
Applications and Applied Mathematics: An International Applications and Applied Mathematics: An International 

Journal (AAM) Journal (AAM) 

Volume 19 Issue 1 Article 1 

12-2022 

(R1974) A Multi Server Markovian Working Vacation Queue With (R1974) A Multi Server Markovian Working Vacation Queue With 

Server State Dependent Rates and with Partial Breakdown Server State Dependent Rates and with Partial Breakdown 

A. Sundaramoorthy 
CK College of Engineering and Technology 

R. Kalyanaraman 
Annamalai University 

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam 

 Part of the Probability Commons 

Recommended Citation Recommended Citation 
Sundaramoorthy, A. and Kalyanaraman, R. (2022). (R1974) A Multi Server Markovian Working Vacation 
Queue With Server State Dependent Rates and with Partial Breakdown, Applications and Applied 
Mathematics: An International Journal (AAM), Vol. 19, Iss. 1, Article 1. 
Available at: https://digitalcommons.pvamu.edu/aam/vol19/iss1/1 

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for 
inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of 
Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu. 

https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam/vol19
https://digitalcommons.pvamu.edu/aam/vol19/iss1
https://digitalcommons.pvamu.edu/aam/vol19/iss1/1
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol19%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/212?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol19%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/aam/vol19/iss1/1?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol19%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu


Available at
http://pvamu.edu/aam

Appl. Appl. Math.
ISSN: 1932-9466

Applications and Applied

Mathematics:

An International Journal
(AAM)

Vol. 19, Issue 1 (June 2024), 21 pages

A Multi Server Markovian Working Vacation Queue with Server
State Dependent Rates and with Partial Breakdown

1A. Sundaramoorthy and 2R. Kalyanaraman

1Department of Mathematics
CK College of Engineering and Technology

Cuddalore-607003
Tamilnadu, India

2Department of Mathematics
Annamalai University

Annamalainagar-608002
Tamilnadu, India

1a.sundarmaths92@gmail.com; 2r.kalyan24@rediff.com

Received: March 12, 2022; Accepted: March 6, 2024

Abstract

In this article, we consider an M/M/C queue in which the arrival rate and service rate depends
on the state of the system. In addition, the servers takes working vacation and the system may
breakdown. Whenever breakdown takes place, the repair process immediately commences. During
the repair period the customers are given service in a reduced service rate. Based on the vacation
termination point, two models have been defined. The steady state probability vector of the number
of customers in the queue and the stability condition are obtained using Matrix-Geometric method.
The stationary waiting time distributions have been obtained. Some illustrative examples are also
provided.

Keywords: Markovian queue; Multi server; Partial breakdown; Steady-state probability vector;
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2 A. Sundaramoorthy and R. Kalyanaraman

1. Introduction

For many practical queueing situations, it can bee seen that (i) the system has more than one
server, (ii) the server may do some other work during their free hours, (iii) the arrival rate of
customer varies, (iv) the service rate to customer also varies, and (v) the system may breakdown.
In this paper we designed a queueing system to consider all the above points. In brief the system
discussed in this article is an M/M/C queueing system with working vacation to server and state
dependent arrival service rates.

Recent years have seen an increasing interest in queueing systems with server working vacation
due to their applications in telecommunication systems, manufacturing systems, and computer
systems. In many real life queueing situations, it can be seen that the server works during its rest
period, if the necessity occurs, called working vacation period. But, in such a queue, the server
works with variable service rate, in particular reduced service rate, rather than completely stops
service during vacation period. Also in real life, we have encountered that the systems may failed.
With all these points in mind, we have proposed and analyzed the model in this paper.

