
Applications and Applied Mathematics: An International Applications and Applied Mathematics: An International 

Journal (AAM) Journal (AAM) 

Volume 19 Issue 1 Article 10 

12-2022 

(R2023) Analysis of the Auto-Oscillation of a Perturbed SIR (R2023) Analysis of the Auto-Oscillation of a Perturbed SIR 

Epidemiological Model Epidemiological Model 

Seyive J. Degbo 
Institut de Mathematiques et de Sciences Physiques (IMSP) 

Guy A. Degla 
Institut de Mathematiques et de Sciences Physiques (IMSP) 

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Degbo, Seyive J. and Degla, Guy A. (2022). (R2023) Analysis of the Auto-Oscillation of a Perturbed SIR 
Epidemiological Model, Applications and Applied Mathematics: An International Journal (AAM), Vol. 19, 
Iss. 1, Article 10. 
Available at: https://digitalcommons.pvamu.edu/aam/vol19/iss1/10 

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for 
inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of 
Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu. 

https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam/vol19
https://digitalcommons.pvamu.edu/aam/vol19/iss1
https://digitalcommons.pvamu.edu/aam/vol19/iss1/10
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol19%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol19%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/aam/vol19/iss1/10?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol19%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu


Available at
http://pvamu.edu/aam

Appl. Appl. Math.
ISSN: 1932-9466

Applications and Applied

Mathematics:

An International Journal
(AAM)

Vol. 19, Issue 1 (June 2024), 21 pages

Analysis of the Auto-Oscillation
Of a Perturbed SIR Epidemiological Model

1Seyive J. Degbo and 2Guy A. Degla

Department of Mathematics
Institute of Mathematical Sciences and Physics (IMSP)

BP:613 Porto-Novo (Benin Republic, West Africa)
Dangbo, Benin

1jean-marie.degbo@imsp-uac.org; 2gdegla@imsp-uac.org

Received: August 5, 2022; Accepted: April 12, 2023

Abstract

In this paper, we study a class of compatimental epidemiological models consisting of Suscepti-
ble, Infected, and Removed (SIR) individuals with a perturbation factor or exterior effects such as
noise, climate change, pollution, etc. We prove the existence and uniqueness of a limit cycle con-
fined in a nonempty closed and convex set by relying on a recent result of Lobanova and Sadovskii.
Moreover, we study the existence of Hopf and Bogdanov-Takens bifurcations by applying respec-
tively Poincare-Andronov-Hopf bifurcation theorem and Bogdanov-Takens theorem. Eventually,
using Scilab, we illustrate the validity of our results with numerical simulations and also interpret
them.

Keywords: SIR epidemiology model; Perturbation factor; Closed convex set; Metric projection;
Hopf bifurcation; Bogdanov-Takens bifurcation; Limit cycle

MSC 2010 No.: 37G15, 92D30

1. Introduction

The compartmental epidemiological models SIR originating from the work by Kermack
and McKendrick in Kermack and Mckendrick (1927), Kermack and Mckendrick (1991), and
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2 S.J. Degbo and G.A. Degla

Martcheva (2015) on the plague epidemic in India, are the simplest epidemiological models of-
ten used to describe a disease spread in a population over time. In this model, the whole population
under consideration is divided into the three following disjoint categories (compartments) of indi-
viduals:

• S: consisting of healthy individuals who may be infected (susceptible).
• I: consisting of infected and infectious individuals with a probability β (representing the rate)

of transmission of the disease from an infected person to a healthy person.
• R: consisting of individuals removed or recovered, not likely to be infected because they are

cured and immune or have died, with the probability ν representing the cure rate, i.e., the inverse
of the average duration of symptoms (Villani (2020); Sallet (2010)).

Throuhgout this paper, we assume that individuals R can lose their immunity with probability γ
without dying and that the total population is constant during the epidemic. We also assume that
susceptible and infected individuals are confined to a closed convex environment (no immigration
of the two groups outside the environment, e.g., the confinement of populations during the COron-
aVIrus Disease 2019 (COVID−19) pandemic). Furthermore, we have taken into account external
effects on this environment, e.g., the effects of climate change on the environment or environmental
pollution.

This paper is organzed as follows: Section 1 is devoted to the introduction. In Section 2, we present
our mathematical model. The existence and number of equilibrium points and the local dynamics
of this system are studied in Section 3. In Section 4, we prove the existence of Hopf bifurcation
and Bogdanov-Takens bifurcation. The existence and uniqueness of a limit cycle of which orbit
is stable are studied in Section 5 by using Lobanova-Sadovskii theorem (Lobanova and Sadovskii
(2007)) in the line of Appell, Merentez and Sanche (Appell et al. (2017)). Moreover, we illustrate
the validity of the results with numerical simulation using Scilab. Finally, we conclude in Section
6.

2. Mathematical model

The total population N(t) = S(t) + I(t) + R(t) of the epidemiological model SIR described in
the introduction is assumed constant N(t) = N0 throughout the duration of the epidemic. Thus,
this three variable model can be reduced to a two variable model S(t) = x(t) and I(t) = y(t).
Moreover, taking into account the possible external perturbations, we obtain the following model,

ẋ = γ (N0 − y)− (βy + γ)x+ α(x− x∗),

ẏ = y (βx− ν) + α(y − y∗),

(1)

where

(x∗, y∗) :=

(
ν

β
,

γ(βN0 − ν)

β(γ + ν)

)
, (2)
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is the positive equilibrium point of (1) for α = 0, and

uα(x , y) = α(x− x∗ , y − y∗), α ∈ (0 ,+∞), (3)

is the perturbation term.

