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Abstract

The main goal of this paper is to study the non parametric M-estimation under quasi-associated
sequence with the k Nearest Neighbor’s method shortly (kNN). We construct an estimator of this
nonparametric function and we study its asymptotic properties. Furthermore, a comparison study
based on simulated data is also provided to illustrate the highly sensitive of the kNN approach to
the presence of even a small proportion of outliers in the data.

Keywords: kNN method; Functional data; Quasi-associated data; M-Regression

MSC 2020 No.: 62G08, 62G10, 62G35

1. Introduction

It is very well recognized that robust regression in statistics is an attractive research method. It is
used to overcome some of the weaknesses of classical regression, namely when outliers contain
heteroscedastic data.

In the statistical literature, several papers have been devoted to the study of the nonparametric
M-estimator properties. The first results concerning this topic for the asymptotic normality in
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334 B. Nadjet et al.

both dependent and independent data are Györfi et al. (1989), Collomb and Hardle (1986), Hu-
ber (1964), Härdle and Tsybakov (1998), Robinson (1983), Boente and Fraiman (1990), Boente
and Fraiman (1989) for prior results and Boente et al. (2009), Laïb and Ould Saïd (2000), Attouch
et al. (2010), Attouch et al. (2012). The nonparametric robust regression estimation was firstly
introduced by Azzedine et al. (2008). They obtained the almost complete convergence with rates
in the independent and identically distributed (i.i.d.) case, Crambes et al. (2008) was examined
the similar problem for a functional covariate, then Cai and Roussas (1992) studied its asymptotic
properties under the α-mixing assumption in the Lp norm. In the case of functional and stationary
ergodic data, Gheriballah et al. (2013) found almost complete convergence with rate, and for recent
research, we can refer to Derrar et al. (2020) and the references therein.

For quasi-associated random variate, the M-estimation literature for nonparametric functional data
analysis is not yet well documented, note that, Bulinski and Suquet (2001) introduced this type of
dependency structure as a generalization of positively associated variables given by Esary et al.
(1967) and negatively linked random variables considered by Jong-Dev and Proschan (1983) for
real-valued random fields. Both types of association have great importance in various applied fields
(see the book by Barlow and Proschan (1981) for a deeper discussion on this topic). Nonparametric
estimation involving (positively and negatively) associated random variables has been extensively
studied. We quote, for instance, Matula (1992), Roussas (2000), Masry (2002), Roussas (1991),
Mebsout et al. (2020) and the reference therein. We refer the reader to Dedecker et al. (2007) or
Doukhan et al. (2010) for some other weak dependence structures and their applications.

The study’s main objective is to construct an estimator of the regression function by relinking the
M-estimation approach with the quasi-association setting using the kNN method. This is motivated
by the fact that the robust regression estimator has several advantages over the classical kernel
regression estimator. The main profit in using a robust regression is that it allows reducing the
effect of outlier data.

This famous kNN method of estimation have attracted a lot of interest in the statistical literature
for evaluating multivariate data because of their flexibility and efficiency. Pushed by its attractive
features, the functional kNN smoothing approach has received a growing consideration in the last
years. Gyorfi et al. (2002)’s book is a thorough analysis of kNN estimators in the finite dimensional
context. Work in this area was started by Cover (1968), and a large number of articles are now
available in various estimating contexts, which including regression, discrimination, density and
mode estimation, and clustering analysis, we make reference to Collomb (1981), Devroye and
Wagner (1982), Li (1985), Moore and Yackel (1977), Devroye and Wagner (1977), Devroye et al.
(1994), Beirlant et al. (2008), Laloë (2008), Burba et al. (2009), Tran et al. (2006), Lian (2011),
Attouch and Bouabsa (2013), Attouch et al. (2018), Kudraszow and Vieu (2013) and Kara et al.
(2017), Almanjahie et al. (2020), Bouabsa (2021) for the most recent advances and references.
Note that, such a study has a great impact on practice. On the one hand, the robust regression is
an essential alternative regression model that allows overcoming many drawbacks of the classical
regression, such as the sensitivity to the outliers or the heteroscedasticity phenomena. Furthermore,
it is well known that the kNN method is better than the classical kernel method. However, the
difficulty in the kNN smoothing is the fact that the bandwidth parameter is a random variable,
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unlike the classical regression in which the smoothing parameter is a deterministic scalar. So, the
study of the asymptotic properties of our proposed estimator is complicated, and it requires some
additional tools and techniques.