Servi and Finn (2002) have first analyzed an M/M/1 queue with multiple working vacation in
which the vacation times are exponentially distributed. During the vacation period, the server
serves in reduced rate; Wu and Takagi (2006) extend this work for M/G/1 queue. Kim et al.
(2003) analyzed the queue length distribution of the M/G/1 queue with working vacations. Liu
et al. (2007) examined stochastic decomposition structure of the queue length and waiting time
in an M/M/1 working vacation queue. Xu et al. (2009) extended the M/M/1 working vacation
queue to an M [x]/M/1 working vacation queue. Li et al. (2009) used the matrix analytic method
to analyze an M/G/1 queue with exponential working vacation under a specific assumption. Lin
and Ke (2009) consider a multi server queue with single working vacation. Jain and Jain (2010)
investigated a single working vacation model with server break down. Ke et al. (2010) have given
a short survey on vacation models in recent years. Haghighi and Mishev (2016) analyzed busy
periods of a single-server Poisson queueing system with splitting and batch delayed-feedback.

The C− server Markovian queue with exponentially distributed vacation was first studied by Levy
and Yechiali (1976). The same model has been studied by Vinod (1986) using matrix geometric
method. Chao and Zhao (1998) investigated a multi server model and provided an algorithm for
finding the stationery distribution and performance measures. Tian et al. (1999) and Zhang and
Tian (2003) established stochastic decomposition results for a multi-server Markovian queue with
vacation.

Yechiali and Naor (1971) have considered a unreliable single-server exponential queueing model
with arrival state depending on operational state or breakdown state of the server. Fond and Ross
(1977) analyzed the same model with the assumption that any arrival finding the server busy is lost,
and they obtained the steady-state proportion of customer’s lost. Shogan (1979) has deals with a
single server queueing model with arrival rate depending on server state. Shanthikumar (1982)
has analyzed a single server Poisson queue with arrival rate depending on the state of the server.
Haghighi et al. (1986) discussed the Multi-Server Markovian Queueing System with Balking and
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Reneging. Jayaraman et al. (1994) analyzed a general bulk service queue with arrival rate depend-
ing on server breakdowns. Haghighi (1998) analyzed an Analysis of a Parallel Multi-Processor
System with Task Split and Feedback. Tian and Yue (2002) discussed the queueing system with
variable arrival rate. The authors studied the model by using the principle of quasi-birth and death
process (QBD) and matrix-geometric method. Furthermore, they calculated some performance
measures. The Matrix-geometric method approach is a useful tool for solving the more complex
queueing problems. The Matrix-geometric method has been applied by many researchers to solve
various queueing problems in different frameworks. Neuts (1981) explained various matrix geo-
metric solutions of stochastic models. The Matrix-geometric approach is utilized to develop the
computable explicit formula for the probability distributions of the queue length and other system
characteristic.

Haghighi and Mishev (2008) have considered a busy period of a single-server Poisson queue-
ing system with splitting and batch delayed-feedback. Kalyanaraman and Sundaramoorthy (2019)
studied a Markovian working vacation queue with state dependent rates and partial breakdown. To
the best of our knowledge, in the study of working vacation queue, the existing literatures focus
mainly on queueing systems with server state independent arrival rates; in this work we deviate
from these works by assuming server state dependent arrival rates with C servers.

In this paper, we consider two M/M/C and with partial breakdown queues with multiple working
vacation. For both the models the arrival rate and service rate depend on the server states. The
models has been analyzed using matrix geometric method. The rest of this paper is organized as
follows. In Section 2, we give the model description, as quasi-birth-death process. In Section 3,
we present the steady state solution using matrix geometric method for Model-I. In Section 4,
we present the steady state solution using matrix geometric method for Model-II. In Section 5,
we present particular model. Section 6 gives some performance measures. In Section 7, we have
derived the stationary waiting time distribution in queue. In Section 8, we presents some numerical
examples. The last section ends with a conclusion.

2. The Mathematical Model

We consider a multi-server queueing system with the following characteristics:

(1) The system alternate between three states: the regular state, the working vacation state, and
breakdown state.

(2) The arrival process follows Poisson with parameter λ during regular state.

(3) In regular state, the server serves customers based on an exponential distribution with rate µ.