Note that, since N0 = x+ y +R, we have:

(x, y) ∈ K :=
{
(x , y) ∈

[
0 , N0

]2
, x+ y ≤ N0

}
.

Let Z = (z1, z2) ∈ R2 such that Z + U∗ ∈ K. So, Z ∈ K − U∗.

In the sequel, we consider the following set

Q :=
{
(z1 , z2) ∈

[
−x∗ , N0−x∗

]
×
[
−y∗ , N0−y∗

]
; −(y∗+x∗) ≤ z1+z2 ≤ N0− (y∗+x∗)

}
.

Let Z = (z1 , z2) ∈ Q. Then, there exists (x, y) ∈ K such that z1 = x− x∗ and z2 = y− y∗.

By substituting x = z1 + x∗ and y = z2 + y∗ in the system (1), we obtain on Q the following
system, {

ż1 = f1(Z),

ż2 = f2(Z),
(4)

where the map f = (f1 , f2) is defined from Q to R2 by

f1(Z) = (α− γ − βy∗)z1 − (γ + ν)z2 − βz1z2 and f2(Z) = βy∗z1 + αz2 + βz1z2.

In the sequel, we shall consider the system (4).

3. Local behavior of the system (4)

In this section, we study the dynamic behavior of the system (4) in a neighborhood of their equi-
librium points.

3.1. Equilibrium points of (4)

In this subsection, we study the existence of equilibrium points for the system (4).

Let β, ν, γ, N0 and α be some positive real numbers and let us set:

∆0 =
(γβN0−(γ+ν)2)2+γν(γ2+3γν+2ν2)

(γ+ν)2
, ∆1 = (βN0 − γ − 2ν)2 − 4ν(γ + ν),

α0 = (γ + ν)(γ + ν − βN0)(γ + 2ν − βN0), α1 =
(γ+2ν−βN0)ν

γ+ν
, α2 =

γ+ν+βy∗−
√
∆0

γ+ν
,

α3 =
γ+ν+βy∗+

√
∆0

γ+ν
, α4 =

γ+βN0−
√
∆1

γ+ν
, α5 =

γ+βN0+
√
∆1

γ+ν
, A(α) = (α− α2)(α− α3),

α = γ − ν(βN0−ν)
γ+ν

, B(α) = α
(
α− α

)
, C(α) = (α− α4)(α− α5), E(α) = α

α1

(
α− α0

)
,

3
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4 S.J. Degbo and G.A. Degla

R1 =

{
(β , ν , γ , α , N0) ∈ R5

+, α < α, A(α) > 0, C(α) > 0 and E(α) < 0

}
,

and

R2 =

{
(β , ν , γ , α , N0) ∈ R5

+, γ + ν < α, A(α) < 0, C(α) < 0 and E(α) < 0

}
.

Moreover, let S =
{
Z = (z1 , z2) ∈ Q; f(Z) = O

}
be the set of equilibrium points of (4).

Lemma 3.1.

(1) If (β , ν , γ , α , N0) ∈ A1 = R1 ∪R2, then

S =

{
(0 , 0) ,

(
α(α− γ − βy∗) + γ(βN0 − ν)

β(γ − α)
,

α(γ − α)

β(γ + ν − α)
− y∗

)}
,

with α ̸= γ and α ̸= γ + ν.

(2) Otherwise, S =
{(

0 , 0
)}

.

Proof:

Let Z = (z1, z2) ∈ Q.

f(Z) = O ⇐⇒

{
(α + βz1)z2 = −βy∗z1,(
(α− γ)z1 + α(α− γ − βy∗) + γ(βN0 − ν)

)
z1 = 0,

⇐⇒ z1 = z2 = 0 or

{
(α− γ)z1 + α(α− γ − βy∗) + γ(βN0 − ν) = 0,

β(γ + ν − α)(z2 + y∗) = α(γ − α),

⇐⇒ z1 = z2 = 0 or


α ̸= γ and α ̸= γ + ν,

z1 =
α(α−γ−βy∗)+γ(βN0−ν)

β(γ−α)
,

z2 =
α(γ−α)

β(γ+ν−α)
− y∗.

The equilibrium point Z0 = (0 , 0) is always inside Q.

The equilibrium point Z1 is inside Q if and only if its components z1 and z2 satisfy the following
condition:

0 ⩽ z1 + x∗ ⩽ N0, 0 ⩽ z2 + y∗ ⩽ N0, and 0 ⩽ z2 + y∗ + z1 + x∗ ⩽ N0. (5)

We have

z1 + x∗ =
A(α)

β(γ − α)
, z1 + x∗ −N0 =

B(α)

β(γ − α)
, z2 + y∗ −N0 =

C(α)

β(α− γ − ν)
,

4
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and

z1 + z2 + x∗ + y∗ −N0 =
E(α)

β(γ − α)(γ + ν − α)
.

Thus, Z1 = (z1 , z2) ∈ Q if and only if
A(α)

β(γ − α)
≥ 0,

B(α)

β(γ − α)
≤ 0,

C(α)

β(α− γ − ν)
≤ 0 and

E(α)

β(γ − α)(γ + ν − α)
≤ 0. (6)

That is, (β , ν , γ , α , N0) ∈ A1 = R1 ∪R2.