In NFDA, kNN M-estimation with quasi-associated data is new. This researches’s primary goal
is to provide generalizations, to the k Nearest Neighbor case, the results obtained by Attaoui et
al. (2015) in the quasi-associated dependency case. More precisely, we establish the almost com-
plete convergence uniformly on the number of neighbors with rates of an estimator constructed by
combining the ideas of robustness with those of smoothed regression. We point out that the main
feature of our approach is to develop an alternative prediction model to the classical regression that
is not sensitive to outliers or heteroscedastic data, taking into account the local data structure.

The paper is organized as follows. Section 2 is devoted to the presentation of our estimate and
then the fixed notations and hypotheses are given in Section 3. We state the result and their proofs
in Section 4, where, uniform almost complete convergence with rates is given in Subsection 4.1
and Subsection 4.2 is consecrated to the study of the asymptotic normality. Section 5 is devoted to
simulation study to prove the efficiency of our study.

2. The functional M-estimator model

Lest’s (Wi)i=1,...,n := (Ai, Bi)i=1,...,n a series in the separable Hilbert space of stationary quasi-
associated and identically distributed random variables ε := G × R, where G is a separable real
Hilbert space with the ∥.∥ norm created by the internal product <.,.>. This nonparametric model,
denoted by ϑa, is implicitly defined as a zero with respect to ϕ in the equation

Λ(a, ϕ) := E [ρ (B1, ϕ) | A1 = a] = 0, (1)

in which ρ is a real-valued Borel function that satisfies some requirements of regularity to be
described above. We assume that ϑa exist and is unique for all a ∈ S where S is a fixed compact
subset of Rd (see, for example, Boente and Fraiman (1989)). The ϑa natural estimator indicated by
ϑ̂a is a zero with respect to ϕ of the equation

ρ̂(a, ϕ) = 0, (2)

then, we have that

Λ̂(a, ϕ) :=

n∑
i=1

L
(
h−1
L (a− Ai)

)
ρ (Bi, ϕ)

n∑
i=1

L
(
h−1
L (a− Ai)

) ,

with L is a kernel function and hL,n = hn is a series of positive real numbers which goes to zero
as n goes to infinity.
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2.1. The kNN M-asymptotic estimator’s properties

In fact, this study focused on the asymptotic properties of the kNN M-estimator, for which the hL
scalar bandwidth parameter is replaced with a random one defined by

Ek = min

{
hL ∈ R+such that

n∑
i=1

1IB(a,hL) (Ai) = k

}
.

Principally, M-estimator of kNN is represented by

Λ̃(a, ϕ) :=

n∑
i=1

L
(
E−1

k (a− Ai)
)
ρ (Bi, ϕ)

n∑
i=1

L
(
E−1

k (a− Ai)
) .

Certainly, the use of Ek instead of hL increases the accuracy of the previous case because the
smoothing parameter Ek strongly depends on the data unlike the first case where hL is arbitrarily
chosen independently of the sample. In addition, the kNN method facilitates the selection of the
smoothing parameter because this choice would be reduced to a problem of choosing an integer k
between 1 and the sample size n. However, establishing the asymptotic properties of the proposed
estimator becomes more complicated than in the classical case because the smoothing parameter
Ek is a random variable. Thus, the treatment of this situation requires additional mathematical tools
and specific analytical arguments.

In reality, the Λ̃(a, ϕ) estimator is more suitable than Λ̂(a, ϕ), since its bandwidth parameter is
sophistically selected, whereas Λ̂(a, ϕ) when the bandwidth parameter is arbitrarily selected in-
dependently of the results. The setting of the asymptotic properties of Λ̃(a, ϕ), is indeed more
complex than the Λ̂(a, ϕ) estimator since its bandwidth parameter is a random variable.

3. Principal hypotheses and notations

Until specifying our key result, in the number of neighbors k ∈ (k1n, k
2
n) , the almost complete

consistency of Λ̂(a, ϕ) is defined uniformly and we suppose that the first two conditional inverse
moments of B given A, finite and strictly positive ones.

In all the paper we suppose that the sequence (Ai, Bi)i=1,...,n is stationary quasi associated process,
S is a fixed compact subset of Rd and Υ (respectively Υi,j ) the density of A (respectively the joint
density of (Ai, Aj) ). Furthermore, we set by C or C ′ some positive generic constants and by

∆ℓ := sup
s>ℓ

∑
|i−j|≥s

∆i,j,
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where

∆i,j =
d∑

ℓ=1

d∑
l=1

∣∣Cov (Aℓ
i , A

l
j

)∣∣+ d∑
ℓ=1

∣∣Cov (Aℓ
i , Bj

)∣∣
+

d∑
l=1

∣∣Cov (Bi, A
l
j

)∣∣+ |Cov (Bi, Bj)| .