(4) All the servers take vacation if there are no customer in the system at a service completion
point. If there are less than C customers in the system, that is, less than C servers are busy, the
remaining server waits.
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4 A. Sundaramoorthy and R. Kalyanaraman

(5) During vacation, the arrival follows Poisson with rate λ1 (λ1 < λ).

(6) Vacation period follows negative exponential with rate θ and the vacation policy is multiple
vacation policy; that is, the servers continue vacation until the servers finds at least one cus-
tomer at a vacation completion point (Model-I) / the server finds at least C− customers at a
vacation completion point (Model-II).

(7) When the servers are in vacation, if a customer arrives, one of the servers serve the customers
using exponential distribution with rate µ1 (µ1 < µ). As this vacation period ends, the server
instantaneously switches over to the normal service rate µ, if there is at least one customer
waiting for service (Model-I) / if there is at least C− customers waiting for service (Model-
II). Upon completion of a service at a vacation period, the server will (i) continue the current
vacation if it is not finished and no customer is waiting for service (Model-I)/(C−1) customers
is waiting for service (Model-II); (ii) continue the service with rate µ1 if the vacation has not
expired and if there is at least one customer waiting for service.

(8) During service of customers in the normal busy period, the system may breakdown. The num-
ber of breakdowns follows Poisson process with parameter α. Once the system break downs,
the repair to the system server starts immediately and the duration of repaired period follows
negative exponential with rate β.

(9) During repair period customers arrive according to Poisson process with rate λ2 (λ2 < λ1).

(10) During repair period the server serves the customers, the service period follows negative ex-
ponential with rate µ2 (µ > µ1 > µ2)

(11) The first come first served (FCFS) service rule is followed to select the customers for service.

The models defined in this article can be studied as a Quasi Birth and Death (QBD) process. The
following notations are necessary for the analysis:

Let L(t) be the number of customers in the queue at time t and let

J(t) =


0, if the servers are on working vacation,
1, if the servers are busy,
2, if the servers are on partial breakdown,

be the server state at time t.

Let X(t) = (L(t), J(t)). Then {(X(t)) : t ≥ 0} is a Continuous Time Markov Chain (CTMC)
with state space S = {(i, j) : i ≥ 0; j = 0, 1}, where i denotes the number of customer in the
queue and j denotes the server state.

Using the lexicographical sequence for the states, the rate matrix Q (Model-I)/Q1 (Model-II) has
been formed, is the infinitesimal generator of the Markov chain.
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3. Model-I

In this section, we completely analyze Model-I,

Q =



0 1 2 3 . . . C − 2 C − 1 C C + 1 . . .

0 B0 A0

1 B10 B11 A0

2 B21 B22 A0

3 B31 B32
... . . . . . . . . .
C − 2 B(C−2)2 A0

C − 1 B(C−1)1 B(C−1)2 A0

C A2 A1 A0

C + 1 A2 A1
... . . . . . . . . .


,

where the sub-matrices A0, A1, and A2 are of order 3× 3 and are appearing as

A0 =

λ1 0 0
0 λ 0
0 0 λ2

,

A1 =

−(λ1 + Cµ1 + θ) θ 0
0 −(λ+ Cµ+ α) α
0 β −(λ2 + β + Cµ2)

,

A2 =

Cµ1 0 0
0 Cµ 0
0 0 Cµ2

,

and the boundary matrix is defined by

B0 =

−(λ1 + θ) θ 0
µ −(λ+ µ+ α) α

0 β −(λ2 + β)

,

B10 =

µ1 0 0
0 µ 0
0 0 µ2

,

B11 =

−(λ1 + µ1 + θ) θ 0
0 −(λ+ µ+ α) α

0 β −(λ2 + µ2 + β)

,

5
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6 A. Sundaramoorthy and R. Kalyanaraman

Bi1 =

iµ1 0 0
0 iµ 0
0 0 iµ2

, for i = 2, 3, 4, ...C − 1,

Bi2 =

−(λ1 + iµ1 + θ) θ 0
0 −(λ+ iµ+ α) α
0 β −(λ2 + iµ2β)

, for i = 2, 3, 4, ...C − 1.

