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Abstract 
 
This study aims to investigating the effect of magnetic field and porosity on non-Newtonian flow 
of blood through a tapered, and overlapping stenosed artery. The Casson fluid model represents 
the rheological character of blood. A tapered and overlapping stenosed artery influences the 
hemodynamic behavior of the blood flow. The problem is solved by using analytical techniques 
with the help of boundary conditions, and results are displayed graphically for different flow 
characteristics like pressure drop, shear stress, velocity profile and stream function. It is realized 
that rises in Darcy number and Womersley number accelerates the velocity profile and reduces the 
radial direction, but increases in magnetic field reduces the velocity profile. The pressure drop is 
increasing with an increase in magnetic field and Womersley number but drops with an increase 
in the value of Darcy number. The wall shear stress is increasing with an increase in the value of 
magnetic field, at a stenosis region but converse at a non-stenosis region, it drops by ascending in 
the value of Darcy number, and increases as Womersley number rising, and the wall shear stress 
decelerate as tapered angle rises. The interesting outcomes collected in this literature review and 
survey conducted can aid the medical practitioners to predict blood movement in an atherosclerotic 
arteries. More so, from this study we discovered that magnetic field parameter possesses the ability 
to reduce viscosity of the blood, a leading cause of heart attack, strokes, anaemia and many other 
cardiovascular diseases 

 
Keywords: Non-Newtonian flow; Casson fluid; Wall shear stress; Stream function; Pressure 

drop; Blood flow; Overlapping stenosis artery 
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1. Introduction 
 

The process of progressive thickening and hardening of the walls of medium-sized and large 
arteries due to cholesterol on their inner lining is called atherosclerotic. The stenosis of an artery 
could be caused by high cholesterol when it grows on the artery's inner wall. This buildup, referred 
to as atherosclerosis, can accumulate within the artery to an extent where it reduces blood flow to 
organs of the body. When blood flow is reduced, oxygen and nutrients cannot travel to the tissues 
that need it, which can lead to many coronary artery diseases such as heart attack, strokes, and 
peripheral vascular diseases, which has been the significant causes of death in the world. The 
importance of the hemodynamic factors played a significant role at the beginning and the 
propagation of atherosclerosis which took the attention of Mann et al. (1938). Stenosis growth 
problems under various fluid flow situations have been addressed by many researchers such as 
Keane et al. (2003), said stenosis could be regarded generally as an abnormal narrowing of a body 
passage (Kuzma et al. (2018)). The restriction in blood supply to tissues, causing a shortage of 
oxygen needed (by the brain) for cellular metabolism, is called ischemia. It can be because of 
stenosis (obstruction) in the blood vessel, supplying the blood in that part. Sherwood (2016), 
observed that stenosis is a significant cause of serious circulatory disorders, affecting many 
hydrodynamic factors like resistance to flow, wall shear stress, and apparent viscosity. Aortic 
stenosis, Hypertrophic subaortic stenosis, Mitral stenosis, Pulmonary stenosis, Renal artery 
stenosis, Spinal stenosis, Subaortic stenosis, Tracheal stenosis, Tricuspid stenosis are common 
types of stenosis. 
 
Newtonian and non-Newtonian fluids are ubiquitous in industries and medicine processes. The 
blood exhibits as a non-Newtonian fluid when it flows through vessels with a smaller radius at a 
low shear rate, whereas it behaves as a Newtonian fluid while flowing through vessels with a larger 
radius at a high shear rate (Eldesoky (2012); Jain et al. (2011)). Taylor (1959) observed that at low 
shear (lower than 100s−1) rate, blood behaves as a non-Newtonian fluid flow and at a high shear 
rate (1000s−1), blood exhibits Newtonian fluid flow property in large arteries like the aorta. A low 
shear rate is noticed in the stenotic region, and blood flow through the stenosed artery behave like 
non-Newtonian characteristics. Moreno and Bhanagar (2013) modelled realistic physiological 
flow conditions calculating for the unsteady flow conditions (systole/diastole) also with the 
movement from laminar to a turbulent state. Their analyzes clearly stated that, at the same level of 
stenosis, (i) the presence of turbulence, (ii) location of movement to turbulence, (iii) turbulence 
intensity, and (iv) region of turbulence are type-dependent. Prakash et al. (2015) studied the effects 
of stenosis on non-Newtonian flow of blood in blood vessels. The effect of stenotic geometry and 
non-Newtonian property of blood flow through arterial stenosis was examined by Somchai Sriyab 
(2020). 
 
