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Abstract

An M/M/1 retrial queue with working vacation and interruption in Bernoulli schedule under N-
control pattern is investigated in this article. To describe the system, we employ a QBD analogy.
The model’s stability condition is deduced. The stationary probability distribution is generated by
utilizing the matrix-analytic technique. The performance measures and special cases are designed.
The model’s firmness is demonstrated numerically.

Keywords: Retrial queue; Working vacation; N-control pattern; Conditional stochastic decom-
position; Bernoulli schedule
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1. Introduction

Wallace (1969) investigated the Quasi Birth-Death process (QBD) in Queueing theory using a
Markov chain with a tridiagonal generator. Numerical techniques can be used to analyze congestion
situations when it is impossible to achieve a explicit solution for queueing problems. The Matrix
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2 P. Manoharan et al.

Geometric technique is ideal for this type of solution. Neuts (1981), Latouche and Ramaswami
(1999) proposed the matrix geometric solution to the QBD process. Control policies are important
for managing queue levels at different epochs. Yadin and Naor (1963) first propose the N - policy.

The queueing system with attendant vacation is noteworthy and can be referred in Tian and Zhang
(2006). Servi and Finn (2002) created a modern vacation policy, termed as Working Vacation
(WV), where the attendant delivers a lesser rate of service than during the engaged period. Wu and
Takagi (2006) worked on M/G/1/MWV . Kalyanaraman and Pazhani Bala Murugan (2008) have
worked on the retrial queue with vacation, Pazhani Bala Murugan and Santhi (2013b) have worked
on WV.

Liu (2007) analysed the stochastic decompositions in the M/M/1/WV queue. The M/M/1/WV
queue and WV interruptions was analysed by Li and Tian (2007). Tian (2008) considered
M/M/1/SWV queue. Analysis for the M/M/1/MWV queue and N-policy was studied by
Zhang and Xu (2008). Ye and Liu (2015) discussed the analysis of the M/M/1 Queue with two
vacation policies

Recently retrial queues have been studied widely and it was different from normal queues. Due to
limited waiting space in the retrial queue the customers are forced to stay in the orbit. Whenever
the approaching customers finds that the attendant is engaged, they join the orbit and requests
service from the orbit. An M/M/1 retrial queue with general retrial times was studied by Choi et
al. (1993). The retrial queue and WV was simultaneously considered by Do (2010).

At the time of service completion in the WV period, if the orbit contains N customers, then the
server will opt to terminate the WV (that means WV interruption happens) with a certain prob-
ability or to continue in the WV with a complementary probability. This is termed as Bernoulli
schedule WV interruption. Rao (1965) and Majid and Manoharan (2019) considered vacation in-
terruption queues. Tao et al. (2012) discussed the M/M/1 retrial queue with WV interruption
collision under N - Policy. Manoharan and Ashok (2018) discussed an M/M/1/WV and vaca-
tion interruption under Bernoulli schedule. Li et al. (2018) considered M/G/1 retrial queue with
balking customers and Bernoulli WV interruption.

2. QBD process model

We examine a Markovian retrial queue with WV and interruption in Bernoulli schedule under N-
Control. With the parameter λ, the customer’s inter-arrival times are exponentially distributed. The
retrial requests from the orbit follows a Poisson process with rate α. The attendant will take a WV
when the system gets clear, which is exponentially distributed with parameter θ. The service is
exponentially distributed with parameter µ at the time of the regular busy period. When comparing
to the service offered throughout engaged period, the service provided during the WV is at a slower
rate. WV service is exponentially distributed with parameters η (η < µ). At the time of service
completion during the WV period, if the attendant identifies not less than N customers in the
orbit, then the attendant will opt to terminate WV (WV interruption happens) with probability
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p(0 ≤ p ≤ 1), otherwise the attendant will carry on with the WV period with the complementary
probability q(= 1− p). This is termed as Bernoulli Schedule WV interruption. When a WV ends,
if the attendant identifies not less than N customers in the orbit, then the attendant will return to
engaged period, otherwise will start another WV. Inter-arrival times, inter-retrial periods, service
periods, and WV periods are all presumed to be independent of one another. Let the number of
customers in the orbit at time t is indicated by Q(t) and H(t) represents attendant’s position at
time t. The single attendant might exist in four different states at time t,

H(t) =


0 - attendant is on WV and is unoccupied,
1 - attendant is on WV and is engaged,
2 - attendant is on engaged period and is unoccupied,
3 - attendant is on engaged period and is engaged.