We define the matrix A = A0 + A1 + A2. This matrix A is a 3× 3 matrix and it can be written as

A =

−θ θ 0
0 −α α
0 β −β

.

3.1. The Steady State Solution

Let P = (p0, p1, p2, . . .) be the stationary probability vector associated with Q, such that PQ = 0
and Pe = 1, where e is a column vector of 1′s of appropriate dimension.

Let pi = (pi0, pi1, pi2) for i ≥ 0.

If the steady state condition is satisfied, then the sub vectors pi are given by the following equations:

p0B0 + p1B10 = 0, (1)

p0A0 + p1B11 + p2B21 = 0, (2)

piA0 + pi+1B(i+1)2 + pi+2B(i+2)1 = 0, for i = 1, 2, 3, ...C − 3, (3)

pC−2A0 + pC−1B(C−1)2 + pCA2 = 0, (4)

piA0 + pi+1A1 + pi+2A2 = 0, i ≥ C − 1, (5)

pi = pC−1R
i−(C−1); i ≥ C, (6)

where R is the rate matrix, is the minimal non-negative solution of the matrix quadratic equation
(see Neuts (1981)).

R2A2 +RA1 + A0 = 0, (7)

the matrices A0, A1, and A2 are upper triangular matrices of order 3.

Substituting the equation (6) in (4), we have

pC−2A0 + pC−1(B(C−1)2 +RA2) = 0, (8)

and the normalizing condition is

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 19 [2024], Iss. 1, Art. 1

https://digitalcommons.pvamu.edu/aam/vol19/iss1/1



AAM: Intern. J., Vol. 19, Issue 1 (June 2024) 7

C−2∑
i=0

pie+ pC−1(I −R)−1e = 1. (9)

Theorem 3.1.

The queueing system described in Section 2 is stable if and only if ρ < 1, where ρ =
(λ2α + λβ)

Cµβ + Cµ2α
.

Proof:

Consider the infinitesimal generator A =

−θ θ 0
0 −α α
0 β −β

, which is a square matrix of order 3, the

row vector π = (π1, π2, π3) satisfying the condition πA = 0 and πe = 1.

Following Neuts (1981), the system is stable if and only if πA0e < πA2e. That is, the system is

stable if and only if
(λ2α + λβ)

Cµβ + Cµ2α
< 1. ■

Theorem 3.2.

If ρ < 1, the matrix equation (7) has the minimal non-negative solution R = −A0A
−1
1 −R2A2A

−1
1 .

Proof:

Since A is reducible, the analysis present in Neuts (1978) is not applicable. In Lucantoni (1979), a
similar reducible matrix is treated for the case when the elements are probabilities.

Equation (7) can be written as,

A0A
−1
1 +RA1A

−1
1 +R2A2A

−1
1 = 0A−1

1 .

Since A1 is non-singular, A−1
1 exists,

R = −A0A
−1
1 −R2A2A

−1
1 , (10)

where

A−1
1 =


−1

(λ1 + Cµ1 + θ)
(λ2 + β + Cµ2)θS0 αθS0

0 S0(λ2 + β + Cµ2)(λ1 + Cµ1 + θ) S0α(λ1 + Cµ1 + θ)
0 S0β(λ1 + Cµ1 + θ) S0(λ+ Cµ+ α)(λ1 + Cµ1 + θ)

,

S0 =
1

−(λ1 + Cµ1 + θ)[(λ2 + β + Cµ2)(λ+ Cµ+ α)− αβ]
.

Using Neuts and Lucantoni (1979), the matrix R is numerically computed by using the recurrence
relation with R(0) = 0 in Equation (10).