Many researchers think that the hydrodynamic factors can help in the fundamental understanding, 
diagnosis and treatment of these disorders. Verma et al. (2004) observed the shape of stenosis to 
blood flow through an artery with mild stenosis and concluded that for a constant flow rate, the 
wall shear stress rises as the stenosis increases in size. Misra and Shit (2006) studied the blood 
flow through the arterial segment, taking blood flow as Hershal-Bulkley fluid. They discovered 
that the skin friction, and the resistance to flow are maximum at the throat of the stenosis and 
minimum at the end. Ali et al. (2009) studied the effect of an axially symmetric time-dependent 
growth into the lumen of a tube for constant cross-section through which a Newtonian fluid is 
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steadily flowing. They observed the structure of flow through an arterial model with single or 
double sinusoidal stenosis, assuming that the arterial blood flow is quasi-steady. Shah and Siddiqui 
(2011) analyzed the influence of peripheral layer viscosity on physiological characteristics of 
blood flow through a stenosed artery using the Power-law fluid model. They found that the 
resistance to flow rises as stenosis size, and peripheral layer viscosity increases, and the peripheral 
layer viscosity of blood in diabetic patients is higher than in non-diabetic patients, resulting in 
higher resistance to blood flow. Thus, diabetic patients with higher peripheral layer viscosity are 
more prone to high blood pressure. Therefore, the resistance to blood flow in the case of diabetic 
patients may be reduced by reducing the viscosity of the plasma. They also, investigated that the 
wall shear stress decreases as the stenosis shape parameter increases, but in the case of increasing 
stenosis size, stenosis length, and peripheral layer viscosity, wall shear stress is increases. 
Mathematical modelling of Non-Newtonian blood flow through an artery in the Presence of 
Stenosis was analyzed by Pankaj and Surekha (2013). Argyropoulos and Markatos (2015) 
reviewed the recent advances and success of turbulent computing flows. Their review was 
primarily concerned with the most recent methods for computer predictions such as Direct 
Numerical Simulation (DNS) and Large Eddy Simulation (LES) to flow in pipes and free-surface 
flows. They noticed that the LES was the most accurate among the methods available for practical 
computations. In favor of the above work, Hye and Paul (2015) proposed that the spiral effect 
should be incorporated to get a better insight into the transition-to-turbulence flow of blood 
through arterial stenosis. Their results showed that the spiral flow affected the turbulence kinetic 
energy in the post stenosis region, and the wall pressure and shear stress remained almost 
unchanged by the spiral velocity. Mahalingam et al. (2016) studied the nature of blood flow 
through stenosed coronary arteries by numerical analysis of the effect of turbulence transition on 
the hemodynamics parameters. They found that the primary biological effect of blood turbulence 
is the change in wall shear stress on the endothelial cell membrane, while the local oscillatory 
nature of the blood flow influences some physiological changes in the coronary artery. Thakur et 
al. (2018) used a fluid hydrodynamic model in the magnetized plasma sheath in a cylindrical 
coordinate system. Puskar et al. (2020) examined the analysis of blood flow through the artery 
with mild stenosis. Aniruddha et al. (2022) explored mathematical modelling of pulsatile blood in 
straight rigid artery system. 
 
Magnetohydrodynamics (MHD) is to study of the magnetic properties and behavior of electrically 
conducting fluids. The magnetic field with Newtonian fluid and non-Newtonian fluids has broad 
applications in bio-fluid mechanics, chemical engineering and various industries. If a magnetic 
field is applied to an electrically conducting liquid in motion, it induces electric and magnetic 
fields. Radiative heat transfer to blood flow through a stenotic artery in the presence of erythrocytes 
and magnetic field was investigated by Prakash and Makinde (2011). Chinyoka and Makinde 
(2014) examined the computational dynamic of arterial blood flow in the presence of magnetic 
field and thermal radiation therapy. Dada and Alamu (2020) studied heat and mass transfer in 
blood flow through a tapered artery with mild stenosis. They discovered that the temperature blood 
rises as micropolar spin parameter increases and its concentration is drop with an increase in the 
micropolar parameter or coupling number. Das et al. (2021) looked at Hall and ion slip currents 
impact on electromagnetic blood flow conveying hybrid nanoparticles through an endoscope with 
peristaltic waves. Hemodynamical analysis of MHD two phase blood flow through a curved 
permeable artery having variable viscosity with heat and mass transfer was studied by Sharma et 
al. (2022). 
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In a case of overlapping, there is a suturing of a layer of tissue above or under another in order to 
gain strength. Mathematical modelling of blood flow through overlapping arterial stenosis was 
examined by Chakravarty and Mandal (1994), who observed that the severity of the overlapping 
stenosis affects the resistance to flow greatly. The flux is inversely proportional to the resistive 
impedance arising out of the stenotic flow in vivo, and that the wall shear stress is inversely 
proportional to the amplitude of the pressure gradient. Srivastava et al. (2010) analyzed the 
increased impedance and other flow characteristics during artery catheterization with composite 
stenosis, assuming that the flowing blood behaves like a Newtonian fluid. Mathematical modelling 
of blood flow through three-layered stenosed artery analyzed by Sapna et al. (2017). Babatunde 
and Dada (2021) studied the effects of hematocrit level on blood flow through an overlapping 
stenosed artery with porosity.  Afiqah and Sankar (2023) did a review on non-Newtonian fluid 
models for multilayered blood rheology in constricted arteries. 
 
