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Abstract

A study is made on the development of hydromagnetic non-Newtonian Casson and Williamson
boundary layer flow in an electrically conducting fluid in the presence of heat flux, mass flux, and
the uniform magnetic field. The governing non-linear system of PDEs is transformed into a set of
non-linear coupled ODEs and then treated numerically by using the Chebyshev spectral method.
The velocity, temperature, and concentration fields of the steady boundary layer flow, which are
generated by the stretched sheet with non-uniform thickness are discussed. The simultaneous ef-
fects of the external magnetic field, Soret and Dufour phenomena with reference have been ex-
plored. The characteristic features of the flow phenomena are examined in some detail. Also, the
main emphasis in the text of this paper was given to the structure of the friction factor, heat and
mass transfer rates. The effect of different parameters, namely, magnetic number, Soret, Dufour
parameters, Casson parameter, and Williamson parameter on velocity, thermal, and concentration
distributions are discussed with the help of graphs. Finally, it is observed that the velocity decreases
with an increase in the magnetic parameter. In addition, for the temperature profiles, opposite be-
havior is observed for increment in both the magnetic parameter and the Dufour parameter.

Keywords: Slendering stretching sheet; Casson and Williamson models; MHD Soret and Du-
four phenomena; Chebyshev spectral method
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1. Introduction

In recent years, the study of hydrodynamic and hydromagnetic Casson or Williamson fluid flows
has received considerable attention mainly due to the abundant geophysical and astrophysical ap-
plications (Zehra et al. (2015), Megahed (2015a)). Recent work on the analysis of Casson fluid
mechanics has to lead to the introduction of the Casson number concept (Khan et al. (2017), Mah-
moud and Megahed (2017), Megahed (2015b)). Megahed has introduced what is perhaps a more
general concept, namely that of Williamson fluid flows with a perpetual rheological history (Mega-
hed (2019), Megahed (2020)). Nadeem and Hussain (2014) discussed in some detail the concept
of Williamson nanofluid history flows.

Recently, the heat and mass transfer (or double-diffusive) finds applications in a variety of engi-
neering processes like in petroleum reservoirs, nuclear waste disposal, etc. The temperature gra-
dient creates mass fluxes which is called thermo-diffusion or Soret effect, which is always found
in the concentration equation. Additionally, the energy flux caused by a composition gradient is
called the diffusion-thermo or Dufour effect, which can also exist in the energy equation. Gener-
ally, Dufour and Soret effects are of a smaller order of magnitude than the effects prescribed by
Fourier law. As to the Soret and Dufour phenomena, special attention has been given to discussing
them by various researchers (Mahmoud and Megahed (2013), Hayat et al. (2015) and Bidemi and
Sami (2019)). By considering the variable thickness sheet, Lee (1967) was the first researcher who
innovated the idea of the stretching sheet with variable thickness through tenuous needles. Later,
studies on the variable thickness sheet were continued analytically by Fang et al. (2009) through
the problems of MHD fluid flow past a shrinking/stretching sheet. Recently, many authors (An-
jali and Prakash (2015), Anjali and Prakash (2016), and Khader and Megahed (2013)) deliberated
various fluid flow problems across a stretching sheet with variable thickness.

So far no endeavor has been attempted towards the non-Newtonian Casson/Williamson MHD flow
toward the slendering stretching sheet with heat mass flux within the sight of Soret and Dufour
effects. So, to achieve this study, we use the well-known numerical technique, the Chebyshev-
spectral method. Chebyshev polynomials are examples of eigenfunctions of singular Sturm-
Liouville problems. Chebyshev polynomials have been used widely in the numerical solutions
of the boundary value problems (Bell (1967)) and in computational fluid dynamics and many
applications (Khader and Saad (2018a, 2018b), Khader and Abualnaja (2019), Khader (2013a,
2013b)). The existence of a fast Fourier transform for Chebyshev polynomials to efficiently com-
pute matrix-vector products has meant that they have been more widely used than other sets of
orthogonal polynomials. They are widely used because of their good properties in the approxima-
tion of functions.

The well-known family of orthogonal polynomials on [−1, 1] are Chebyshev polynomials and can
be determined with the aid of the following recurrence formula:

Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, ....

The first three Chebyshev polynomials are T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1.
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These polynomials have been implemented to solve the linear and non-linear differential equations
and integro-differential equations (El-Gendi (1969)). This method is also adopted for solving the
fractional diffusion equation (Khader (2011)) and fractional order integro-differential equations
(Sweilam and Khader (2010)).