In the following, we will denote by L1 = L (d (a,A1) /hL) .

Now, we will state the following assumptions that are necessary to show our main result.

(H1) For all p ∈ (0, 1) and for all t > 0,P(A ∈ B(a, t)) = φa(t) > 0, we have that

lim
t→0

φa(pt)

φa(t)
= χa(p) <∞.

(H2) The kernel L is supported within (0, 1/2) and has a continuous first derivative on (0, 1/2)
which is such that

0 < C1I(0,1/2)(·) ≤ L(·) ≤ C ′1I(0,1/2)(·) and L(1/2)−
∫ 1/2

0

L′(p)χa(p)dp > 0,

where 1IA is the indicator function of the set A.
(H3) The class of functions κ = {7→ L (ψ−1d(a, ·)) , ψ > 0} is a class which can be evaluated

pointwise. in such a way that

sup
G

∫ 1

0

√
1 + logN (ε||Θ||G,2, L, dG)dε <∞.

where the supremum is taken over all probability measures G on the space G with G (Θ2) < ∞
and where Θ is the envelope function of the set κ. Here, dG is the L2(G)-metric and N (ε, κ, dG)
is the minimal number of open balls (with respect to the L2(G)-metric) with radius ε which are
needed to cover the function class κ. We will denote by ∥.∥G,2 the L2(G)-norm.

(H4) k1n and k2n sequences verified

φ−1
a

(
k2n
n

)
→ 0, and

log n

min

(
nφ−1

a

(
k1n
n

)
, k1n

) → 0.

(H5) The density Υ is of class C 1
(
Rd
)
, such that inf

a∈S
Υ(a) > C > 0 and the joint density Υi,j

satisfies sup
|i−j|≥1

∥∥Υ(Ai,Aj)

∥∥
∞ <∞, where ∥ · ∥∞ is the supremum norm.

(H6) There exists β0 > 0 such that

sup
a∈S

|ϑa| ≤ β0.

(H7) The process {(Ai, Bi) , i ∈ N} is quasi-associated with covariance coefficient ∆ℓ, ℓ ∈ N
satisfying

∃a > 0 such that ∆ℓ ≤ Ce−aℓ.
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(H8)


(H8.a) The function Λ(. . .) is of class C 1 on S × [−β0,+β0] , such that

inf
a∈S,ϕ∈[−β0,β0]

∂Λ

∂ϕ
(a, ϕ) > C > 0.

(H8.b) For each fixed ϕ ∈ [−β0,+β0] , the function Λ(., ϕ) is continous over S.
(H9) The function ρ is strictly monotonic with respect to the second component, Lip-

schitz and such that, ∀ϕ ∈ [−β0,+β0], E(exp(|ρ(B, ϕ)|)) ≤ C, and ∀i ̸=
j,E (|ρ (Bi, ϕ) ρ (Bj, ϕ)| | Ai, Aj) ≤ C ′.

(H10) The inverse moments of the response variable verify

for all m ≥ 2,E
[
B−m | A = a

]
< C <∞.

Remark 3.1.

Our work is the link between the work of Kara et al. (2017), Attaoui et al. (2015) and Bouabsa
(2021). So these several assumptions are the same considered in all this research.

4. Results

4.1. Consistency

Now we study in this Section the almost complete consistency of ϑ̂a, for a fixed a ∈ S.

Theorem 4.1.

Under Hypotheses (H1)-(H4) and (H5) the estimator ϑ̂a exists and is unique. Moreover, we have,
as n −→ ∞ with ϖ = min (ϖ1, ϖ2), that

sup
a∈S

sup
k1
n≤k≤k2

n

∣∣∣ϑ̂a − ϑa

∣∣∣ = O

(
φ−1
a

(
k2n
n

)ϖ)
+O

( log n

n−γ (k1n)
d

)1/2
 , a.co.

Proof:

Under some modification of Kara et al. (2017), there exits ξ ∈ |0,1|, then we have that

∑
n

k2
n∑

k=k1
n

P
(
Ek ≤ φ−1

a

(
ξk1n
n

))
<∞, and

∑
n

k2
n∑

k=k1
n

P
(
Ek ≥ φ−1

a

(
k2n
nξ

))
<∞.