Clearly, {(Q(t), H(t)); t ≥ 0} is a Markov process with state space

Ω = {(m,h) : m ≥ 0, h = 0, 1, 2, 3}.

Figure 1. Transition Diagram of the States

The states infinitesimal generator can be described by using lexicographical sequence as follows:

Q̃ =



D0 F
E D1 F

E D1 F

E D1 F
...

...
...

E D1 F
E D F

E D F
...

...
...


,

where
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D0 =


−λ λ 0 0
η −η − λ 0 0
0 0 0 0
µ 0 0 −µ− λ

, F =


0 0 0 0
0 λ 0 0
0 0 0 0
0 0 0 λ

 ,

D1 =


−α− λ λ 0 0

η −η − λ 0 0
0 0 −α− λ λ
0 0 µ −µ− λ

, E =


0 α 0 0
0 0 0 0
0 0 0 α
0 0 0 0

 ,

D =


−α− λ− θ λ θ 0

qη −λ− η − θ pη θ
0 0 −α− λ λ
0 0 µ −µ− λ

 .

Due to the block structure of matrix Q̃, {(Q(t), H(t)); t ≥ 0} is called a QBD process.

Pr{that the attendant is engaged and does not offer a service to a customer while there is no
customer in the orbit}= 0.

3. The Model’s Stability Condition and Rate Matrix (R)

Theorem 3.1.

The QBD process {(Q(t), H(t)); t ≥ 0} is positive recurrent if and only if α(µ− λ) > λ2.

Proof:

Consider

Sm = E +D + F =


−α− λ− θ α + λ θ 0

qη −θ − η pη θ

0 0 −α− λ α + λ

0 0 µ −µ

 .

Theorem 7.3.1 in Latouche and Ramaswami (1999) offers requirements for positive recurrence of
the QBD process because matrix Sm is reducible. After permutation of rows and columns, and

hence, the QBD is positive recurrent if and only if π
[
0 α
0 0

]
e > π

[
0 0
0 λ

]
e.

Here, all the elements of the column vector e = 1 and π is a unique solution of the sys-

tem π

[
−α− λ α + λ

µ −µ

]
= 0, πe = 1. The QBD process is positive recurrent if and only if

α(µ− λ) > λ2 after some algebraic manipulations. ■
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Theorem 3.2.

If α(µ− λ) > λ2, the matrix quadratic equation R2E+RD+F = 0 has the minimal non-negative

solution R =


0 0 0 0
r1 r2 r3 r4
0 0 0 0
0 0 r5 r6

 , where

r1 =
r2qη

(λ+ α + θ)
, r2 =

t−
√
t2 − 4αλqη(λ+ α + θ)

2αqη
,

and t = [(λ+ α + θ)(λ+ θ + η)− qηλ],

r3 =
r1θ + r4µ+ r2pη

(λ+ α)
, r4 =

αr2r1θ + r1θλ+ r2θ(λ+ α) + r2pη(r2α + λ)

(λ+ µ)(λ+ α)− αr2µ− αr5(λ+ α)− µλ
,

r5 =
λ

α
, r6 =

λ(λ+ α)

µα
.

Proof:

We can consider R =

[
R11 R12

0 R22

]
, from the matrices E,D, F where R11, R12 and R22 are all 2x2

matrices. Substituting R into R2E +RD + F = 0, we get

R2
11

[
0 α
0 0

]
+R11

[
−α− λ− θ λ

qη −λ− η − θ

]
+

[
0 0
0 λ

]
=

[
0 0
0 0

]
,

(R11R12 +R12R22)

[
0 α
0 0

]
+R11

[
θ 0
pη θ

]
+R12

[
−α− λ λ

µ −µ− λ

]
=

[
0 0
0 0

]
,

R2
22

[
0 α
0 0

]
+R22

[
−α− λ λ

µ −µ− λ

]
+

[
0 0
0 λ

]
=

[
0 0
0 0

]
.