In the present work, the blood flow through an artery was described by Navier-Stokes equations 
which were presented along with the continuity equation in cylindrical form as the model 
employed, and Casson fluid model is used to simulate the rheological characteristics of blood flow. 

The new research work has combined the effects of magnetic field, porosity and non-Newtonian 
flow through a tapered, and overlapping stenosed artery has not been considered to the best 
knowledge of the authors. 

 

2.  Formulation of the Problem  

The blood flow is modelled in arteries by Navier-Stokes equations for fluid flow through a cylinder 
(Young (1968) and Kapur (1985)). Let the three components of velocities along the radius vector, 
perpendicular to the radius vector, and parallel to the axis of z, be 𝑤𝑤𝑟𝑟, 𝑤𝑤𝜃𝜃, and 𝑤𝑤𝑧𝑧 , respectively, 

 
                             1

𝑟𝑟
𝜕𝜕
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where r, 𝜇𝜇, 𝜌𝜌, p,𝑘𝑘′,𝛽𝛽0, and 𝜎𝜎 are the radius of the artery (m), dynamic viscosity of the blood (pa.𝑠𝑠), 
density of the blood sample (kg/𝑚𝑚3), pressure (pa𝑚𝑚−1), permeability of Porous medium, intensity 
of magnetization, and electric conductivity of the blood, respectively. 
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2.1 The constitutive relations 

The Casson fluid model was implemented to capture the rheological effects of the blood (Kim et 
al. (2009)). The constitutive relations between an initial yield stress and Casson fluid model term 
becomes: 
 
                                    √ 𝜏𝜏 = √𝑘𝑘 × �𝛾̇𝛾 + � 𝜏𝜏𝑦𝑦    when    𝜏𝜏 ≥  𝜏𝜏𝑦𝑦,                                            (4) 

and 
                                       𝛾̇𝛾 = 0     when    𝜏𝜏 ≥  𝜏𝜏𝑦𝑦,                                                                      (5) 

 
 𝜏𝜏𝑦𝑦 is the yield stress (N.𝑚𝑚−2), 𝛾̇𝛾 is shear rate (𝑠𝑠−1), k is Casson model constant (Pa.s), 
respectively.  

The mathematical expression for the geometry (Figure 1) of the present problem is given as 
Mekheimer and El Kot (2012), 

 

𝑅𝑅(𝑧𝑧,𝑡𝑡)
𝑅𝑅0

= �
�𝜁𝜁𝑧𝑧
𝑅𝑅0

+ 1� − 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿∅
𝑅𝑅0𝐿𝐿0

(𝑧𝑧 − 𝑑𝑑) �11 − 94
3𝐿𝐿0

(𝑧𝑧 − 𝑑𝑑) + 32
𝐿𝐿02

(𝑧𝑧 − 𝑑𝑑)2            

�𝜁𝜁𝑧𝑧
𝑅𝑅0

+ 1�Ω(t),                                                                      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,
                                    (6) 

−  32
3𝐿𝐿0

3 (𝑧𝑧 − 𝑑𝑑)3�Ω(t),𝑑𝑑 ≤ 𝑧𝑧 ≤ 𝑑𝑑 + 3𝐿𝐿0
2

, 

the time dependent parameter Ω(t) is given by 

                                   Ω(t) = 1 − a(cos𝜔𝜔t − 1)e[−a𝜔𝜔t],                                                        (7) 

where R(z, t) represents the radius of the tapered arterial segment in the constricted region, 𝑅𝑅0 
represents the constant radius of the normal artery in the absence of stenosis, φ is the tapered angle, 
3𝐿𝐿0
2

 is the length of overlapping stenosis, d is the location of the stenosis, δcosφ is taken to be the 
critical height of the overlapping stenosis, and 𝜁𝜁 = (tan φ) represents the slope of the tapered 
vessel. Categorizing φ<0 as converging tapering, φ=0 as non-tapered artery and φ>0 as the 
diverging tapering in order to explore the possibility of the different shapes of the artery.  
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Figure 1. Geometry of the problem 

 

Consider an axisymmetric, unsteady and fully developed flow of blood through a circular 

cylindrical tube, i.e., 𝑤𝑤𝜃𝜃 = 0, 𝜕𝜕𝑤𝑤
𝑧𝑧

𝜕𝜕𝜕𝜕
= 0, and 𝑤𝑤𝑟𝑟 = 𝑤𝑤0. Take the blood flow as non-Newtonian fluid 

for small vessel system. The vessel with radius less than 0.05 mm can be treated as small vessel 
and dynamic viscosity (𝜇𝜇) in Equation (2) and can be modified in terms of effective viscosity 
(𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒) and can be evaluated in terms of initial yield stress applying Casson fluid model. 