Thus, we write, for all ε > 0,

P

{[(
φ−1
a

(
k2n
n

))ϖ

+

√
log n

n−γ (k1n)
d

]
sup
a∈S

sup
k1
n≤k≤k2

n

∣∣∣ϑ̃a − ϑa

∣∣∣ ≥ ε

}

≤ P

{[(
φ−1
a

(
k2n
n

))ϖ

+

√
log n

n−γ (k1n)
d
sup
a∈S

sup
k1
n≤k≤k2

n

∣∣∣ϑ̃a − ϑa

∣∣∣

6
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×1I(φ−1
a

ξk1n
n

≤hL≤φ−1
a

k2n
ξa


≥ ϵ

2


+P
{
hL /∈

(
φ−1
a

(
ξk1n
n

)
, φ−1

a

(
k2n
nξ

))}
.

Thus, all that remains to prove is the following asymptotic results. ■

Proposition 4.1.

Similar to the conditions of Theorem 4.1, we have

sup
a∈S

sup
xn≤hL≤yn

∣∣∣ϑ̂a − ϑa

∣∣∣ = O (yϖn ) +Oa.c.o.

(√
log n

n1−γφa (xn)
d

)
,

where, xn = φ−1
a

(
ξk1n
n

)
and yn = φ−1

a

(
k2n
nξ

)
.

Proof:

The proof relies on the fact that the second variable of ρ is purely monotonic. After all, we will
just give proof for the increasing case for the sake of simplicity. Under this assumption, we write

sup
xn≤hL≤yn

sup
a∈S

∣∣∣ϑ̂a − ϑa

∣∣∣ = sup
xn≤hL≤yn

sup
a∈S

∣∣∣ϑ̂a − ϑa

∣∣∣ 1Isup
a∈S

∣∣∣ϑ̂a

∣∣∣ ≤ β0


+ sup

xn≤hL≤yn

sup
a∈S

∣∣∣ϑ̂a − ϑa

∣∣∣ 1Isup
a∈S

∣∣∣ϑ̂a

∣∣∣ > β0


.

So, to demonstrate the result, it is necessary to show that∑
n

P
(

inf
xn≤hL≤yn

inf
a∈S

ϑ̂a < −β0
)
<∞,

∑
n

P
(

sup
xn≤hL≤yn

sup
a∈S

ϑ̂a > β0

)
<∞, (3)

and

sup
xn≤hL≤yn

sup
a∈S

∣∣∣ϑ̂a − ϑa

∣∣∣ 1Isup
a∈S

∣∣∣ϑ̂a

∣∣∣ ≤ β0


= Oa.co.

(yϖn ) +

(
log n

n1−γφa (xn)
d

) 1

2

 . (4)

Since Λ̂(a, ·) is increasing for each a ∈ S, we must demonstrate that∑
n

P
(

sup
xn≤hL≤yn

sup
a∈S

Λ̂ (a,−β0) > 0

)
<∞, and

∑
n

P
(

inf
xn≤hL≤yn

inf
a∈S

Λ̂ (a, β0) < 0

)
<∞.

Assumption (H6) implies that

sup
xn≤hL≤yn

sup
a∈S

Λ (a,−β0) < 0, and inf
xn≤hL≤yn

inf
a∈S

Λ (a, β0) > 0.

7
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Assuming that we can verify

sup
xn≤hL≤yn

sup
a∈S

Λ̂ (a,−β0) −→ sup
xn≤hL≤yn

sup
a∈S

Λ (a,−β0) ,

we obtain ∑
n

P
(

sup
xn≤hL≤yn

sup
a∈S

Λ̂ (a,−β0) > 0

)
≤∑

n

P
(∣∣∣∣ sup

xn≤hL≤yn

sup
a∈S

Λ̂ (a,−β0)− sup
xn≤hL≤yn

sup
a∈S

Λ (a,−β0)
∣∣∣∣ ≥ ϵ1

)
<∞,

and ∑
n

P
(

inf
xn≤hL≤yn

inf
a∈S

Λ̂ (a, β0) < 0

)
≤∑

n

P
(∣∣∣∣ inf

xn≤hL≤yn

inf
a∈S

Λ̂ (a, β0)− inf
xn≤hL≤yn

inf
a∈S

Λ (a, β0)

∣∣∣∣ ≥ ϵ2

)
<∞,

with, ϵ1 = − sup
xn≤hL≤yn

sup
a∈S

Λ (a,−β0) and ϵ2 = inf
xn≤hL≤yn

inf
a∈S

Λ (a, β0).