From the above set of equations with some computations, we get R11, R22, and R12, respectively
as

R11 =

[
0 0
r1 r2

]
, R22 =

[
0 0
r5 r6

]
and R12 =

[
0 0
r3 r4

]
. ■

4. The Model’s Stationary Probability Distribution

If α(µ− λ) > λ2, assign (Q,H) be the stationary probability distribution of the process
{(Q(t), H(t)); t ≥ 0}. Represent,

πm = (πm,0, πm,1, πm,2, πm,3), m ≥ 0;

5
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πm,h = P{Q = m,H = h} = lim
t→∞

P{Q(t) = m,H(t) = h}, (m,h) ∈ Ω.

Here, π0,2 = 0.

Theorem 4.1.

If α(µ− λ) > λ2, the stationary probability distribution of (Q,H) is indicated by

πm,0 = πN−1,1r1r
m−N
2 , m ≥ N, (1)

πm,1 = πN−1,1r
m+1−N
2 , m ≥ N, (2)

πm,2 = πN−1,1

[
r3r

m−N
2 +

r4r5
r6 − r2

(
rm−N
6 − rm−N

2

)]
+ πN−1,3r5r

m−N
6 , m ≥ N, (3)

πm,3 = πN−1,1
r4

r6 − r2
(rm+1−N

6 − rm+1−N
2 ) + πN−1,3r

m+1−N
6 , m ≥ N, (4)

πm,0 =
η

λ+ α
π0,1 +

η

λ+ α
(π1,1 − π0,1)

1− qm1
1− q1

, 2 ≤ m ≤ N − 2, (5)

πm,1 = π0,1 + (π1,1 − π01)
1− qm1
1− q1

, 2 ≤ m ≤ N − 2, (6)

πm,2 =
µ

λ+ α
π0,3 +

µ

λ+ α
(π1,3 − π0,3)

1− qm2
1− q2

, 2 ≤ m ≤ N − 2, (7)

πm,3 = π0,3 + (π1,3 − π0,3)
1− qm2
1− q2

, 2 ≤ m ≤ N − 2, (8)

πN−1,0 =
−λη

[λη + (r1α− λ− η)(λ+ α)]
πN−2,1, (9)

πN−1,1 =
λ+ α

η
πN−1,0, (10)

πN−1,2 = r3πN−1,1 +
λ

α
πN−2,3, (11)

πN−1,3 =
λ+ α

µ
πN−1,2, (12)

where q1 =
λ(λ+ α)

αη
and q2 =

λ(λ+ α)

αµ
,

π1,1 = −K−1

[
λ(λ+ α + η)

λ+ α
+∆−K

]
π0,1, (13)

6
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π1,0 =
η

λ+ α
π1,1, (14)

π0,0 =
λ+ η

λ
π0,1 −

α

λ
π1,0, (15)

π0,3 =
λ

µ
π0,0 −

η

µ
π0,1, (16)

π1,2 =
λ+ µ

α
π0,3, (17)

π1,3 =
λ+ α

µ
π1,2, (18)

where ∆ =
−λαη

[λη + (r1α− λ− η)(λ+ α)]
− λ− η and

K =

[
λ
1− qN−3

1

1− q1
+

(
∆+

λη

λ+ α

)
1− qN−2

1

1− q1

]
.

The normalization condition can finally be used to determine π0,1.

Proof:

Using the technique from Neuts (1981), we have
πm = (πm,0, πm,1, πm,2, πm,3) = πN−1R

m+1−N

= (πN−1,0, πN−1,1, πN−1,2, πN−1,3)R
m+1−N , m ≥ N .

For m ≥ N,

Rm+1−N =


0 0 0 0

r1r
m−N
2 rm+1−N

2 r3r
m−N
2 +

r4r5(r
m−N
6 − rm−N

2 )

r6 − r2

r4(r
m+1−N
6 − rm+1−N

2 )

r6 − r2
0 0 0 0
0 0 r5r

m−N
6 rm+1−N

6

 ,

substituting Rm+1−N into the above equation, we get (1 − 4). However, π0, π1, ....., πN−1 satis-
fies the equation (π0, π1, ....., πN−1 )B[R]=0, where

B[R] =



D0 F
E D1 F

E D1 F
...

...
...

E D1 F

E RE +D1


,

and

7

Manoharan et al.: M/M/1 Retrial Queue with Working Vacation and Interruption

Published by Digital Commons @PVAMU, 2024



8 P. Manoharan et al.

RE +D1 =


−(λ+ α) λ 0 0

η r1α− λ− η 0 r3α
0 0 −(λ+ α) λ
0 0 µ r5α− λ− µ

.