Equations (1) to (3) become 
 

                     𝜌𝜌 𝑑𝑑𝑤𝑤0
𝑑𝑑𝑑𝑑

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 �
𝜕𝜕2𝑤𝑤0
𝜕𝜕𝑟𝑟2

+ 1
𝑟𝑟
𝜕𝜕𝑤𝑤0
𝜕𝜕𝜕𝜕
� − 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 �

1
𝑘𝑘′

+ 𝛽𝛽2𝜎𝜎𝑎𝑎2�𝑤𝑤0,                           (8) 
 

where 𝑤𝑤0 is the velocity of the blood flow, and 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 is the effective viscosity. 
 
The following non-dimensional variables are introduced to simplify the governing model 
equations are: 
 

                 𝑧𝑧̅ = 𝑧𝑧
𝑅𝑅0

; 𝑟̅𝑟 = 𝑟𝑟
𝑅𝑅0

;  𝑤𝑤� = 𝑤𝑤0
𝑊𝑊∞

;𝐷𝐷𝐷𝐷 = 𝑘𝑘′
𝑅𝑅02

;  𝑀𝑀 = 𝛽𝛽0𝑅𝑅0√𝜎𝜎; 𝑡𝑡̅ = 𝑡𝑡 × 𝜔𝜔;  𝑝̅𝑝 = 𝑝𝑝
𝜌𝜌𝑊𝑊∞

2 ,             (9) 
 

where z is the dimensional axial position (mm), 𝑅𝑅0 is the constant radius of the normal artery in 
the absence of stenosis (mm), r is the dimensional radial position (mm), w is the velocity (m/s), 
𝑊𝑊∞ is the average velocity (m/s), t is the time, 𝜔𝜔 is the oscillating frequency (rad/s). The Non-
dimensional variables are represented with bar. 
 
Substituting Equation (9) into Equation (8) resulted to the non-dimensional form as: 
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          𝜌𝜌𝑊𝑊∞𝜔𝜔�
𝑑𝑑𝑤𝑤�
𝑑𝑑𝑡̅𝑡
� = −𝜌𝜌𝑊𝑊∞

2

𝑅𝑅0

𝜕𝜕𝑝̅𝑝
𝜕𝜕𝑧̅𝑧
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�𝜕𝜕
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𝑊𝑊∞
𝑅𝑅02
� 1
𝐷𝐷𝐷𝐷

+ 𝑀𝑀2�𝑤𝑤� ,                (10) 
with the boundary conditions 
                                   𝑤𝑤� = 0 at 𝑟̅𝑟 = 𝑅𝑅(𝑧𝑧,𝑡𝑡)

𝑅𝑅0
, (no-slip condition)                                                 (11) 

                                    𝑤𝑤� = 0  at   𝑟̅𝑟 = 0, 𝑡𝑡 ≥ 0.                                                                       (12) 
 
Dividing through by 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒

𝑊𝑊∞
𝑎𝑎2

 resulted to: 
 

                      𝛼𝛼2 �𝑑𝑑𝑤𝑤�
𝑑𝑑𝑡̅𝑡
� = −𝑅𝑅𝑅𝑅 𝜕𝜕𝑝̅𝑝

𝜕𝜕𝑧̅𝑧
+ �𝜕𝜕

2𝑤𝑤�
𝜕𝜕𝑟̅𝑟2
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𝑟̅𝑟
𝜕𝜕𝑤𝑤�
𝜕𝜕𝑟̅𝑟
� − � 1

𝐷𝐷𝐷𝐷
+ 𝑀𝑀2�𝑤𝑤� ,                                 (13) 

where 𝛼𝛼 = 𝑅𝑅0 �
𝜔𝜔𝜔𝜔

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒� �
1
2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅 = 𝑊𝑊∞𝜌𝜌𝑅𝑅0 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒� , 

𝛼𝛼 is the Womersley number and Re is the Reynolds number 
 
3. Analysis 

 
Pulsatile pressure gradient may be expressed in terms of frequency and time limit for an unsteady 
state,  

                                          𝜕𝜕𝑝̅𝑝
𝜕𝜕𝑧̅𝑧

= −𝑃𝑃0𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖,                                                                          (14) 
the pumping action of the heart gives rise to oscillatory flow of the blood. We assume 