Furthermore, we write under (H8.a) that

(
ϑ̂a − ϑa

)
1I{ϑ̂a−ϑa|≤β} =

Λ
(
a, ϑ̂a

)
− Λ̂

(
a, ϑ̂a

)
∂Λ

∂t
(a, αn)

1I{ϑ̂a−ϑa|≤β},

where αn is between ϑ̂a and ϑa. As a result, the only thing left to reveal is the convergence rate of

sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

|Λ̂(a, ϕ)− Λ(a, ϕ)|. (5)

The verification of (5) is focused on the decomposition shown below.

sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

|Λ̂(a, ϕ)− Λ(a, ϕ)| ≤

1

inf
xn≤hL≤yn

inf
a∈S

∣∣∣Λ̂D(a)
∣∣∣
{

sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

| Λ̂N(a, ϕ)− E
[
Λ̂N(a, ϕ)

]
+ sup

xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣E [Λ̂N(a, ϕ)
]
−H(a, ϕ)

∣∣∣
+ sup

xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣Λ(a, ϕ)(Υ(a)− E
[
Λ̂D(a)

])∣∣∣
+ sup

xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣Λ(a, ϕ)(E [Λ̂D(a)
]
− Λ̂D(a)

)∣∣∣} ,

(6)

8
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where

Λ̂N(a, ϕ) :=
1

nE [L1]
d

n∑
i=1

L
(
h−1
L (a− Ai)

)
ρa (Bi, ϕ) ,

Λ̂D(a) :=
1

nE [L1]
d

n∑
i=1

L
(
h−1
L (a− Ai)

)
,

and

H(a, ϕ) := Λ(a, ϕ)Υ(a).

After this, the accompanying Lemmas and Corollary are used to prove Proposition 4.1. ■

Lemma 4.1.

Under Hypotheses (H2), (H4)-(H5) and (H8), as n −→ ∞, we have that

sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣E [Λ̂N(a, ϕ)
]
−H(a, ϕ)

∣∣∣ = O(yϖn ).

Proof:

E
[
Λ̂N(a, ϕ)

]
=

1

E [L1]
d

∫
Rd

E [ρ(B, ϕ) | (A = u)]L

(
a− u

hL

)
Υ(u)du

=
1

E [L1]
d

∫
Rd

Λ(u, ϕ)L

(
a− u

hL

)
Υ(u)du

=

∫
Rd

H(a− hLz, ϕ)L(z)dz.

We use the fact that E [L1] ≤ Cφa(hL), then since both Υ and Λ are of class C 1, a Taylor expansion
of H(a− hLz, ϕ) with (H2), permit to write

sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣E [Λ̂N(a, ϕ)
]
−H(a, ϕ)

∣∣∣ = O(yϖn ). ■

Lemma 4.2.

Under Hypotheses (H1) (H4), (H5)-(H7), we have

sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣Λ̂N(a, ϕ)− E
[
Λ̂N(a, ϕ)

]∣∣∣ = O

(√
log n

n1−γφa (xn)
d

)
a.co.

Proof:

We use a truncation approach by introducing the following random variable, since ρ might not be
bounded,

Λ̂∗
N(a, ϕ) =

1

nE [L1]
d

n∑
i=1

L
(
h−1
L (a− Ai)

)
ρa (Bi, ϕ) 1I|ρa(Bi,ϕ)|<θn with , θn = nγ/6.
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The defined result is then a consequence of the intermediate results that follow,

sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣E [Λ̂∗
N(a, ϕ)

]
− E

[
Λ̂N(a, ϕ)

]∣∣∣ = Oa.co

(√
log n

n1−γφa (xn)
d

)
, (7)

sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣Λ̂∗
N(a, ϕ)− Λ̂N(a, ϕ)

∣∣∣ = Oa.co

(√
log n

n1−γφa (xn)
d

)
, (8)

and

sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣Λ̂∗
N(a, ϕ)− E

[
Λ̂∗

N(a, ϕ)
]∣∣∣ = Oa.co.

(√
log n

n1−γφa (xn)
d

)
. (9)

We start by proving (9). Since S is compact we write

S ⊂
℘n⋃
j=1

B (aℓ, τn) ,

with ℘n = O
(
nβ
)

and τn = O (℘−1
n ), where t =

δ(d+ 2)

2
+

1

2
+
γ

6
and δ ≤ (1− γ− ξ2) /d.