The following equations are computed from B[R],

−λπ0,0+ηπ0,1+µπ0,3 = 0, (19)

λπ0,0−(λ+η)π0,1+απ1,0 = 0, (20)

−(λ+µ)π0,3+απ1,2 = 0, (21)

−(λ+α)πm,0+ηπm,1 = 0, 1 ≤ m ≤ N−2, (22)

λπm−1,1+λπm,0−(λ+η)πm,1+απm+1,0 = 0, 1 ≤ m ≤ N−2, (23)

−(λ+α)πm,2+µπm,3 = 0, 1 ≤ m ≤ N−2, (24)

λπm−1,3+λπm,2−(λ+µ)πm,3+απm+1,2 = 0, 1 ≤ m ≤ N−2, (25)

−(λ+α)πN−1,0+ηπN−1,1 = 0, (26)

λπN−2,1+λπN−1,0+(r1α−λ− η)πN−1,1 = 0, (27)

−(λ+ α)πN−1,2 + µπN−1,3 = 0, (28)

λπN−2,3+r3απN−1,1+λπN−1,2+(r5α−λ−µ)πN−1,3 = 0, (29)

From (19) to (29), we get (5) to (18) , where
3∑

h=0

∞∑
m=0

πm,h = 1, finally we can get π0,1. ■

5. The Model’s Conditional Stochastic Decomposition

Lemma 5.1.

If α(µ− λ) > λ2, let Q0 be the conditional line length of an M/M/1 retrial queue in the orbit when

the attendant is engaged, then Q0 has a PGF GQ0
(z) =

1− r6
1− r6z

.

Proof:

Consider a Markovian retrial queue. Two inter-valued random variables are used to explain the
system at time t. Let Q•(t) be the number of customers in the orbit at time t,

8
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H•(t) =

{
0 - attendant is unoccupied,
1 - attendant is engaged.

Then, {(Q•(t), H•(t)); t ≥ 0} is a Markov process with state space {(m,h) : m ≥ 0, h = 0, 1}.
The infinitesimal generator can be expressed as

Q̃• =


D0 F
E D F

E D F
...

...
...

 ,

where

D0 =

[
−λ λ
µ −µ− λ

]
, F =

[
0 0
0 λ

]
, E =

[
0 α
0 0

]
, D =

[
−α− λ λ

µ −µ− λ

]
.

The QBD process {(Q•(t), H•(t)); t ≥ 0} is positive recurrent iff (µ− λ)α > λ2. Express,

πm,h = P{Q• = m,H• = h} = lim
t→∞

P{Q•(t) = m,H•(t) = h}.

The stationary probability distribution is

π̃m,0 = π̃0,1r5r
m−1
6 , m ≥ 1,

π̃m,1 = π̃0,1r
m
6 , m ≥ 0,

π̃0,0 =

(
1 +

1 + r5
1− r6

λ

µ

)−1

,

π̃0,1 =
λ

µ
π̃0,0.

The normalization condition is used to determine the value of π0,0.

Therefore,

GQ0
(z) =

∞∑
m=0

zmP{Q0 = m} =

∑∞
m=0 π̃0,1r

m
6 z

m∑∞
m=0 π̃0,1rm6

=
1− r6
1− r6z

.

Establishing QN = {Difference of Q and N such that the state of the attendant is either 1 or 3 and
Q ≥ N} and QN is the line length which depends on the condition that the attendant is engaged
and there are not less than N customers in the orbit.

9
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Let P •
b denotes Pr{the server is occupied given that atleast N customers present in the orbit},

P •
b = P{Q ≥ N,H = 1 or 3} =

∞∑
m=N

πm,1 +
∞∑

m=N

πm,3

=
∞∑

m=N

πN−1,1r
m+1−N
2 +

∞∑
m=N

r4
r6 − r2

(rm+1−N
6 − rm+1−N

2 )πN−1,1 +
∞∑

m=N

rm+1−N
6 πN−1,3

=
r4 + r2(1− r6)

(1− r2)(1− r6)
πN−1,1 +

r6
(1− r6)

πN−1,3.

This completes the proof. ■

Theorem 5.1.