7
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8 A. Sundaramoorthy and R. Kalyanaraman

Let Q∗ =



0 1 2 3 . . . C − 3 C − 2 C − 1

0 B0 A0

1 B10 B11 A0

2 B21 B22 A0

3 B31 B32
... . . . . . . . . .
C − 2 B(C−2)1 B(C−2)2 A0

C − 1 B(C−1)1 B(C−1)2 +RA2


,

also be irreducible and let P ∗ = (p0, p1, p2, . . . , pC−1) be a solution of P ∗Q∗ = 0.

Solving Equations (1) and (2), we get

p1 = −(p0B0B
−1
10 ), (11)

p2 = p0(B0B
−1
10 B11 − A0)B

−1
21 . (12)

In this way we can calculate all the p′is, 0 ≤ i ≤ C − 2.

Finally, we get

pC−1[DA0 +B(C−1)2 +RA2] = 0, (13)

where the matrix D is readily computed.

pC−1 is the left eigenvector of the matrix DA0 + B(C−1)2 + RA2 of order 3 corresponding to the
eigenvalue zero.

It is normalized so that

C−2∑
i=0

pie+ pC−1(I −R)−1e = 1. and pi = pC−1R
i−(C−1); i ≥ C. ■

Remark 3.1.

The computation of R can be carried out using a number of well-known methods. We use Theorem
1 of Latouche and Neuts (1980). The matrix R is computed by successive substitutions in the
recurrence relation:

R(0) = 0, (14)

R(n+ 1) = −A0A
−1
1 − [R(n)]2A2A

−1
1 for n ≥ 0, (15)

and is the limit of the monotonically increasing sequence of matrices {R(n), n ≥ 0}.
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4. Model-II

In this section, we completely analyze Model-II.

Q1 =



0 1 2 3 . . . C − 2 C − 1 C C + 1 . . .

0 B′
0 A0

1 B10 B′
11 A0

2 B21 B′
22 A0

3 B31 B′
32

... . . . . . . . . .
C − 2 B′

(C−2)2 A0

C − 1 B(C−1)1 B′
(C−1)2 A0

C A2 A1 A0

C + 1 A2 A1
... . . . . . . . . .


,

the boundary matrix is defined by

B′
0 =

−(λ1) 0 0
µ −(λ+ µ+ α) α
0 β −(λ2 + β)

,

B′
11 =

−(λ1 + µ1) 0 0
0 −(λ+ µ+ α) α
0 β −(λ2 + µ2 + β)

,

B′
i2 =

−(λ1 + iµ1) 0 0
0 −(λ+ iµ+ α) α
0 β −(λ2 + iµ2 + β)

, for i = 2, 3, 4, ...C − 1.

4.1. The Steady State Solution

Let P1 = (p0, p1, p2, . . .) be the stationary probability vector associated with Q1, such that P1Q1 =
0 and P1e = 1, where e is a column vector of 1′s of appropriate dimension.

Let pi = (pi0, pi1, pi2) for i ≥ 0.

If the steady state condition is satisfied, then the subvectors pi are given by the following equations:

p0B
′
0 + p1B10 = 0, (16)

p0A0 + p1B
′
11 + p2B21 = 0, (17)

piA0 + pi+1B
′
(i+1)2 + pi+2B(i+2)1 = 0, for i = 1, 2, 3, ...C − 3, (18)

9
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10 A. Sundaramoorthy and R. Kalyanaraman

pC−2A0 + pC−1B
′
(C−1)2 + pCA2 = 0, (19)

piA0 + pi+1A1 + pi+2A2 = 0, i ≥ C − 1, (20)

pi = pC−1R
i−(C−1); i ≥ C, (21)

where R1 is the rate matrix, is the minimal non-negative solution of the matrix quadratic equation
(see Neuts (1981)).

R2
1A2 +R1A1 + A0 = 0, (22)

the matrices A0, A1, and A2 are upper triangular matrices of order 3.