Let us now consider all a ∈ S,

ℓ(a) = arg min
ℓ∈{1,...℘n}

∥a− aℓ∥ ,

and we take into consideration the following decomposition,

sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣Λ̂∗
N(a, ϕ)− E

[
Λ̂∗

N(a, ϕ)
]∣∣∣

≤ sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣Λ̂∗
N(a, ϕ)− Λ̂∗

N

(
aℓ(a), ϕ

)∣∣∣︸ ︷︷ ︸
Z1

+ sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣Λ̂∗
N

(
aℓ(a), ϕ

)
− E

[
Λ̂∗

N

(
aℓ(a), ϕ

)]∣∣∣︸ ︷︷ ︸
Z2

+ sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣E [Λ̂∗
N

(
aℓ(a), ϕ

)]
− E

[
Λ̂∗

N(a, ϕ)
]∣∣∣︸ ︷︷ ︸

Z3

.
(10)
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• First, we utilize the compactness of [−β0, β0], for Z2 and we’re writing

[−β0, β0] ⊂
zn⋃
j=1

(ϕj − gn, ϕj + gn) , (11)

with gn = n−1/2 and zn = O
(
n1/2

)
. Set

Nn = {ϕj − gn, ϕj + gn, 1 ≤ j ≤ zn} . (12)

For 1 ≤ j ≤ zn, by the E
[
Λ̂∗

N(a, ·)
]

and Λ̂∗
N(a, ·) monotony, we get

E
[
Λ̂∗

N

(
aℓ(a), ϕj − gn

)]
≤ sup

ϕ∈(ϕj−gn,ϕj+gn)

E
[
Λ̂∗

N

(
aℓ(a), ϕ

)]
≤ E

[
Λ̂∗

N

(
aℓ(a), ϕj + gn

)]
,(13)

Λ̂∗
N

(
aℓ(a), ϕj − gn

)
≤ sup

ϕ∈(ϕj−gn,ϕj+gn)

Λ̂∗
N

(
aℓ(a), ϕ

)
≤ Λ̂∗

N

(
aℓ(a), ϕj + gn

)
. (14)

Furthermore, by assumption (H9), for any ϕ1, ϕ2 ∈ [−β0, β0], we have that∣∣∣E [Λ̂∗
N

(
aℓ(a), ϕ1

)]
− E

[
Λ̂∗

N

(
aℓ(a), ϕ2

)]∣∣∣ ≤ C |ϕ1 − ϕ2| . (15)

As a result, we can deduce from (11) and (15) that

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣Λ̂∗
N

(
aℓ(a), ϕ

)
− E

[
Λ̂∗

N

(
aℓ(a), ϕ

)]∣∣∣
≤ max

1≤ℓ≤ρn

max
1≤j≤zn

max
ϕ∈{ϕj−gn,ϕj+gn}

∣∣∣Λ̂∗
N (xℓ, ϕ)− E

[
Λ̂∗

N (aℓ, ϕ)
]∣∣∣+ 2Cgn.

(16)

We will find out using a simple algebraic equation

gn = o

(√
log n

nφa(xn)d

)
. (17)

Then, for some positive real η sufficiently large, it is sufficient to demonstrate that

sup
xn≤hL≤yn

max
1≤ℓ≤℘n

max
1≤j≤zn

max
ϕ∈{ϕj−gn,ϕj+gn}

∣∣∣Λ̂∗
N (aℓ, ϕ)− E

[
Λ̂∗

N (aℓ, ϕ)
]∣∣∣

= Oa.co

(√
log n

n1−γφa (xn)
d

)
.

(18)

To do just that, we employ a Bernstein-type inequality for dependent random variables, after all,
we’ve written

Λ̂∗
N (aℓ, ϕ)− E

[
Λ̂∗

N (aℓ, ϕ)
]
=

n∑
i=1

Ωi,

where

Ωi =
1

nE [L1]
Ψ (Ai, Bi) ,

11
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with

Ψ(u, v) =ρ(v, ϕ)L
(
h−1
L (aℓ − u)

)
1I(|ρ(v,ϕ)|<θn)

− E
[
ρ (B1, ϕ)L

(
h−1
L (aℓ − A1)

)
1I(|ρ(B1,ϕ)|<θn)

]
, u ∈ Rd, v ∈ R.

So,

∥Ψ∥∞ ≤ Cθn∥L∥∞ and
Lip(Ψ) ≤

(
∥L∥∞ Lip(ρ) + θnh

−1
L Lip(L)

)
≤ Cθnh

−1
L Lip(L).