                                            𝑤𝑤�(𝑟𝑟, 𝑡𝑡) = 𝑤𝑤�(𝑟𝑟)0𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖  .                                                            (15) 
 

The corresponding boundary conditions: 
                                  𝑤𝑤�0 = 0    at 𝑟̅𝑟 = 𝑅𝑅(𝑧𝑧, 𝑡𝑡), (no-slip condition)                                      (16) 
                                 𝑤𝑤�0 = 0         at     𝑟̅𝑟 = 0, 𝑡𝑡 ≥ 0,                                                           (17) 

where 𝛾𝛾2 = 𝛼𝛼2 � 1
𝐷𝐷𝐷𝐷

+ 𝑀𝑀2 + 𝑖𝑖𝑖𝑖�. 
 
Applying the transformation ℎ = 𝑟̅𝑟

𝑅𝑅(𝑧𝑧,𝑡𝑡)
 in the Equations (13), (16), and (17) we have: 

 
                          �ℎ2 𝜕𝜕

2𝑤𝑤�0
𝜕𝜕ℎ2

+ ℎ 𝜕𝜕𝑤𝑤�0
𝜕𝜕ℎ
� − 𝛾𝛾2ℎ2𝑤𝑤�0 = 𝑅𝑅(𝑧𝑧, 𝑡𝑡)2𝑅𝑅𝑅𝑅𝑃𝑃0,                                         (18) 

 
                                    𝑤𝑤�0 = 0    at  ℎ = 1,                                                                  (19) 
                                    𝑤𝑤�0 = 0  at   ℎ = 0, 𝑡𝑡 ≥ 0.                                                       (20) 

 
Now, the homogeneous solution of Equation (18) is: 
 

                        �ℎ2 𝜕𝜕
2𝑤𝑤�0
𝜕𝜕ℎ2

+ ℎ 𝜕𝜕𝑤𝑤�0
𝜕𝜕ℎ
� − 𝛾𝛾2ℎ2𝑤𝑤�0 = 0.                                                  (21) 

 
The above Equation (21) is a modified Bessel differential equation; therefore, its solution can be 
given as: 

                             𝑤𝑤�0(ℎ) = 𝐶𝐶1𝐼𝐼0(𝛾𝛾ℎ) + 𝐶𝐶2𝐾𝐾0(𝛾𝛾ℎ) ,                                                 (22) 
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𝐶𝐶2 = 0, as the solution is bounded at ℎ = 0. Hence, Equation (22) is modified as: 
 

                                         𝑤𝑤�0(ℎ) = 𝐶𝐶1𝐼𝐼0(𝛾𝛾ℎ) .                                                           (23) 
 
The particular solution of Equation (18) in terms of velocity, which gives: 
 

                                       𝑤𝑤�0𝑝𝑝(ℎ) = 𝑅𝑅(𝑧𝑧,𝑡𝑡)2𝑅𝑅𝑅𝑅𝑃𝑃0
𝛾𝛾2  .                                                         (24) 

The general solution is obtained by adding Equations (24) and (23) together: 
 

                               𝑤𝑤�0𝑔𝑔 = 𝐶𝐶1𝐼𝐼0(𝛾𝛾ℎ) + 𝑅𝑅(𝑧𝑧,𝑡𝑡)2𝑅𝑅𝑅𝑅𝑃𝑃0
𝛾𝛾2  .                                                   (23) 

In order to solve arbitrary coefficient 𝐶𝐶1 in Equation (21), the boundary condition based on 
Equation (20) can be modified as: 
 

                                               𝐶𝐶1 = −𝑅𝑅(𝑧𝑧,𝑡𝑡)2𝑅𝑅𝑅𝑅𝑃𝑃0
𝛾𝛾2  .                                                        (24) 

 
The complete solution of Equation (18) in terms of non-dimensional pulsating velocity profile as 
a function of non-dimensional radial position can be obtained as: 
 

                                        𝑤𝑤� = �𝑅𝑅(𝑧𝑧,𝑡𝑡)2𝑅𝑅𝑅𝑅𝑃𝑃0
𝛾𝛾2 �2 − 𝐼𝐼0(𝛾𝛾ℎ)�� 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 .                                    (25) 

 

The volumetric flow rate, Q, is defined as 

                                        𝑄𝑄 = ∫ 2𝜋𝜋𝑟̅𝑟𝑤𝑤�𝑑𝑑𝑟̅𝑟𝑅𝑅(𝑧𝑧,𝑡𝑡)
0   .                                                             (26) 