Substituting the equation (21) in (19), we have

pC−2A0 + pC−1(B
′
(C−1)2 +R1A2) = 0, (23)

and the normalizing condition is

C−2∑
i=0

pie+ pC−1(I −R1)
−1e = 1. (24)

Let Q∗
1 =



0 1 2 3 . . . C − 3 C − 2 C − 1

0 B′
0 A0

1 B10 B′
11 A0

2 B21 B′
22 A0

3 B31 B′
32

... . . . . . . . . .
C − 2 B(C−2)1 B′

(C−2)2 A0

C − 1 B(C−1)1 B′
(C−1)2 +RA2


,

is also irreducible and let P ∗
1 = (p0, p1, p2, . . . , pC−1) be a solution of P ∗

1Q
∗
1 = 0.

Solving Equations (16) and (17), we get

p1 = −(p0B
′
0B

−1
10 ), (25)

p2 = p0(B
′
0B

−1
10 B

′
11 − A0)B

−1
21 . (26)

In this way we can calculate all the p′is, 0 ≤ i ≤ C − 2.

Finally we get

pC−1[DA0 +B′
(C−1)2 +R1A2] = 0, (27)

where the matrix D is readily computed.

10
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pC−1 is the left eigenvector of the matrix DA0 + B′
(C−1)2 + R1A2 of order 3 corresponding to the

eigenvalue zero.

It is normalized so that

C−2∑
i=0

pie+ pC−1(I −R1)
−1e = 1 and pi = pC−1R

i−(C−1)
1 ; i ≥ C.

5. Particular Model

In the above model, we assume that C = 1, λ1 = λ2 = λ, and µ1 = µ2 = µ, then we get

p00 =
1

S1 + S2[(λ+ θ)− µr0]− S3[(µr01 + θ) +
1

µ
[(λ+ θ)− µr0][µr1 − (λ+ µ+ α)]]

,

p01 =
1

µ
[(λ+ θ)− µr0]p00,

p02 =
−1

(β + µr21)
[(µr01 + θ) +

1

µ
[(λ+ θ)− µr0][µr1 − (λ+ µ+ α)]]p00, and

pi = p0R
i; i ≥ 1.

6. Performance Measures

Using straightforward calculations the following performance measures have been obtained for
models discussed in this article:

(i) Mean queue length E(L) =
C−1∑
i=0

ipie+ pC−1[R
2(I −R)−2 + CR(I −R)−1]e (Model-I),

=
C−1∑
i=0

ipie+ pC−1[R
2
1(I −R1)

−2 + CR1(I −R1)
−1]e (Model-II),

(ii) E(L2) =
C−1∑
i=0

i2pie+pC−1[2CR2(I−R)−2+C2R(I−R)−1+R2(I+R)(I−R)−3]e (Model-I),

=
C−1∑
i=0

i2pie+ pC−1[2CR2
1(I −R1)

−2 + C2R1(I −R1)
−1 +R2

1(I +R1)(I −R1)
−3]e

(Model-II),

(iii) Variance of L = var(L) =
C−1∑
i=0

i2pie+ pC−1[2CR2(I −R)−2 + C2R(I −R)−1

11
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12 A. Sundaramoorthy and R. Kalyanaraman

+R2(I +R)(I −R)−3]e−

[
C−1∑
i=0

ipie+ pC−1[R
2(I −R)−2 + CR(I −R)−1]e

]2

(Model-I),

=
C−1∑
i=0

i2pie+ pC−1[2CR2
1(I −R1)

−2 + C2R1(I −R1)
−1

+R2
1(I +R1)(I −R1)

−3]e−

[
C−1∑
i=0

ipie+ pC−1[R
2
1(I −R1)

−2 + CR(I −R1)
−1]e

]2

(Model-II),

(iv) Probability that no customer in the queue =p0e.

(v) Mean queue length when the servers are in vacation period =
∞∑
i=0

ipi0.