The organization of this paper is as follows. In the next section, the formulation of the problem is
introduced. Section 3 summarizes the procedure solution using the Chebyshev spectral method. In
Section 4 the results and discussion are given. Also, a conclusion is given in Section 5.

2. Formulation of the Problem

Suppose the 2D laminar MHD flow of Casson and Williamson fluids flow over a stretched sheet
with variable thickness. Here the x-axis is considered alongside the sheet motion and the y-axis is
perpendicular to it. It is supposed that y = A(x + b)

1−m

2 , Uw(x) = U0(x + b)m, νw = 0, m ̸= 1.
This study does not take into account the induced magnetic field. The combined influence of Soret
and Dufour impacts are considered. A transverse magnetic field of strength B0 is employed. The
physical model of the problem is depicted in Figure 1.

Figure 1. Physical description of the problem

With the above assumptions, the governing equations for steady 2D flow of Casson and Williamson
fluids are expressed as:

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= v

(
1 +

1

β

)
∂2u

∂y2
−
√
2νΓ

∂u

∂y

∂2u

∂y2
− σ B2(x)

ρ
u, (2)

u
∂T

∂x
+ v

∂T

∂y
=

k

ρCp

∂2T

∂y2
+
DmkT
CsCp

∂2C

∂y2
, (3)
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u
∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2
+
DmkT
Tm

∂2T

∂y2
. (4)

The corresponding boundary conditions are:

u = 0, v = 0,
∂T

∂y
= −hw

k
(Tw − T ),

∂C

∂y
= −hs

k
(Cw − C), at y = 0, (5)

u→ U(x), T → T∞, C → C∞, as y → ∞, (6)

where hw and hs are transfers of the convective energy and the concentration coefficients, respec-
tively; Cw and Tw are convective fluid concentration and temperature under the moving sheet,
respectively.

We now suggest the following similarity transformations:

ψ(x, y) = f(η)

(
2

m+ 1
ν U0(x+ b)m+1

)0.5

, (7)

η = y

(
m+ 1

2
U0

(x+ b)m+1

υ

)0.5

, (8)

θ(Tw(x)− T∞) = T − T∞, ϕ(Cw(x)− C∞) = C − C∞. (9)

If stream function ψ is described as u = ∂ ψ
∂ y

and v = −∂ ψ
∂ x

, then u and v satisfy the equation of
continuity and become:

u = U0(x+ b)mf ′(η), v = −
√
m+ 1

2
ν U0(x+ b)m−1

[
f ′(η)η

(
m− 1

m+ 1

)
+ f(η)

]
, (10)

with the help of (7)-(10), Equations (2)-(4) converted as the below nonlinear system of ODEs:

(
1 +

1

β

)
f ′′′ + f ′′f −

(
2m

m+ 1

)
f ′2 + Λ f ′′f ′′′ −Mf ′ = 0, (11)

θ′′ − Pr

(
1−m

m+ 1

)
f ′θ + Pr fθ′ + PrDuϕ′′ = 0, (12)
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ϕ′′ − Sc

(
1−m

m+ 1

)
f ′ϕ+ Sc fϕ′ + ScSr θ′′ = 0. (13)

The non-dimensional form of boundary conditions can be written as:

f(0) = 0, f ′(0) = 0, θ′(0) = Bi1[1− θ(0)], ϕ′(0) = Bi2[1− ϕ(0)], (14)

f ′(η) → 1, θ(η) → 0, ϕ(η) → 0, as η → ∞, (15)

where Λ, M, Pr, Du, Sc, Sr, Bi1, Bi2 are defined as:

Λ = Γ

√
(m+ 1)U3

0

(x+ b)3m−1

ν
, M =

2σ B2
0

ρU0(m+!)
, P r =

µCp
k

,

Du =
DmkT (Cw − C∞)

ν CsCp(Tw − T∞)
, Sc =

ν

Dm

, Sr =
DmkT (Tw − T∞)

ν Tm(Cw − C∞)
,

Bi1 =
hw
k

√
ν

a
, Bi2 =

hs
k

√
ν

a
.