If (µ − λ)α > λ2, then we can disintegrate QN = Q0 + Qc, where Q0 go along with a geometric
distribution with specification 1− r6. Subsidiary line length Qc has a distribution

P{Qc = 0} =
1

P •
b

(r2 + r4)πN−1,1 + r6πN−1,3

1− r6
,

P{Qc = m} =
πN−1,1

P •
b

r2(r2 + r4 − r6)

1− r6
rm−1
2 , m ≥ 1.

Proof:

The PGF of QN is given below:

GQN (z) =
∞∑

m=0

zmP{QN = m} =
1

p•b

(
∞∑

m=0

zmπN+m,1 +
∞∑

m=0

zmπN+m,3

)
,

=
1

p•b

[
πN−1,1

r2
1− r2z

+ πN−1,1
r4

(1− r2z)(1− r6z)
+ πN−1,3

r6
1− r6z

]
,

=
1

p•b

1− r6
1− r6z

[
πN−1,1

r2(1− r6z)

(1− r2z)(1− r6)
+ πN−1,1

r4
(1− r2z)(1− r6)

+ πN−1,3
r6

1− r6

]
,

=
1

p•b

1− r6
1− r6z

[
(r2 + r4)πN−1,1 + r6πN−1,3

1− r6
+ πN−1,1

r2(r2 + r4 − r6)z

(1− r2z)(1− r6)

]
,

=
1− r6
1− r6z

[
1

p•b

(r2 + r4)πN−1,1 + r6πN−1,3

1− r6
+ πN−1,1

1

p•b

r2(r2 + r4 − r6)z

(1− r2z)(1− r6)

]
,

= GQ0
(z)GQc

(z). ■
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6. The Model’s Performance Measures

From Theorem 4.1, we have

Pr{that the attendant is engaged} = Pb =
∞∑

m=0

πm,1 +
∞∑

m=0

πm,3,

= (N − 1)

(
π1,1

1− q1
− q1π0,1

1− q1

)
− π1,1 − π0,1

(1− q1)2
(1− qN−1

1 )

+ (N − 1)

(
π1,3

1− q2
− q2π0,3

1− q2

)
− π1,3 − π0,3

(1− q2)2
(1− qN−1

2 )

+
1− r6 + r4

(1− r2)(1− r6)
πN−1,1 +

1

(1− r6)
πN−1,3,

Pr{that the attendant is unoccupied}=Pf =
∞∑

m=0

πm,0 +
∞∑

m=1

πm,2 = 1− Pb.

Assume that E[L] denotes the mean number of customers in the orbit, then

E[L] =
∞∑

m=1

m(πm,0 + πm,1 + πm,2 + πm,3),

=
N−1∑
m=1

m(πm,0 + πm,2) +
N−2∑
m=1

m(πm,1 + πm,3) + (N − 1)πN−1,3
1 + r5
1− r6

+ (N − 1)πN−1,1
(1 + r1 + r3)(1− r6) + r4(1 + r5)

(1− r2)(1− r6)
+ πN−1,3

r5 + r6
(1− r6)2

+ πN−1,1
(r1 + r2 + r3)(1− r6)

2 + r4r5(2− r2 − r6) + r4(1− r2r6)

(1− r6)2(1− r2)2
.

Let E[Ls] be the mean number of customers in the system, then

E[Ls] =
∞∑

m=1

m(πm,0 + πm,2) +
∞∑

m=0

(m+ 1)(πm,1 + πm,3).

We have the following assumptions and results.

Let E[W ] be the expected sojourn time of a orbit customers, using Little’s formula

E[W ] =
E[L]

λ
.

Let E[Ws] be the customer’s expected sojourn time in the system

E[Ws] =
E[Ls]

λ
.

We have the following result for our model,

11

Manoharan et al.: M/M/1 Retrial Queue with Working Vacation and Interruption

Published by Digital Commons @PVAMU, 2024



12 P. Manoharan et al.

π0,0 =
E[T0,0]

E[T ] + 1/λ
,

where:
T - engaged period.
E[T0,0] - duration of time while the system is in the state (0, 0) in a regenerative cycle.

Also, E[T0,0] =
1

λ
and E[T ] = (π−1

0,0 − 1)λ−1.

7. Special Cases

(a) If p = 0, q = 1, this model is remodeled as “M/M/1 retrial queue with multiple working
vacations under N-policy."
(b) If α → ∞, this model is remodeled as “Analysis for the M/M/1 queue with multiple working
vacations and N-policy."
(c) If α → ∞, η = 0, this model is remodeled as“An M/M/1 queue with multiple vacation under
N-policy."
(d) If α → ∞, η = 0, θ = 0 this model is remodeled as “Standard M/M/1 queue under N-policy."