Hence, Z = (z1, z2) /∈ Q if and only if (β, ν, γ, α, N0) ∈ A2 = (R1 ∪R2)
c, where

A2 = (R1 ∪R2)
c is the complementary of A1 = R1 ∪R2 in R5

+. The proof is completed. ■

3.2. Local dynamic behavior of (4)

In this subsection, we are interested in the behavior of system (4) in a neighborhood of its equi-
librium points. Note that the local dynamic behavior of a dynamical system in a neighborhood of
each equilibrium point depends on the signs of the trace, determinant and of the discriminant of
the characteristic equation of its Jacobian matrix at this equilibrium point.

3.2.1. Local dynamic behavior of (4) in a neighborhood of Z0 = (0, 0)

Theorem 3.1.

(1) If β1 ⩽ β ⩽ β2, then

(a) Z0 = (0 , 0) is a stable focus if and only if α < γ+βy∗
2

.
(b) Z0 = (0 , 0) is an unstable focus if and only if α > γ+βy∗

2
.

(2) If β ∈ (0 ; β1) ∪ (β2 ; +∞), then
(a) Z0 = (0 , 0) is a stable focus if and only if α < α1.
(b) Z0 = (0 , 0) is an unstable focus if and only if α > α2.

(c) Z0 = (0 , 0) is a saddle point if and only if α1 < α < α2.

Remark 3.1.

If α = γ+βy∗
2

and β1 < β < β2, then Z0 = (0 , 0) can be a focus or center.

If β ∈
{
β1 ; β2

}
and α = γ+βy∗

2
, then the system (4) can exibit a Bogdanov-takens bifurcation

at the neigborhood of Z0 = (0 , 0), where

α1 =
γ+βy∗−

√
u(β)

2
, α2 =

γ+βy∗+
√

u(β)

2
, u(β) = γ2(β − β1)(β − β2), β1 =

X1(γ+ν)+ν
N0

,

β2 =
X2(γ+ν)+ν

N0
, X1 =

γ+2ν−
√

ν(ν+2γ)

γ
and X2 =

γ+2ν+
√

ν(ν+2γ)

γ
.

5
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6 S.J. Degbo and G.A. Degla

Proof:

For all (β , ν , γ , α , N0) ∈ (0,+∞)5, Z0 = (0 , 0) is a equilibrium point of the system (4).

The Jacobian matrix of the system (4) at Z0 = (0 , 0) is

M0(α) =

α− γ − βy∗ −γ − ν

βy∗ α

 ,

of which trace and determinant are, respectively,

T0(α) = 2α− γ − βy∗ and D0(α) =
(
α− γ + βy∗

2

)2 − u(β)

4
.

Let ∆0(α) = T0(α)
2 − 4D0(α) = u(β) be the discriminant of the characteristic equation of

M0(α).

• If β1 ⩽ β ⩽ β2 and α < γ+βy∗

2
, we have T0(α) < 0, D0(α) > 0 and ∆0(α) < 0. Then, Z0

is a stable focus.

• If β1 ⩽ β ⩽ β2 and α > γ+βy∗

2
, we have T0(α) > 0, D0(α) > 0 and ∆0(α) < 0. Then, Z0

is an unstable focus.

• If β ∈ (0, β1) ∪ (β2, +∞) and α < α1, we have T0(α) < 0, D0(α) > 0, and ∆0(α) < 0.
Then, Z0 is a stable focus.

• If β ∈ (0, β1) ∪ (β2, +∞) and α > α2, we have T0(α) > 0, D0(α) > 0, and ∆0(α) < 0.
Then, Z0 is an unstable focus.

• If β ∈ (0, β1) ∪ (β2, +∞) and α1 < α < α2, we have D0(α) < 0. Then, Z0 is a saddle
point. Hence, the proof of Theorem 3.1 is completed. ■

3.2.2. Local dynamic Behavior of (4) at a neigborhood of Z0 and Z1

Let (β , ν , γ , α , N0) ∈ A1. Assume that (β , ν , γ , α , N0) fulfills one of the following
conditions:

γ + ν < α and β = β∗, (7)

β < β∗ and γ + ν < α < γ +
ν

1− A0

, (8)

β > β∗, γ + ν < α, ν ∈
(
0,

N0

5

)
∪ (N0, +∞) and

∣∣∣γ +
3ν −N0

2

∣∣∣ ≤ γ∗, (9)

α < ν, β = β∗, ν ∈
(
0 ,

N0

5

)
∪ (N0, +∞) and

∣∣∣γ +
3ν −N0

2

∣∣∣ ≤ γ∗, (10)

α < γ and β < β∗, (11)

6
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β > β∗, γ +
ν

1− A0

< α < γ, ν ∈
(
0 ,

N0

5

)
∪ (N0, +∞) and

∣∣∣γ +
3ν −N0

2

∣∣∣ ≤ γ∗, (12)

β < β∗ and γ +
ν

1− A0

< α, (13)

β1 ≤ β ≤ β2 and α ̸= γ + βy∗
2

, (14)

β ∈ (0, β1) ∪ (β2, +∞) and α ∈ (0, α1) ∪ (α2, +∞), (15)

β ∈ (0, β1) ∪ (β2, +∞) and α1 < α < α2, (16)

where α1, α2, β1 and β2 are defined in Subsection 3.2.1 and β∗ = γν+(γ+ν)2

γN0
, A1(α) =

α−γ−ν
α−γ

,

A0 =
√

γ+ν
βy∗

, γ∗ =

√
(ν−N0)(5ν−N0)

2
, D0(α) = α2 − (γ + βN0)α + γ(βN0 − ν),

V (α) = β2y2
∗

A(α)2

(
A1(α)

2 − A2
0

)2
+ 4D0(α).