(vi) Mean queue length when the servers are in regular busy period =
∞∑
i=0

ipi1.

(vii) Probability that the servers are in working vacation period= pr{J = 0} =
∞∑
i=1

pi0.

(viii) Probability that the servers are in regular busy period=pr{J = 1} =
∞∑
i=1

pi1.

7. Stationary Waiting Time Distribution in the Queue (For Model-I and
Model-II)

In this section, we derive the stationary waiting time distributions for Model-I and Model-II.

Let W (t) be the distribution function for the waiting time in the queue of an arriving (tagged)
customer. Note that if there is no customer in the system, the arrival receives service immediately.
If at least one server is not busy then also there would be no delay in getting service. Thus, the

probability that the customer gets his service without waiting is
C−1∑
i=0

pie (where e =

11
1

). Hence,

with probability 1 − (
C−1∑
i=0

pie), the customer has to wait before getting the service. The waiting

time may be viewed as the time until absorption in a Markov chain with state space

Ω1 = {∗}
⋃
{C,C + 1, C + 2 . . .}.

Here, ∗ is the absorbing state, which corresponds to taking the tagged customer into service and is
obtained by lumping together the level states 0 = {(0, 0), (0, 1)} and i = {(i, 0), (i, 1)}; 1 ≤ i ≤
C−1. For i ≥ C, the level i is given by i = {(i, j), j = 0 or 1}. The states other than the absorbing
state correspond to the number of customers present in the system as the tagged customer arrives.
Once the tagged customer joins the queue, the subsequent arrivals will not affect his waiting time

12
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in the queue. Hence, the parameter λ does not show up in the generator matrix Q̃ of this Markov
process, given by

Q̃ =


∗ C C + 1 . . .

∗
C A2e D
C + 1 A2 D
... . . .

,

where D =

−Cµ1 − θ θ 0
0 −Cµ− α α
0 β −Cµ2 − β

.

Now, define the vector

Y (t) = (Y∗(t), YC(t), YC+1(t), . . .),

where

Yi(t) = (yi0(t), yi1(t), yi2), for i ≥ C.

The components of the Yi(t) are the corresponding probabilities in regular state, working vacation
state and breakdown state at time t, the CTMC with generator Q̃ is in the respective state of level
i. Note that the scalar Y∗(t) is the probability that the process is in the absorbing state at time t. By
the PASTA property, we get

Y (0) = (p00 + p01 + p02 · · ·+ p(C−1)0 + p(C−1)1 + p(C−1)2, pC , pC+1, . . .).

Clearly,

W (t) = Y∗(t), for t ≥ 0.

The LST of W (t) is given by (see Neuts (1981))

W̃ (s) =
∞∑
i=C

Yi(0) [(sI −D)−1A2]
i−C

(sI −D)−1A2e. (28)

The mean waiting time can be obtained from W̃ (s) as

E(W ) = −W̃ ′(0) =
∞∑
i=1

pC+i

i−1∑
j=0

U j(−D)−1U i−jUe+
∞∑
i=0

pC+iU
i(−D)−2A2e,

where U = (−D)−1A2 is a stochastic matrix. Hence, (28) can be simplified as

E(W ) = −W̃ ′(0) =
∞∑
i=1

pC+i

i−1∑
j=0

U j(−D)−1e+
∞∑
i=0

pC+iU
i(−D)−1e. (29)

13
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14 A. Sundaramoorthy and R. Kalyanaraman

Let

H =
∞∑
i=0

pC+iU
i.

Since U is stochastic, we get

He = pC(I−R)−1e = 1−p00−p01−p02−p10−p11−p12−· · ·−p(C−1)0−p(C−1)1−p(C−1)2.

This result can be used to find an approximate value of H , and hence, that of the second term in (29)
to any desired degree of accuracy. Thus, only the first term in (29) demands serious computation.
For this we make use of the ideas in Neuts (1981), Krishna Kumar (2005), and Neuts (1979).