 
After substituting Equation (25) into Equation (26), and integrating, we have 

                         𝑄𝑄 =  2𝜋𝜋 𝑅𝑅(𝑧𝑧,𝑡𝑡)2𝑅𝑅𝑅𝑅𝑃𝑃0
𝛾𝛾2 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 ∫ 𝑟̅𝑟𝑅𝑅(𝑧𝑧,𝑡𝑡)

0 ��2 − 𝐼𝐼0(𝛾𝛾ℎ)��𝑑𝑑𝑟̅𝑟 .                           (27) 
After simplification, we have: 

                             𝑄𝑄 = 2𝜋𝜋𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝑅𝑅(𝑧𝑧,𝑡𝑡)2𝑅𝑅𝑅𝑅𝑃𝑃0
𝛾𝛾2 [𝑅𝑅(𝑧𝑧, 𝑡𝑡)2 − 𝑅𝑅(𝑧𝑧, 𝑡𝑡)𝐼𝐼1(𝛾𝛾ℎ)] .                         (28) 

Then, the pressure gradient can be written as: 
 

                                𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑄𝑄𝛾𝛾2

2𝜋𝜋𝑅𝑅(𝑧𝑧,𝑡𝑡)2𝑅𝑅𝑅𝑅[𝑅𝑅(𝑧𝑧,𝑡𝑡)2−𝑅𝑅(𝑧𝑧,𝑡𝑡)𝐼𝐼1(𝛾𝛾ℎ)] .                                                 (29) 
 
Integrating Equation (29) along the length of the artery and using the condition that 𝑃𝑃 = 𝑃𝑃0 at 𝑧𝑧 =
0 and 𝑃𝑃 = 𝑃𝑃1 at 𝑃𝑃 = 𝐿𝐿, we obtain: 

 
                            𝑃𝑃1 − 𝑃𝑃0 = 𝑄𝑄𝛾𝛾2

2𝜋𝜋𝜋𝜋𝜋𝜋 ∫ (𝑅𝑅(𝑧𝑧, 𝑡𝑡))−1[𝑅𝑅(𝑧𝑧, 𝑡𝑡) − 𝐼𝐼1(𝛾𝛾ℎ)]−1𝑑𝑑𝑑𝑑𝐿𝐿
0  ,                       (30) 

where 𝑅𝑅(𝑧𝑧,𝑡𝑡)
𝑅𝑅0

  is given by Equation (6). 
 
The pressure drop along the length of the stenotic region is 
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                                ∆𝑃𝑃 = 𝑄𝑄𝛾𝛾2

2𝜋𝜋𝜋𝜋𝜋𝜋 ∫ (𝑅𝑅(𝑧𝑧, 𝑡𝑡))−1[𝑅𝑅(𝑧𝑧, 𝑡𝑡) − 𝐼𝐼1(𝛾𝛾ℎ)]−1𝑑𝑑𝑑𝑑𝑑𝑑+32𝐿𝐿0
𝑑𝑑  .                            (31) 

 
If there is no stenosis, hence 𝛿𝛿 = 0, from Equation (6) �𝑅𝑅(𝑧𝑧, 𝑡𝑡) = (𝜁𝜁𝑧𝑧 + 𝑅𝑅0)Ω(t)�, 
 

               (∆𝑃𝑃)𝑁𝑁 = 𝑄𝑄𝛾𝛾2

2𝜋𝜋𝜋𝜋𝜋𝜋 ∫ �(𝜁𝜁𝑧𝑧 + 𝑅𝑅0)Ω(t)�
−1[(𝜁𝜁𝑧𝑧 + 𝑅𝑅0)Ω(t)− 𝐼𝐼1(𝛾𝛾ℎ)]−1𝑑𝑑𝑑𝑑.𝐿𝐿

0                (32) 
The pressure drop in non-dimensional form is given by 
 

                  𝑃𝑃� = ∆𝑃𝑃
(∆𝑃𝑃)𝑁𝑁

=
∫ (𝑅𝑅(𝑧𝑧,𝑡𝑡))−1[𝑅𝑅(𝑧𝑧,𝑡𝑡)−𝐼𝐼1(𝛾𝛾ℎ)]−1𝑑𝑑𝑑𝑑
𝑑𝑑+32𝐿𝐿0
𝑑𝑑  

∫ �(𝜁𝜁𝑧𝑧+𝑅𝑅0)Ω(t)�
−1[(𝜁𝜁𝑧𝑧+𝑅𝑅0)Ω(t)−𝐼𝐼1(𝛾𝛾ℎ)]−1𝑑𝑑𝑑𝑑𝐿𝐿

0  
 .                                           (33) 

 
The wall shear stress is denoted by 𝜏𝜏 and given by Puskar et al. (2020) and Babatunde and Dada 
(2021) as: 
 