Theorem 3.2.

i) If the parameters β, ν, γ, α and N0 satisfy one of the conditions (7) to (9) and the condition
(16) with V (α) < 0, then the nontrivial equilibrium point of the system (4) is a stable focus and
the origin is a saddle point.

ii) If the parameters β, ν, γ, α and N0 satisfy one of the conditions (7) to (9) and the condition
(16) with V (α) > 0, then the nontrivial equilibrium point of the system (4) is a stable node and
the origin is a saddle point.

iii) If the parameters β, ν, γ, α and N0 satisfy one of the conditions (10) to (13) and the condition
(16) with V (α) < 0, then the nontrivial equilibrium point of the system (4) is a unstable focus
and the origin is a saddle point.

iv) If the parameters β, ν, γ, α and N0 satisfy one of the conditions (10) to (13) and the condition
(16) with V (α) > 0, then the nontrivial equilibrium point of the system (4) is a unstable node and
the origin is a saddle point .

v) If the parameters β, ν, γ, α and N0 satisfy one of the conditions (14) to (15), then the
nontrivial equilibrium point of the system (4) is a saddle point and the origin is a focus or a node
or a center (see the Theorem 3.1).

Proof:

The Jacobian matrix of the system (4) at Z0 = (0 , 0) is

M0(α) =

α− γ − βy∗ −γ − ν

βy∗ α

 .

7
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8 S.J. Degbo and G.A. Degla

The trace and determinant of M0(α) are, respectively,

T0(α) = 2α− γ − βy∗ and D0(α) =
(
α− αb

)2 − u(β)

4
.

The Jacobian matrix of system (4) at Z1 is

M(α) =

− γ+ν
A1(α)

(α− γ − βy∗)A1(α)

α
A1(α)

βy∗A1(α)

 , for all α ∈ (0, γ) ∪ (γ + ν,+∞).

The trace and determinant of M(α) are, respectively,

T (α) =
βy∗

A1(α)

(
A1(α)

2 − A2
0

)
and D(α) = −D0(α).

Let ∆(α) = T (α)2 − 4D(α) be the discriminant of characteristic equation of M(α).

We have ∆(α) = V (α). By studing the signs of T (α) and of D(α), we obtain

• T (α) < 0 if the parameters fulfill one of the conditions (7) to (9).

• T (α) > 0 is positive if the parameters fulfill one of conditions (10) to (13).

• D(α) < 0 and D0(α) > 0, if the parameters fulfill one of conditions (14) and (15).

• D(α) > 0 and D0(α) < 0, if the parameters satisfy the condition (16). Hence, the proof of
theorem 3.1 is completed. ■

4. Bifurcation analysis

4.1. Hopf bifurcation

Let us recall that there is no regular method to study the limit cycles of the systems in the plane. Per-
haps, one of the most important approaches, together with the Poincaré-Bendixson theory, is the
Poincare-Andronov-Hopf bifurcation (Françoise (2005); Rudiger Seydel (2010); Albert (2019);
Kielhöfer (2004)), which is the only genuinely two dimensional bifurcation (i.e., it cannot be
observed in systems of dimension 1), which can occur in generic two dimensional autonomous
systems depending on one parameter (co-dimension 1 bifurcation). In this section, we give the
conditions for the existence of Hopf bifurcation in a neighborhood of the equilibrium points of the
system (4).

4.1.1. Hopf bifurcation of system (4) at the point of Z0 = (0 , 0)

In this subsection, we study the Hopf bifurcation of the system (4) at Z0 = (0, 0); where α is the
bifurcation parameter.

8

Applications and Applied Mathematics: An International Journal (AAM), Vol. 19 [2024], Iss. 1, Art. 10

https://digitalcommons.pvamu.edu/aam/vol19/iss1/10



AAM: Intern. J., Vol. 19, Issue 1 (June 2024) 9

Theorem 4.1.

If β1 < β < β2, then the system (4) admits a Hopf bifurcation at
(
Z0 = (0 , 0) , αb

)
, where

αb =
γ+βy∗

2
, β1 =

X1(γ+ν)+ν
N0

, β2 =
X2(γ+ν)+ν

N0
, X1 =

γ+2ν−
√

ν(ν+2γ)

γ
and X2 =

γ+2ν+
√

ν(ν+2γ)

γ
.

Proof:

Let M0(α) be the Jacobean matrix of (4) at Z0. Then,

M0(α) =

α− γ − βy∗ −γ − ν

βy∗ α

 .

The trace and determinant of M0(α) are, respectively,

T0(α) = 2α− γ − βy∗ and D0(α) =
(
α− αb

)2 − u(β)

4
.

Let ∆(α) = T0(α)
2 − 4D0(α) be the discriminant of the characteristic equation of M0(α).

We have

∆(α) = u(β) = γ2(β − β1)(β − β2).

If β1 < β < β2, then u(β) < 0. So, M0(α) admits two conjugate complex eigenvalues

W (α) = h(α) + iω(α) and W (α) = h(α)− iω(α),

where h(α) = T (α)
2

and ω(α) =

√
−u(β)

2
.

Likewise, if α = αb =
γ+βy∗

2
and β1 < β < β2, then

h
(
αb

)
= 0,

dh(α)

dα
|α=αb

= 1 > 0 and ω
(
αb

)
> 0.

Moreover, the only eigenvalues of M
(
αb

)
are

W
(
αb

)
= iω

(
αb

)
and W

(
αb

)
= −iω

(
αb

)
.