(16)

The physical quantities of engineering interest, the friction factor, heat and mass transfer rate co-
efficients are given as:

Cf = 2
µ∂u
∂y

ρU2
w

, Nux =
(x+ b)∂T

∂y

Tw(x)− T∞
, Shx =

(x+ d)∂C
∂y

Cw(x)− C∞
. (17)

By using (5) and (6), Equation (17) becomes:

Cf (Rex)
0.5 = 2

(
m+ 1

2

)0.5 (
(1 + β−1)f ′′(0) + Λ f ′′2(0)

)
,

Nux = −
(
m+ 1

2

)0.5

(Rex)
0.5θ′(0), Shx = −

(
m+ 1

2

)0.5

(Rex)
0.5ϕ′(0),

(18)

where Rex = UwX
ν

and X = x+ b.
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3. Procedure solution using Chebyshev spectral method

We solve the resulting system of non-linear ODEs of the form (11)-(13) with boundary conditions
(14)-(15) by using the Chebyshev spectral method. For this purpose, since the Gauss-Lobatto nodes
lie in the computational interval [−1, 1], in the first step of this method, the transformation η =
η∞
2
(x+ 1) is used to change Equations (11) through (13) to the following form:

(
1 +

1

β

)(
2

η∞

)3

f ′′′+

(
2

η∞

)2(
f ′′f −

(
2m

m+ 1

)
f ′2

)
+Λ

(
2

η∞

)5

f ′′f ′′′−M
(

2

η∞

)
f ′ = 0,

(19)

(
2

η∞

)2

θ′′ − Pr

(
1−m

m+ 1

)(
2

η∞

)
f ′θ + Pr

(
2

η∞

)
fθ′ + PrDu

(
2

η∞

)2

ϕ′′ = 0, (20)

(
2

η∞

)2

ϕ′′ − Sc

(
1−m

m+ 1

)(
2

η∞

)
f ′ϕ+ Sc

(
2

η∞

)
fϕ′ + ScSr

(
2

η∞

)2

θ′′ = 0, (21)

with the following transformed boundary conditions:

f(−1) = 0, f ′(−1) = 0, f ′(1) = 0.5 η∞, θ′(−1) = 0.5 η∞Bi1[1− θ(−1)],

θ(1) = 0, ϕ′(−1) = 0.5 η∞Bi2[1− ϕ(−1)], ϕ(1) = 0,
(22)

where f(x), θ(x), and ϕ(x) are the unknown functions from Cm[−1, 1] and where the differenti-
ation in the equations (19) through (21) will be for the new variable x. Our technique is accom-
plished by starting with a Chebyshev approximation for the highest order derivatives, f (3), θ(2),
and ϕ(2) and generating approximations to the lower order derivatives f (i), i = 0, 1, 2 and
θ(i), ϕ(i), i = 0, 1 as follows.

Setting f (3)(x) = Ω(x), θ(2)(x) = Υ(x), and ϕ(2)(x) = ξ(x), then by integration we obtain f (2)(x),
f (1)(x), f(x), θ(1)(x), θ(x), ϕ(1)(x), and ϕ(x) as follows:

f (2)(x) =

∫ x

−1

Ω(x)dx+ c0,

f (1)(x) =

∫ x

−1

∫ x

−1

Ω(x)dxdx+ (x+ 1)c0 + c1,

f(x) =

∫ x

−1

∫ x

−1

∫ x

−1

Ω(x)dxdxdx+
(x+ 1)2

2!
c0 +

(x+ 1)

1!
c1 + c2,

(23)
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θ(1)(x) =

∫ x

−1

Υ(x)dx+ d0,

θ(x) =

∫ x

−1

∫ x

−1

Υ(x)dxdx+ (x+ 1)d0 + d1,

(24)

ϕ(1)(x) =

∫ x

−1

ξ(x)dx+ e0,

ϕ(x) =

∫ x

−1

∫ x

−1

ξ(x)dxdx+ (x+ 1)e0 + e1.

(25)

From the boundary conditions (22), we can obtain the constants of integration ck, dk, ek, k =
0, 1, 2, where

c0 =
η∞
4

− 1

2

∫ 1

−1

∫ x

−1

Ω(x)dxdx, c1 = 0, c2 = 0,

d0 = − Bi1

2Bi1− 1
− Bi1

2Bi1− 1

∫ 1

−1

∫ x

−1

Υ(x)dxdx, d1 =
2Bi1

2Bi1− 1
+

1

2Bi1− 1

∫ 1

−1

∫ x

−1

Υ(x)dxdx,

e0 = − Bi2

2Bi2− 1
− Bi2

2Bi2− 1

∫ 1

−1

∫ x

−1

ξ(x)dxdx, e1 =
2Bi2

2Bi2− 1
+

1

2Bi2− 1

∫ 1

−1

∫ x

−1

ξ(x)dxdx.