The inequality of Newmann and Kallabis is focused on the asymptotic analysis of Var

(
n∑

i=1

Ωi

)
and Cov (Ωm1

. . .Ωmu
,Ωϕ1

. . .Ωϕv
) , for all (m1, . . . ,mu) ∈ Nu and (ϕ1, . . . , ϕv) ∈ Nv. We start

by studying the variance term,

Var

(
n∑

i=1

Ωi

)
= nVar (Ω1) +

n∑
i=1

n∑
j=1

j ̸=i

Cov (Ωi,Ωj) . (19)

Under (H9), we have

Var (Ω1) ≤
1

n2E [L1]
2d
E
[
|ρ (B1, ϕ)L1 (aℓ)|2

]
≤ C ′ 1

n2E [L1]
2d
E
[
|L1 (aℓ)|2

]
≤ C ′n−2E [L1]

−d

∫
Rd

L2(u)Υ (aℓ − hLu) du.

(20)

For all sup
xn≤hL≤yn

, we get that

Var (Ω1) = O
(
n−2φa (xn)

−d
)
. (21)

Now, let us evaluate the asymptotic behavior of the sum in the right-hand side of (19). For this
we use the technique developed by Masry (2002). Indeed, we need the following decomposition

n∑
i=1

n∑
j=1

j ̸=i

Cov (Ωi,Ωj) =
n∑

i=1

n∑
j=1

0<|i−j|≤ϱn

Cov (Ωi,Ωj) +
n∑

i=1

n∑
j=1

|i−j|>ϱn

Cov (Ωi,Ωj) ,

with (ϱn) is a sequence of positive integer as n goes to infinity tending to infinity.

12
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For |i− j| ≤ ϱn, we utilize (H2)-(H5), (H9), to write that

E [|ΩiΩj|] ≤C
1

n2E [L1]
2d

(E [|ρ (Bi, ϕ)Li (aℓ) ρ (Bj, z)Lj (aℓ)|]

+ (E [|ρ (B1, ϕ)L1 (aℓ)|])2
)
,

≤C 1

n2E [L1]
2d

(
E [Li (aℓ)Lj (aℓ)] + (E [L1 (aℓ)])

2) ,
≤ 1

n2

(∫
Rd

∫
Rd

L(u)L(v)Υ(Ai,Aj) (aℓ − hLu, aℓ − hLv) dudv

)
+

(∫
Rd

L(u)Υ (aℓ − hLu) du

)2
)
.

=O
(
n−2
)
.

Then, we obtain
n∑

i=1

n∑
j=1

0<1−j|≤ϱn

Cov (Ωi,Ωj) ≤ nϱn (E [ΩiΩj]) ,

≤ Cn−1ϱn.

On the other hand, for |i − j| > ϱn, we utilize (H7) and the quasi-association of the sequence
(Ai, Bi) to write

n∑
i=1

n∑
j=1

Cov (Ωi,Ωj) ≤ θ2nn
−2E [L1]

−2(d+1)
n∑

i=1

n∑
j=1

|i−j|>ϱn

∆i,j

≤ θ2nn
−1E [L1]

−2(d+1)∆ϱn

≤ θ2nn
−1E [L1]

−2(d+1) e−aϱn .

So
n∑

i=1

n∑
j=1

i̸=j

Cov (Ωi,Ωj) ≤ C
(
n−1ϱn + θ2nn

−1E [L1]
−2(d+1) e−aϱn

)
.

Take ϱn =
1

a
log
(
aθ2nE [L1]

−2(d+1)
)
. Then, by (H4), we obtain

nE [L1]
d

n∑
i=1

n∑
j=1

Cov (Ωi,Ωj) → 0. (22)

Finally, by mixing (21) and (22), we get for all sup
xn≤hL≤yn

that

Var

(
n∑

i=1

Ωi

)
= O

(
1

nφa(xn)d

)
.

Now, for all (m1, . . . ,mu) ∈ Nu and (ϕ1, . . . , ϕv) ∈ Nv, we treat with the covariance term in
(19). To do that, we consider the following cases,

13

Nadjet et al.: M-Regression Estimation

Published by Digital Commons @PVAMU, 2022



346 B. Nadjet et al.

– If ϕ1 = mu, we get

|Cov (Ωm1
. . .Ωmu

,Ωϕ1
. . .Ωϕv

)| ≤

(
Cθn∥L∥∞
nE [L1]

d

)u+v

E
∣∣L2

1 (aℓ)
∣∣

≤ E [L1]
d

(
Cθn

nE [L1]
d

)u+v

.