                               𝜏𝜏𝑅𝑅 = −𝑅𝑅
2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= − 𝑄𝑄𝛾𝛾2

4𝜋𝜋𝑅𝑅02�
𝑅𝑅(𝑧𝑧,𝑡𝑡)
𝑅𝑅0

�
2
𝑅𝑅𝑅𝑅�𝑅𝑅0�

𝑅𝑅(𝑧𝑧,𝑡𝑡)
𝑅𝑅0

�−𝐼𝐼1(𝛾𝛾ℎ)�
  .                                       (34) 

Also, in the absence of stenosis in the artery 𝑅𝑅(𝑧𝑧)
𝑅𝑅0

= �𝜁𝜁𝑧𝑧
𝑅𝑅0

+ 1�Ω(t), then, skin-friction of normal 

artery can be expressed as: 

                           𝜏𝜏𝑁𝑁 = − 𝑄𝑄𝛾𝛾2

4𝜋𝜋𝑅𝑅02��
𝜁𝜁𝑧𝑧
𝑅𝑅0
+1�Ω(t)�

2
𝑅𝑅𝑅𝑅�𝑅𝑅0��

𝜁𝜁𝑧𝑧
𝑅𝑅0
+1�Ω(t)�−𝐼𝐼1(𝛾𝛾ℎ)�

 .                                  (35) 

In dimensionless form, the skin-friction can be expressed as: 

                             𝜏𝜏̅ = 𝜏𝜏𝑅𝑅
𝜏𝜏𝑁𝑁

=   
 ��𝜁𝜁𝑧𝑧𝑅𝑅0

+1�Ω(t)�
2
�𝑅𝑅0��

𝜁𝜁𝑧𝑧
𝑅𝑅0
+1�Ω(t)�−𝐼𝐼1(𝛾𝛾ℎ)�

�𝑅𝑅(𝑧𝑧,𝑡𝑡)
𝑅𝑅0

�
2
�𝑅𝑅0�

𝑅𝑅(𝑧𝑧,𝑡𝑡)
𝑅𝑅0

�−𝐼𝐼1(𝛾𝛾ℎ)�
 .                                      (36) 

The streamline flow in fluid dynamic can be defined as the flow in which the fluids flow is in 
separate layers without disruption or coarse of the layers and at a given point, the velocity of each 
fluid particle moving by remains constant with time. The movement of particles of the fluid follows 
a certain order with respect to the particles moving in a straight line parallel to the pipe wall in a 
way that the adjacent layers slide past each other like playing cards. The stream function (𝜓𝜓) of 
the blood flow can be obtain mathematically as integral of 𝑤𝑤 = 1

𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 with 𝜓𝜓 = 0 at 𝑟𝑟 = 𝑅𝑅(𝑧𝑧, 𝑡𝑡), 
then the stream function is given by: 

                       𝜓𝜓 = ∫ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =𝑅𝑅(𝑧𝑧,𝑡𝑡)
0  𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝑅𝑅(𝑧𝑧,𝑡𝑡)2𝑅𝑅𝑅𝑅𝑃𝑃0

𝛾𝛾2 [𝑅𝑅(𝑧𝑧, 𝑡𝑡)2 − 𝑅𝑅(𝑧𝑧, 𝑡𝑡)𝐼𝐼1(𝛾𝛾ℎ)] .                      (37) 
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4. Results and discussions  
 

In this section, stimulation of the effects of blood flow parameters have been shown. From Das et 
al. (2021) and Babatunde and Dada (2021) and others, the values for the parameters are taken. The 
values of the parameters are considered with its range as Re = 0.2, Q = 0.1, L = 3, Da=0.2-0.4, 
M=1-3, z = 1.5, t = 0.2-0.5, 𝑅𝑅0 = 0.5,𝑃𝑃0= 0.3, 𝜔𝜔 = 0.1, 𝛿𝛿 = 0.02 − 0.3 and 𝜃𝜃 = 0. Womersley 
number (𝛼𝛼) in cardiovascular system for a canine of the heart rate 2Hz are ascending aorta is 13.2, 
descending aorta is 11.5, abdominal aorta is 8, femoral artery is 3.5, carotid artery is 4.4, arterioles 
is 0.04. The viscosity of blood for normal adult is 0.3 millipoise.  
 