Therefore, we can give approximations to the equations (19) through (21) as follows:

fi =
n∑
j=0

ℓfijΩj + cfi , f
(1)
i =

n∑
j=0

ℓf1ij Ωj + cf1i , f
(2)
i =

n∑
j=0

ℓf2ij Ωj + cf2i ,

θi =
n∑
j=0

ℓθijΥj + dθi , θ
(1)
i =

n∑
j=0

ℓθ1ijΥj + dθ1i ,

ϕi =
n∑
j=0

ℓϕijξj + eϕi , ϕ
(1)
i =

n∑
j=0

ℓϕ1ij ξj + eϕ1i ,

(26)

for all i = 0, 1, 2, ..., n, where

7
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ℓfij = b3ij −
1

4
(xi + 1)2b2nj, ℓf1ij = b2ij −

1

2
(xi + 1)b2nj, ℓf2ij = bij −

1

2
b2nj,

ℓθij = b2ij −
1

2
(xi + 1)b2nj, ℓθ1ij = bij −

1

2
b2nj,

ℓϕij = b2ij −
1

2
(xi + 1)b2nj, ℓϕ1ij = bij −

1

2
b2nj,

cfi =
η∞
8

(
xi + 1

)2
, cf1i =

η∞
4

(
xi + 1

)
, cf2i =

η∞
4
,

dθi =
−Bi1

2Bi1− 1

(
xi + 1

)
+

2Bi1

2Bi1− 1
, dθ1i =

−Bi1
2Bi1− 1

,

eϕi =
−Bi2

2Bi2− 1

(
xi + 1

)
+

2Bi2

2Bi2− 1
, eϕ1i =

−Bi2
2Bi2− 1

,

where b2ij = (xi − xj)bij, b3ij = (xi−xj)2

2!
bij, and bij are the elements of the matrix B as given

in El-Gendi (1969). By using Equation (26), one can transform Equations (19) through (21) to the
following system of non-linear equations in the highest derivative:

(
1 +

1

β

)
Ωi +

(η∞
2

)(
fif

(2)
i −

(
2m

m+ 1

)(
f
(1)
i

)2
)
+ Λ

(
2

η∞

)2

Ωif
(2)
i −M

(η∞
2

)2

f
(1)
i = 0,

(27)

Υi − Pr

(
1−m

m+ 1

)(η∞
2

)
f
(1)
i θi + Pr

(η∞
2

)
fiθ

(1)
i + PrDu ξi = 0, (28)

ξi − Sc

(
1−m

m+ 1

)(η∞
2

)
f
(1)
i ϕi + Sc

(η∞
2

)
fiϕ

(1)
i + ScSrΥi = 0. (29)

This scheme is a non-linear system of 3n + 3 algebraic equations in 3n + 3 unknowns Ωi, Υi,

and ξi, (i = 0, 1, ..., n) which is then solved using the Newton iteration method. After solving this
system and substituting Ωi, Υi, and ξi in Equation (26), we can obtain the numerical solution of
the system of equations (11) through (15).

8
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4. Results and discussion

The results obtained for Equations (11) through (13) along with the boundary conditions (14)
through (15) for the non-Newtonian fluid flow are illustrated in Figures 2 through 16. Insofar
as we are concerned with these governing equations, we note that this system cannot be solved
analytically. So, we employ the Chebyshev spectral method to solve this system numerically. The
variation of velocity with time for different values of the magnetic parameterM is studied in Figure
2.

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0

f '

M 0.0, 0.1, 0.2

0.2, m 0.1, 2.5

Figure 2. Effect of M on velocity field

Here it is observed that as M increases impedance force is increasing, hence the velocity is de-
creased. Figures 3 and 4 underline the importance of the same magnetic parameter M and its
effect on the dimensionless temperature and the dimensionless concentration, respectively. Here it
is observed that both the temperature distribution and the concentration distribution are increasing
as M is increasing. Hence, it can be concluded that both the sheet temperature θ(0) and the fluid
concentration along the sheet ϕ(0) are maximum in case of maximum magnetic field strength and
goes on decreasing as the magnetic field vanishing.

Figure 3. Effect of M on temperature field

9
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2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

0.5

0.6

M 0.0, 0.1, 0.2

Sc 0.2, Sr 0.5, Bi2 0.2

Figure 4. Effect of M on concentration field

In Figure 5, the dimensionless velocity profiles f ′(η) are drawn for various values of parameter m
when M = 0.1, β = 2.5 and Λ = 0.2. As we see, the velocity decreases with increasing m which
also produces larger values for the skin-friction as m enhances.