8. Numerical Results

By fixing the values of N = 2, µ = 8.9, θ = 2.1, η = 1.3, p = 0.8, q = 0.2 and extending the value
of λ from 1.0 to 2.0 incremented with 0.2 and extending the values of α from 3.2 to 5.2 insteps
of 1.0 subject to the stability condition, the values of E(L) are calculated and tabulated in Table 1
and the corresponding line graphs are drawn in the Figure 2. From the graph it is inferred that as λ
rises E(L) rises as expected.

Table 1. λ versus E(L)

λ α = 3.2 α = 4.2 α = 5.2

1.0 0.1696 0.1419 0.1242
1.2 0.2352 0.1958 0.1709
1.4 0.3112 0.2579 0.2245
1.6 0.3997 0.3293 0.2857
1.8 0.5037 0.4121 0.3561
2.0 0.6281 0.5091 0.4375

By fixing the values of N = 2, µ = 9.4, θ = 2, α = 4.1, p = 0.7, q = 0.3 and extending the value
of λ from 1.0 to 2.0 incremented with 0.5 and extending the values of η from 0.5 to 2.5 insteps of
1 subject to the stability condition, the values of E(L) are calculated and tabulated in Table 2 and
the corresponding line graphs are drawn in the Figure 3. From the graph it is inferred that as λ rises
E(L) rises as expected.
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0.6

Figure 2. λ versus E(L)

Table 2. λ versus E(L)

λ η = 0.5 η = 1.5 η = 2.5

1.0 0.1726 0.1313 0.1046
1.2 0.2286 0.1818 0.1494
1.4 0.2912 0.2401 0.2025
1.6 0.3617 0.3069 0.2649
1.8 0.4418 0.3842 0.3381
2.0 0.5339 0.4739 0.4242

η 0.5

η 1.5

η 2.5

1.0 1.2 1.4 1.6 1.8 2.0

0.1

0.2

0.3

0.4

0.5

λ

Figure 3. λ versus E(L)

By fixing the values of N = 2, µ = 5, θ = 0.3, η = 0.2, p = 0.9, q = 0.1 and extending the value
of λ from 1.0 to 2.0 incremented with 0.2 and extending the values of α from 3.0 to 4 insteps of 0.5
subject to the stability condition, the values of Pb are calculated and tabulated in Table 3 and the
corresponding line graphs are drawn in the Figure 4. From the graph it is inferred that as λ rises Pb

rises as expected.
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Table 3. λ versus Pb

λ α = 3.0 α = 3.5 α = 4.0

1.0 0.5108 0.5194 0.5259
1.2 0.5134 0.5243 0.5327
1.4 0.5158 0.5289 0.5391
1.6 0.5183 0.5333 0.5451
1.8 0.5207 0.5376 0.5511
2.0 0.5231 0.5418 0.5566

α 3

α 3.5

α 4

1.0 1.2 1.4 1.6 1.8 2.0

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

λ

Figure 4. λ versus Pb

By fixing the values of N = 2, µ = 11, θ = 3.5, η = 5, p = 0.1, q = 0.9 and extending the values
of λ from 1.0 to 2.0 incremented with 0.2 and extending the values α from 0.5 to 1.5 insteps of 0.5
subject to the stability condition, the values of Pf are calculated and tabulated in Table 4 and the
corresponding line graphs are drawn in the Figure 5. From the graph it is inferred that as λ rises
Pf falls as expected.

Table 4. λ versus Pf

λ α = 0.5 α = 1 α = 1.5

1.0 0.8537 0.8439 0.8404
1.2 0.8391 0.8236 0.8179
1.4 0.8278 0.8062 0.7981
1.6 0.8196 0.7915 0.7804
1.8 0.8138 0.7791 0.7648
2.0 0.8098 0.7686 0.7512

9. Conclusion

In this article, Markovian retrial queue with WV and interruption in Bernoulli schedule under N-
Control is evaluated. We calculate stability condition and rate matrix of the model. We went on
the stationary probability distribution by adopting the matrix-analytic methods. We also derive the
conditional stochastic decomposition and performance measures. We perform some special cases.
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Figure 5. λ versus Pf

We illustrate some numerical examples under the stability condition.
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