to the equations was obtained using MATHEMATICA 11.0 software. Numerical re-
sults were obtained for the effect of various parameters of interest on the fluid flow characteristics.
Thereby, tables and graphs are presented and discussed. With respect to the present investigations,
the following observations are made:

(1) Flow momentum is accelerated, and the energy field diminished with injection in buoyancy,
magnetic field, and Darcy parameters, while a hike in nonlinear thermal convection (γ) slow-
down the velocity f ′

(η) and speedup the temperature profiles;
(2) An increase in heat source parameter (ϵ) and Eckert number (Ec) retard the nanoparticle vol-

ume fraction but gave rise to the temperature field;
(3) The temperature profile rises with Brownian motion (Nb), while concentration is elevated to a

particular point on the flow field and then declined;
(4) The temperature distributions rise with the thermophoresis parameter (Nt) and decrease to a

particular point before an increase is observed for concentration profiles;
(5) The higher values of the velocity ratio reduce the temperature distributions, while the nanopar-

ticle volume fraction τ increases with Z to a particular point on the flow field and then de-
creases;

(6) A hike in Schmidt number (Sc) slowed down the concentration profiles, and a higher value of
chemical reaction (G) diminished the concentration profiles.
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Figure 2. Buoyancy parameter (α) influence on f ′(η) and θ(η) profiles
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Figure 3. Buoyancy parameter (β) influence on f ′(η) and θ(η) profiles
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Figure 4. Magnetic field (H) influence on f ′(η) and θ(η) profiles
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Figure 5. Porosity parameter (B) effect on f ′(η) and θ(η) profiles
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Figure 6. Nonlinear thermal convection (γ) influence on f ′(η) and θ(η) profiles
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Figure 7. Impact of Heat source parameter (ε) on θ(η) and φ(η) distributions
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Figure 8. Eckert number Ec response on θ(η) and φ(η) distributions
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Figure 9. Influence of Pr on θ(η) and φ(η) distributions
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Figure 10. Influence of Nb on θ(η) and φ(η) distributions
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Figure 11. Thermophoresis parameter (Nt) parameter on θ(η) and φ(η) distributions
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Figure 12. Velocity ratio parameter (Z) influence on θ(η) and φ(η) distributions
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Figure 13. Influence of G and Sc and on φ(η) profiles

Table 2. Computational values of Skin friction f ′′(0), Nusselt number θ′(0), and Sherwood number −φ(0) with in-
volved parameters of the problem

H Pr Ec G Nb Nt α B -Z Sc γ δ ϵ B f ′′(0) θ′(0) −φ(0)
0.5 1.0 0.1 0.5 0.1 0.1 0.5 0.5 1.0 1.0 0.5 0.5 0.5 0.5 2.76094 0.08843 1.08604
1.0 3.10851 0.06938 1.12281

1.2 2.75921 0.17595 1.17899
0.5 2.75946 0.31204 1.28542

0.7 2.75724 0.09066 1.17988
0.5 2.76382 0.16280 0.73671

0.2 2.75837 0.10239 1.55071
1.0 2.92871 0.03578 1.08039

1.0 2.90893 0.04447 1.08124
1.2 2.82801 0.27725 1.11324

1.3 2.75613 0.09249 1.11714
1.0 2.62265 0.12596 1.09129

1.0 2.68129 0.10521 1.08834
0.7 2.76032 0.26494 1.21211

0.7 2.90532 0.05809 1.08205
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