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0

f '

m 0.1, 0.4, 0.7

0.2, M 0.1, 2.5

Figure 5. Effect of m on velocity field

On the other hand, for various values ofm both the temperature profiles θ(η) and the concentration
profiles ϕ(η) are shown in Figures 6 and 7, respectively. These figures show that the temperature at
the surface θ(0) increases as m increases, which also agrees with the behavior of the concentration
distribution presented in Figure 7. It should be mentioned that in the presence of small m, the
thickness of both temperature layer and the concentration layer inside the boundary layer region
become slight and tend to increase as m larger.
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2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

0.5

m 0.1, 0.4, 0.7

Pr 3.0, Du 0.3, Bi1 0.2

Figure 6. Effect of m on temperature field

Figure 7. Effect of m on concentration field

The temperature profile θ(η) for various values of Sc is presented in Figure 8. This figure shows
that the temperature at the surface is slightly large for large values of Sc which produces large
heating for the sheet. The same behavior is noted inside the thermal region for increasing values of
Sc.
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2 4 6 8 10 12 14

0.05

0.10

0.15

0.20

0.25

Sc 0.2, 1.0, 2.0
0.2, M 0.1, 2.5

Pr 3.0, Du 0.3, Bi1 0.2

Figure 8. Effect of Sc on temperature field

One of the most important features of the model is that it allows to describing the concentration
profile via the following Figure 9 along the stretching sheet for various values of Sc. This feature
is not taken into account by the majority of the models in the literature. It is interesting to note that
as Sc increases, the decrease of both the concentration layer thickness and the fluid concentration
along the sheet ϕ(0) are greater.
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Figure 9. Effect of Sc on concentration field

The variation of temperature for different values of the Soret parameter Sr is introduced in Figure
10. From this figure, we observe that the effect of increase in Soret parameter, Sr under the appli-
cation of the magnetic field is to decrease both the temperature distribution and the temperature at
the surface θ(0).
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Figure 10. Effect of Sr on temperature field

Figure 11 depicts the effect of the Soret parameter Sr on the concentration profile ϕ(η) when other
flow parameters are kept constant. It is observed that for a given position η, the concentration gets
increased with an increase in Sr. In other words, increasing the Soret parameter Sr has the effect
of increasing the fluid concentration along the sheet ϕ(0).

2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

0.5

Sr 0.1, 1.0, 1.5
m 0.1, Sc 0.2, Bi2 0.2

Figure 11. Effect of Sr on concentration field

Figure 12 indicates the variation of the temperature profile θ(η) with higher values of the Dufour
parameterDu. It can be seen that even in presence of the magnetic field, asDu increases, the value
of θ(η) increases for the same η. It is interesting to find that the temperature at the surface θ(0)
increases with an increase in Du, as was expected. That is, the thermal boundary layer thickness
turns out to be a monotonically increasing function of Du.
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Figure 12. Effect of Du on temperature field

To see the influence of the Bi1 on both the temperature and concentration fields, Figures 13 and
14 are plotted against η. The graphs show that with increasing Bi1, both the temperature and
concentration distribution slightly increases.
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Figure 13. Effect of Bi1 on temperature field
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Figure 14. Effect of Bi1 on concentration field

Figures 15 and 16 show the same effect as said above but in the presence of Bi2 parameter. That
is, an increase in Bi2 parameter leads in increase of both the temperature at the surface θ(0) and
the fluid concentration along the sheet ϕ(0). Moreover, the concentration layer thickness becomes
thicker for larger Bi2 parameter and a slight growth of temperature distribution in the boundary
layer is given in Figure 15.
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Figure 15. Effect of Bi2 on temperature field
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Figure 16. Effect of Bi2 on concentration field.

5. Concluding remarks

In the present work analysis, the MHD flow and the heat mass transfer within a boundary layer of
non-Newtonian Casson/Williamson fluid above a stretching sheet is given. Numerical results by
using the Chebyshev spectral collocation are presented to illustrate the details of the flow and heat
transfer characteristics and their dependence on the various parameters. The results are presented
graphically with various system parameters in detail.

The main findings of our study on the non-Newtonian fluid that moving over a stretching sheet are
as follows:

(1) The dimensionless velocity at boundaries decreases with increasing the magnetic parameter
and the stretching parameter.

(2) The effect of the magnetic field and the Dufour parameter on the fluid above the stretching
sheet is to enhance the sheet temperature.

(3) The Soret parameter and the mass flux parameter have a prominent effect on the concentration
field.

(4) When both the Casson parameter and the Williamson parameter are vanishes, results agree
with those of Newtonian fluid.
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