Now, consider the matrix

U2 =

0 0 1
0 0 1
0 0 1

,

which has the property that

UU2 = U2U = U2.

Then, we get

i−1∑
j=0

U j(I − U + U2) = I − U i + iU2, for i ≥ 1.

By the classical theorem on finite Markov chains, the matrix (I − U + U2) is nonsingular (see
Kemeny (1960)). In view of the last equation, the first term in (29) becomes[

∞∑
i=1

pC+i(I − U i + iU2)

]
(I − U + U2)

−1(−D)−1e.

With this simplification, we get

E(W ) = [pC (R(I −R)−1 + I +R(I −R)−2U2)−H] (I − U + U2)
−1(−D)−1e

+H(−D)−1e. (30)

For Model-I, Equation (30) becomes

E(W ) = [pC (R(I −R)−1 + I +R(I −R)−2U2)−H] (I − U + U2)
−1(−D)−1e

+H(−D)−1e.

For Model-II, a similar arguments leads to:

Generator matrix Q̃1 is given by

14
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Q̃1 =


∗ C C + 1 . . .

∗
C A2e D
C + 1 A2 D
... . . .

,

where D =

−Cµ1 − θ θ 0
0 −Cµ− α α
0 β −Cµ2 − β

,

and H1 =
∞∑
i=0

pC+iU
i.

Equation (30) becomes

E(W1) = [pC (R1(I −R1)
−1 + I +R1(I −R1)

−2U2)−H1] (I − U + U2)
−1(−D)−1e

+H(−D)−1e.

8. Numerical Study

In this section, some examples are given to show the effect of the parameters λ, λ1, λ2, µ, µ1, µ2,
θ, α, β and C on the performance measures mean queue length, E(L2), variance of L, probability
that no customer in the queue, mean queue length when the servers are in vacation period, mean
queue length when the servers are in regular busy period, probability that the servers are in working
vacation period and probability that the servers are in regular busy period for Model-I and Model-II
analyzed in this paper. The corresponding results are presented as Case (1), Case (2) and Case (3).

Case (1): If λ = 0.7, λ1 = 0.5, λ2 = 0.3, µ = 5, µ1 = 2, µ2 = 0.9, θ = 2.4, α = 0.5, β = 0.8
and C = 5, the matrix R = R1 is obtained using the equations (14) and (15),

R =

0.04 0.003930 0.0003890 0.027525 0.002635
0 0.001868 0.056288

,

the probability vectors and performance measures are presented in Table 1 and Table 2, respec-
tively.

Case (2): If λ = 0.5, λ1 = 0.3, λ2 = 0.1, µ = 3, µ1 = 2, µ2 = 1, θ = 1.9, α = 0.6, β = 0.9
and C = 5, the matrix R = R1 is obtained using the equations (14) and (15),

R =

0.025107 0.003150 0.0003360 0.032214 0.003359
0 0.000997 0.017010

,

15
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16 A. Sundaramoorthy and R. Kalyanaraman

the probability vectors and performance measures are presented in Table 3 and Table 4, respec-
tively.

Case (3): If λ1 = λ2 = λ = 0.4, µ1 = µ2 = µ = 2, θ = 2.1, α = 0.5, β = 0.9 and C = 5, the
matrix R = R1 is obtained using the equations (14) and (15),

R =

0.032864 0.006803 0.0003320 0.038190 0.001810
0 0.003258 0.036742

,

the probability vectors and performance measures are presented in Table 5 and Table 6, respec-
tively.

9. Conclusion

The highlights of the models analyzed in this paper are: both during vacation period and break-
down period the servers serve the customers; also, the arrival rate depends on the server states. In
these points these models deviate from the existing models in the literature. The models’ steady
state probability for obtained using Matrix-Geometric method and also waiting time distribution
is carried out using generator matrix of CTMC. The model can be generalized by taking arrival
time/service time follows a general distribution.
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