Hence, according to the Poincaré-Andronov-Hopf theorem (Françoise (2005); Rudiger Seydel
(2010); Albert (2019); Kielhöfer (2004)), the conclusion of Theorem 4.1 follows. ■

4.1.2. Numerical simulation

To illustrate the Theorem 4.1, we take γ = 4
5
, ν = 9

10
, β = 7

10
, and N0 = 10 . Then,

x∗ =
9

7
, y∗ =

488

119
and A2 = (0, +∞)4 × (1.7, +∞) .

Therefore, we have,

αb =
1092

595
and β1 ≈ 0.12 < β = 0.7 < β2 ≈ 1.1 .

9
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10 S.J. Degbo and G.A. Degla

Then, the system (4) admits a Hopf bifurcation at
(
Z0 , αb

)
inside of

Q :=

{
(z1, z2) ∈

[
− 9

7
,
61

7

]
×
[
− 488

119
,
702

119

]
, −641

119
≤ z1 + z2 ≤

549

119

}
.

For the simulations, we denote the initial conditions by (z01 , z
0
2) (see Figures 1, 2, 3, 4, 5, 6, 7, 10

and 11 in the appendix).

Remark 4.1.

We remark from our simulation that there are three critical values αc1 < αc2 < αc3 in (αb, +∞)
such that:
• for all α ∈

[
αb, αc1

)
, there exists a stable limit cycle (see Figures 2, 3, 4 and 5). This means

that the disease appears periodically in the population. We can therefore predict and control the
infection.
• for all α ∈

[
αc1 , αc2

]
∪
[
αc3 , +∞), we observe the disappearance of the limit cycle with the

explosion of the rate of infections (see Figures 6, 7, 10 and 11). This means that the infection
becomes uncontrollable (pandemic) after a certain period.
• for all α ∈

(
αc2 , αc3

)
, the limit cycle disappears with a considerable decrease in the rate of

infection and an explosion in the rate of cure (see Figures 8 and 9). This means that the infection
becomes controllable and can be eradicated after a certain period.

4.1.3. Hopf bifurcation at Z1

In this subsection, we study the Hopf bifurcation of the system (4) at Z1. So, we take
(β, ν, γ, α, N0) ∈ A1.

Theorem 4.2.

If
ν

N0

< β <
γ + ν

N0

, α1 < α0 < α2, α ∈ (0, γ) ∪ (γ + ν) and V (α) < 0, (17)

then the system (4) admits a Hopf bifurcation in a neigborhood of (Z1, α0), where

α0 = γ +
ν

1− A0

.

Proof:

The Jacobian matrix of system (4) at Z1 is

M(α) =

− γ+ν
A1(α)

(α− γ − βy∗)A1(α)

α
A1(α)

βy∗A1(α)

 , for all α ∈ (0, γ) ∪ (γ + ν,+∞).

The trace and determinant are, respectively,

T (α) =
βy∗

A1(α)

(
A1(α)

2 − A2
0

)
and D(α) = −D0(α).

10
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Let ∆(α) = T (α)2 − 4D(α) be the discriminant of characteristic equation of M(α). We have
∆(α) = V (α). According to (17), we have V (α) < 0. Then, the matrix M(α) admits two
conjugate complex eigenvalues

W (α) = h(α) + iω(α) and W (α) = h(α)− iω(α),

where

h(α) =
T (α)

2
and ω(α) =

√
−∆(α)

2
.

Moreover,

h
(
α0

)
= 0 and

dh(α)

dα
|α=α0

=
βy∗
2

(
1 +

A2
0

A1(α0)2

)
A′

1(α0) > 0.

Since α1 < α0 < α2, we have ω
(
α0

)
> 0. Likewise, if α = α0, the only eigenvalues of

M
(
α0

)
are

W (α0

)
= iω(α0

)
and W (α0

)
= −iω(α0

)
.

Hence, according to the Poincaré-Andronov-Hopf theorem (Françoise (2005); Rudiger Seydel
(2010); Albert (2019); Kielhöfer (2004)), the conclusion of Theorem 4.2 follows. ■

4.2. Bogdanov-Takens bifurcation

A Bogdanov-Takens bifurcation (Jean-Baptiste and Claude (1993)) is an example of a
codimension-2 bifurcation, which is far more complex than codimension-1 bifurcations, and it de-
scribes very rich dynamics of the given system. The basic idea of what happens with a Bogdanov-
Takens bifurcation is that we have two codimension-1 bifurcation curves that collide at a single
point. The point where the two bifurcation curves collide is where the Bogdanov-Takens bifurca-
tion happens. For later use, we set,

BT :=
{
(β, ν, γ, α, N0) ∈ (0 , +∞)5, β = β0, α = α0

}
,

a cusp bifurcation surface of codimension 2 for system (4) (i.e., Bogdanov-Takens bifurcation
surface), where

β0 ∈
{
β1 ; β2

}
, α0 =

γ + β0y
∗

2
, β1 =

X1(γ + ν) + ν

N0

, β2 =
X2(γ + ν) + ν

N0

,

X1 =
γ + 2ν −

√
ν(ν + 2γ)

γ
and X2 =

γ + 2ν +
√

ν(ν + 2γ)

γ
.

Theorem 4.3.