The results obtained in this work comprises the expression for velocity profile in Equation (25), 
the expression for pressure drop in Equation (33), expression for wall shear stress in Equation (36), 
and the stream function of the blood in Equation (37), and the graphs were shown. Figure 2 
displays the variation of velocity profile against r for different values of Darcy number, Da. It is 
observed that increases in Darcy number enhances the velocity profile and decreases the radial 
direction, r. Figure 3 displays the variation of velocity profile against r for different values of 
Magnetic field, (M). It is observed that increases in magnetic field reduces the velocity profile. It 
happens because magnetic field on blood flow increases the internal viscosity of the blood flow 
which causes rise in the Lorentz force. Figure 4 displays the variation of velocity profile against r 
for different values of Womersley number. It can be seen that velocity reduces as the value of 
Womersley number increases. Figure 5 depicts the variation of velocity profile against r for 
different values of Reynold number. A rise in Reynold number increases the velocity profile. 
Figure 6 shows velocity against r for different values of time. An increment in time taken, t reduces 
the velocity profile. Figure 7 is the velocity against r for different values of tapered angle(𝜑𝜑). It 
depicts that velocity enhances by increases the values of tapered angle (φ). However, diverging 
tapering produces upper bound velocity and converging tapering results in lower bound velocity. 
 
Figures 8, 9 and 10 depict the variation of pressure drop against stenosis height for different values 
of magnetic, M, Darcy number, Da, and Womersley number, 𝛼𝛼, respectively. They showed that 
the pressure drop is increasing with an increase in magnetic field, pressure drop reduces with an 
increase in the value of Darcy number, it also hake as the value of Womersley number, 𝛼𝛼 rises. 
Figures 11, 12, 13, 14, and 15 depict the variation of wall shear stress against z for different values 
of magnetic, M, Darcy number, Da, Womersley number, 𝛼𝛼 Tapered angle, 𝜑𝜑 and stenosis height, 
𝛿𝛿
𝑅𝑅0

, respectively. Figure 11 represents the variation of shear stress against z for different values of 
magnetic field, M. The wall shear stress is increasing with an increase in the value of magnetic 
field, at a stenosis region but converse is the case at non-stenosis region, it drops by ascending in 
the value of Darcy number, and increases as Womersley number rising, and the wall shear stress 
decelerate as tapered angle rises but accelerates as stenosis height moves up. Figures 16 and 17 
display the streamline flows of the blood. 
 
 
5. Conclusions 

 
The effect of magnetic field on non-Newtonian porous blood flows through a tapered and 
overlapping stenotic artery was determined in this present study by considering blood flow through 
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the artery as Casson fluid flow. The resulting equations were solved analytically and are shown as 
follow: 

i. It is found that a rise in the value of Darcy number enhances the velocity profile and 
decreases the radial direction. It happens because Darcy number on blood flow reduces the 
internal viscosity of the blood flow which causes decrease in the Lorentz force.  

ii. It can be seen that increases in magnetic field and time reduces the velocity profile. 
However, blood flow in an applied magnetic field causes increase to induced voltages in 
the aorta and other major arteries of the central circulatory system that can be observed as 
superimposed electrical signals in the electrocardiogram.  

iii. We observed velocity reduces as the value of Womersley number rises.  
iv. It is observed that the rise in Reynold number increases the velocity profile. Moreover, low 

Reynolds number indicates the significant dominance of viscous forces over inertial forces, 
which keeps the flow in the laminar path.   

v. It is found that the wall shear stress is increasing with an increase in the value of magnetic 
field and Womersley number but decrease in the value of tapered angle. 

vi. It is also observed that wall shear stress drops by increment in the value of Darcy number. 
 

This paper is capable of investigating under the purview of a single study the results for many 
models, such as the dilatant Casson fluid model, and the non-Newtonian viscous model. Moreso, 
this paper is very important for the purpose of simulation and validation of different fluid models 
in several cases of atherosclerosis. 
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Figure 2: Velocity against r for different values of Da 
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Figure 3: Velocity against r for different values of M 

 

 
Figure 4: Velocity against r for different values 𝛼𝛼 

 

 
Figure 5: Velocity against r for different values of Reynold number 
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Figure 6: Velocity against r for different values of time 

 
 

 
Figure 7: Velocity against r for different values of 𝜑𝜑 

 

 

 
Figure 8: Pressure drop against 𝛿𝛿

𝑅𝑅0
 for different values of M 
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Figure 9: Pressure drop against 𝛿𝛿

𝑅𝑅0
 for different values of Da 

 
 

 
Figure 10: Pressure drop against 𝛿𝛿

𝑅𝑅0
 for different values of 𝛼𝛼 

 

 
Figure 11: Wall shear stress against z for different values of M 

 

 
Figure 12: Wall shear stress against z for different values of Da 
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Figure 13: Wall shear stress against z for different values of 𝛼𝛼 

 
 

 
Figure 14: Wall shear stress against z for different values of 𝜑𝜑 

 
 

 
Figure 15: Wall shear stress against z for different values of 𝛿𝛿

𝑅𝑅0
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Figure 16: Streamline for 𝛿𝛿 = 0.02, 0.05, 0.1 
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Figure 17: Streamline for 𝜑𝜑 = 0, 0.05,−0.05 
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