If (β, ν, γ, α,N0) ∈ BT, then the equilibrium Z0 = (0, 0) of system (4) is a cusp of codimension
two, i.e., it is a Bogdanov-Takens singularity.
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Proof:

Let (β, ν, γ, α,N0) ∈ BT. Then, the system (4) becomes{
ż1 = −α0z1 − (γ + ν)z2 − β0z1z2,

ż2 = β0y
∗z1 + α0z2 + β0z1z2.

(18)

In order to find the canonical normal form of the cusp, we take the smooth invertible transforma-
tions

u = z1 and v = −α0z1 − (γ + ν)z2.

We can rewrite system (18) as follows,{
u̇ = v − α0β0

γ+ν
u2 + o(∥(u, v)∥2),

v̇ = (α2
0 − β0(γ + ν)y∗)u+ α0β0u

2 + o(∥(u, v)∥2).
(19)

Making the change of variables by X = u and Y = v − α0β0

γ+ν
u2 + o(∥(u, v)∥2), then the

system (19) become {
Ẋ = Y,

Ẏ = µ1X + µ2X
2 − 2µ0XY + o(∥(X , Y )∥2),

(20)

where µ0 =
α0β0

γ+ν
, µ1 = α2

0 − β0(γ + ν)y∗ and µ2 = α0β0.

Making the final change of variables by u = 4µ2
0

µ2
X, v = 8µ3

0

µ2
2
Y, and τ = µ2

2µ0
t (we still denote

u, v, τ by X, Y, t, respectively), we obtain{
Ẋ = Y,

Ẏ = 4µ2
0µ1

µ2
2
X +X2 −XY + o(∥(X, Y )∥2).

(21)

From the result by Bogdanov-Takens theorem in (Jean-Baptiste and Claude (1993)), we conclude
that system (21) undergoes Bogdanov-Takens bifurcation. ■

4.2.1. Simulation

For the simulation, we take γ = 4
5
, ν = 9

10
and N = 10. So we obtain

β0 ∈
{
β1 = 0.32375, β2 = 0.96125

}
and α0 ∈

{
α01 = 1.0638235, α02 = 2.3709664

}
and we take the initial conditions (z01 , z

0
2) ∈

{
(2, 9) , (3, 7) , (5, 7) , (4, 9) , (7, 5)

}
(see figures

12, 13, and 14 in the appendix).

Remark 4.2.

If there exists (γ, β, ν, N0) ∈ (0,+∞)4 such that

β <
γ + ν

N0

and
(
γ +

ν

1− A0

= α1 or γ +
ν

1− A0

= α2

)
,
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then the system (4) can admit a Bogdonov-Takens bifurcation at Z1, where α1 and α2 are defined
in Subsection 3.2.1.

5. Auto-oscillation

In this section, we prove a theorem for auto-oscillations of (4) on the following nonempty closed
and convex set of R2

Qk :=
{
(z1, z2) ∈

[
− δ, N0−x∗

]
×
[
− δ, N0− ky∗

]
, −2δ ≤ z1+ z2 ≤ N0− (ky∗+x∗)

}
,

where δ := δ
q
, δ = min

{
x∗, y∗

}
, q ≥ 2, and k < N0

y∗
are some constant real numbers.

Let Z ∈ Qk. From now on, we consider the following system

Ż = τZf(Z), (22)

where f is the vector field defined by (4) and τZ is the metric projection on the closed and convex
tangent cone to Qk at Z (Appell et al. (2017); Lobanova and Sadovskii (2007)). Let

α∗ =
γ(βN0 + γ)

γ + ν
, α3 = γ + β

(
N0 + y∗(1− k)

)
, αm = max

{α∗

2
; α3; βδ

}
,

δ0 =
1

2

(
y∗ −

γ

β

)
, δ1 = x∗ − δ0, δ0 = min

{
δ0, δ1

}
, q0 = max

{
2,

δ

δ0
,
δ

δ1
,
2βδ

α∗

}
,

k0 = 1 +
β(γ + βN0)(γ + 2ν)

2γ(βN0 − ν)
, β0 = min

{ γ2 + 2ν2 + 4γν

N0γ
,

2ν

γ + 2ν

}
.

Theorem 5.1.

Let Qk be a closed and convex set of R2 of which interior is nonempty, and (23)

f : Qk → R2 be a locally lipschitz function . (24)

Suppose that there exist some positive real numbers β, ν, γ, α, N0, q and k such that

(γ + 2ν)2

2ν
< N0,

γ + 2ν

N0

< β < β0, q0 < q, k0 < k <
N0

y∗
and αm < α, (25)

and

∀Z ∈ ∂Qk, ∃ u ∈ TZ , ⟨u , f(Z)⟩ > 0. (26)

If the conditions (23) - (26) hold, then the system (22) admits a unique closed trajectory Γ of
which orbit is a globally stable limit cycle on Qk.

Proof:

We will just verify if the hypothesis of Lobanova-Sadovskii theorem (Lobanova and Sadovskii
(2007)) are satisfied under the conditions of Theorem 4.1. We check that O(0 , 0) ∈ Q̊k, Qk is a
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closed and convex set. Moreover, f is locally Lipschitz on Qk because its components f1 and
f2 defined by

f1(Z) = (α− γ − βy∗)z1 − (γ + ν)z2 − βz1z2 and f2(Z) = βy∗z1 + αz2 + βz1z2,

are polynomial functions.

Next, we prove that there exist a real positive definite matrix B and an application

µ : (0 , +∞) → (0 , +∞) such that for all Z ∈ Qk, ⟨BZ, f(Z)⟩ ≥ µ(∥Z∥).

Let B :=

βy∗ 0

0 γ + ν

 and Z ∈ Qk. Then,

⟨BZ, f(Z)⟩ = βy∗ (α− γ − βy) z21 + (γ + ν) (α + βz1) z
2
2 .

Since y < N0 + y∗(1− k), we have −βy > −β
(
N0 + y∗(1− k)

)
.

Moreover, we have z1 ≥ −δ. Therefore, we obtain

⟨BZ, f(Z)⟩ ⩾ βy∗

(
α− γ − β

(
N0 + y∗(1− k)

) )
z21 + (γ + ν) (α− βδ ) z22

⩾ βy∗ (α− α3) z
2
1 + (γ + ν) (α− βδ) z22 .

According to (25), we have α > max
{
βδ ; α3 ; α∗

2

}
. So, we can take

η := min
{
βy∗ (α− α3) ; (γ + ν) (α− βδ)

}
> 0,

and µ(r) = ηr2, for all r > 0. Then, for all Z ∈ Qk, ⟨BZ, f(Z)⟩ ≥ µ(∥Z∥).

Now, let us find r0 > 0 such that for all Z ∈ Qk, ⟨JZ, f(Z)⟩ ≥ r0∥Z∥2.

Let Z ∈ Qk. Then, we have

⟨JZ, f(Z)⟩ = βyz21 + (γ + βx) z22 + (γ + βy∗)z1z2

≥
(
βy − 1

2
(γ + βy∗)

)
z21 +

(
βx+

1

2
(γ − βy∗)

)
z22

≥ β

(
z2 + y∗ − 1

2

(
γ

β
+ y∗

))
z21 + β

(
z1 + x∗ +

1

2

(
γ

β
− y∗

))
z22

≥ β

(
1

2

(
y∗ − γ

β

)
− δ

)
z21 + β

(
x∗ +

1

2

(
γ

β
− y∗

)
− δ

)
z22

⟨JZ, f(Z)⟩ ≥ β (δ0 − δ) z21 + β (δ1 − δ) z22 .

Moreover, according to (25), we have δ0 − δ > 0 and δ1 − δ > 0. So, we can take

r0 := βmin
{
δ0 − δ ; δ1 − δ

}
> 0.

Then, for all Z ∈ Qk, ⟨JZ, f(Z)⟩ ≥ r0∥Z∥2.
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Now, we prove that for all Z ∈ Qk and Z ̸= O, f(Z) /∈ NZ .

Case 1: If Z ∈ Q̊k, then NZ = {O} . Thus, f(Z) ∈ NZ if and only if f(Z) = O.

Since, there exists r0 > 0 such that for all Z ∈ Qk, ⟨JZ, f(Z)⟩ ≥ r0∥Z∥2, then,

f(Z) ∈ NZ implies Z = O.

Thus, for all Z ∈ Q̊k\ {O} , f(Z) /∈ NZ .

Case 2: If Z ∈ ∂Qk, according to (26), there exists u ∈ TZ , such that ⟨u, f(Z)⟩ > 0.

So, for all Z ∈ ∂Qk, f(Z) /∈ NZ . Thus, for all Z ∈ Qk\ {O} , f(Z) /∈ NZ .

Hence, according to the Lobanova-Sadovskii theorem (Lobanova and Sadovskii (2007)), the proof
of Theorem 5.1 is completed. ■

5.1. Application and simulation

To apply Theorem 5.1, we take
(
β, ν, γ, α,N0

)
∈ A2 such that

γ =
2

25
, ν =

9

100
, β =

7

100
, N0 = 9 and

α∗

2
=

71

425
< α.

Then, we obtain x∗ =
9
7
, y∗ =

432
119

, and δ = x∗
2
= 9

14
. Moreover, the values under consideration

verify the condition (25), i.e.,

(γ + 2ν)2

2ν
=

338

225
< N0,

γ + 2ν

N0

=
13

225
< β < β0 ≈ 0.0713889,

q0 < q = 2, and k0 < k = 2 <
N0

y∗
=

1071

432
.

We obtain

Qk :=

{
(z1, z2) ∈ R2, − 9

14
≤ z1 ≤

72

7
, − 9

14
≤ z2 ≤

207

119
, −9

7
≤ z1 + z2 ≤

54

119

}
,

which is a closed and convex set of R2 of which interior is nonempty.

For all Z = (z1, z2) ∈ Qk, we have{
ż1 = f1(Z) = (α− γ − βy∗)z1 − 0.17z2 − 0.07z1z2,

ż2 = f2(Z) = 0.2541176z1 + αz2 + 0.07z1z2.
(27)

The vector field f = (f1, f2) is a locally Lipschitz map on Qk and OR2 ∈ Qk.

Let Z ∈ ∂Qk. Then, we distinguish two cases.
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Case 1: Z is a corner point. In this case the tangent cone at Z is the angular domain. For example
if Z =

(
− 9

14
, − 9

14

)
, then we have

TZ =
{
(z1 , z2) ∈ R2, z1 ≥ − 9

14
and z2 ≥ − 9

14

}
,

and

NZ =
{
(z1 , z2) ∈ R2, z1 ≤ − 9

14
and z2 ≤ − 9

14

}
.

Moreover, for α ≈ 0.18034, we have u = (1, 0 ) ∈ TZ and ⟨u, f(Z)⟩ ≈ 0.25 > 0.

Case 2: Z is not a corner point. In this case the tangent cone at Z is the half plane.
For example if

(
− 9

14
, 0
)
, then we have

TZ =
{
(z1 , z2) ∈ R2, − 9

14
≤ z1 and z2 = 0

}
,

and

NZ =
{
(z1 , z2) ∈ R2, z1 ≤ − 9

14
and z2 = 0

}
.

Moreover, for α ≈ 0.18034, we have u = (1, 0 ) ∈ TZ and ⟨u, f(Z)⟩ ≈ 0.25 > 0.

Then, for all Z ∈ ∂Qk, there exist u ∈ TZ such that ⟨u , f(Z)⟩ > 0.

So, for these values of the parameters, the system (22) admits a unique closed trajectory of which
orbit is stable. For the simulations, we denote the initial conditions by (z01 , z

0
2) (see Figures 15,

16, and 17 in the appendix).

Remark 5.1.

On Figure 15 and Figure 16 below, we have simulated respectively the phase portrait and the
chronic of the system (22) on Q under the conditions of the Theorem 5.1 and we observe the
existence of a unique limit cycle which is globally stable. This means that when the SIR system is
perturbed by external factors (such as climate change), the infection (the disease) persists over time
(a long term). We remark that there exists a αc ∈ (αm, +∞) such that for all α ∈ (αm, αc), there
exists a unique stable limit cycle (see Figure 15 and Figure 16). This means that the disease appears
periodically in the population. We can therefore predict and control the infection. But for all α ≥
αc, we observe the disappearance of the limit cycle and the decreases of the rate of infections (see
Figure 17). This means that the infection becomes controllable and can be eradicated after a certain
period.

6. Conclusion

In this work, we have studied the dynamic behavior of the perturbed epidemiological model SIR
on a nonempty, closed and convex set. Indeed, we have studied firstly the existence and the number
of the equilibrium points. Moreover, we have studied the nature of these equilibrium points. Also,
we have analyzed the existence of the Hopf and Bogdanov-Takens bifurcations in a neighborhood

16

Applications and Applied Mathematics: An International Journal (AAM), Vol. 19 [2024], Iss. 1, Art. 10

https://digitalcommons.pvamu.edu/aam/vol19/iss1/10



AAM: Intern. J., Vol. 19, Issue 1 (June 2024) 17

of some equilibrium points. Finally, we have demonstrated under certain conditions on the param-
eters, the existence and the uniqueness of a globally stable limit cycle. The results obtained in this
paper with the perturbed SIR epidemiological model are not obtained with the classical SIR model.
Therefore, taking into account the external phenomena that can influence an epidemic would allow
a better understanding of the true behavior and evolution of this epidemic.
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Appendix

Figure 1. Phase portrait of the differential system (4) for α = 1.58 < αb and (z01 , z
0
2) = (0.07, 0.09).

Figure 2. Phase portrait of the differential system (4) for α = αb = 1092
595 and (z01 , z02) = (0.07 , 0.09).

Figure 3. Chronic of the differential system (4) for α = αb = 1092
595 and (z01 , z02) = (0.07 , 0.09).

Figure 4. Phase portrait of the differential system (4) for α ∈
(
αb , αc1

)
with αc1 = 2.01,

αb = 1092
595 and (z01 , z

0
2) = (0.07 , 0.09).
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Figure 5. Chronic of the differential system (4) for α ∈
(
αb , αc1

)
with αc1 = 2.01, αb = 1092

595 and
(z01 , z

0
2) = (0.07 , 0.09).

Figure 6. Phase portrait of the differential system (4) for α ∈ [αc1 , αc2 ] with αc1 = 2.01, αc2 = 2.02, and
(z01 , z

0
2) = (0.07, 0.09).

Figure 7. Chronic of the differential system (4) for α ∈ [αc1 , αc2 ] with αc1 = 2.01, αc2 = 2.02,
and (z01 , z

0
2) = (0.07, 0.09).

Figure 8. Phase portrait of the differential system (4) for α ∈ (αc2 , αc3) with αc2 = 2.02, αc3 = 3.575, and
(z01 , z

0
2) = (0.07 , 0.09).
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Figure 9. Chronic of the differential system (4) for α ∈ (αc2 , αc3) with αc2 = 2.02, αc3 = 3.575 and
(z01 , z

0
2) = (0.07 , 0.09).

Figure 10. Phase portrait of the differential system (4) for α ≥ αc3 = 3.575 and (z01 , z
0
2) = (0.07 , 0.09).

Figure 11. Chronic of the differential system (4) for α ≥ αc3 = 3.575 and (z01 , z
0
2) = (0.07 , 0.09).

Figure 12. Phase portrait of the differential system (18) with β0 ∈
{
β1 + 0.99, β2 + 0.99

}
and

α0 ∈
{
α01 + 0.99, α02 + 0.99

}
.
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Figure 13. Chronic of the differential system (18) with β0 ∈
{
β1 + 0.99, β2 + 0.99

}
and

α0 ∈
{
α01 + 0.99, α02 + 0.99

}
.

Figure 14. Phase portrait of the differential system (18) with β0 ∈
{
β1 − 0.99, β2 − 0.99

}
and

α0 ∈
{
α01 − 0.99, α02 − 0.99

}
.

Figure 15. Phase portrait of the differential system (22) for α ≈ 0.18034 and (z01 , z
0
2) ∈ {(0.7, 0.9), (7, 9), (4, 2)}.

Figure 16. Chronic of the differential system (22) for α ≈ 0.18034 and (z01 , z
0
2) = (7, 9).

Figure 17. Phase portrait of (22) for (z01 , z
0
2) = (7, 9) and α ⩾ αc = 0.1804.
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