– If ϕ1 > mu, we utilize the quasi-association condition, and we obtain

|Cov (Ωm1
. . .Ωmu

,Ωϕ1
. . .Ωϕv

)|

≤

(
θnE [L1]

−1 Lip(L)
)

nE [L1]
d

)2(
2θn∥L∥∞
nE [L1]

d

)u+v−2 u∑
i=1

v∑
j=1

∆mi,ϕj

≤ E [L1]
−2

(
Cθn

nE [L1]
d

)u+v

v∆ϕ1−mu

≤ E [L1]
−2

(
Cθn

nE [L1]
d

)u+v

ve−a(ϕ1−mu).

(23)

On the other side, we get

|Cov (Ωm1
. . .Ωmu

,Ωϕ1
. . .Ωϕv

)| ≤

(
2Cθn∥L∥∞
nE [L1]

d

)u+v−2

(|EΩmu
Ωϕ1

|)

≤

(
Cθn

nE [L1]
d

)u+v

E [L1]
2d .

(24)

Then, we take the
d

2d+ 2
-power of (23) and the

d+ 2

2d+ 2
power of (24)

|Cov (Ωm1
, . . .Ωmu

,Ωϕ1
, . . .Ωϕv

)| ≤ E [L1]
d

(
Cθn

nE [L1]
d

)u+v

ve−
ad

2d+2
(ϕ1−mu).

We apply Kallabis and Neumann (2006) (Theorem 2.1) for the variables Ωi, i = 1, . . . , n,
with sup

xn≤hL≤yn

,

Ln =
Cθn

n
√
hd
, Mn =

Cθn

nE [L1]
d
, and An = Var

(
n∑

i=1

Ωi

)
= O

(
1

nφa (xn)
d

)
.

Now, we apply Bernstein’s inequality for empirical processes,

P

 sup
an≤hL≤b0

√
n1−γφa (h)

log n

∣∣∣Λ̂∗
N(aℓ, t)− E

[
Λ̂∗

N(aℓ, t)
]∣∣∣ ≥ η0

 ≤ log(n)n−C′η2
0 .

14
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After this, by using the fact that ℘nzn ≤ nζ , where ζ = γ +
1

2
, and with a suitable range of

η0 helps us to conclude that for every hL ∈ (an, b0), that

P

(
max

1≤k≤℘n

max
1≤j≤zn

max
ϕ∈{ϕj−gn,ϕj+gn}

∣∣∣Λ̂∗
N(a, z)− E

[
Λ̂∗

N(a, z)
]∣∣∣ = O

√
log n

n1−γφ (xn)
d

)
.

So the proof of (9) is finished.
• Second, with respect to Z1 and Z3, the Lipschitz condition on the kernel L in (H2) allows to write

directly, for all a ∈ S, and ∀ϕ ∈ [−β0, β0] that∣∣∣Λ̂∗
N(a, t)− Λ̂∗

N

(
aℓ(a), t

)∣∣∣ = θn

nE [L1]
d

∣∣∣∣∣
n∑

i=1

Li(a)−
n∑

i=1

Li

(
aℓ(a)

)∣∣∣∣∣
≤ θn

E [L1]
d+1

∥∥a− aℓ(a)
∥∥

≤ Cθnτn

E [L1]
d+1

.

Then, we have since τn = O (n−γ) , that

τn

E [L1]
d+1

= Oa.co

(√
log n

nφa (xn)
d

)
. (25)

Hence,

sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣Λ̂∗
N(a, ϕ)− Λ̂∗

N

(
aℓ(a), ϕ

)∣∣∣ = Oa.co

(√
log n

nφa (xn)
d

)
, (26)

and

sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣E [Λ̂∗
N

(
aℓ(a), ϕ

)]
− E

[
Λ̂∗

N(a, ϕ)
]∣∣∣ = O

(√
log n

nφa (xn)
d

)
. (27)

We now demonstrate (7). For all a ∈ S and all ϕ ∈ [−β0, β0] , with sup
xn≤hL≤yn

we get

∣∣∣E [Λ̂N(a, ϕ)
]
− E

[
Λ̂∗

N(a, ϕ)
]∣∣∣ = 1

nE [L1]
d

∣∣∣∣∣E
[

n∑
i=1

ρ (Bi, ϕ) 1I{|ρ(Bi,ϕ)|>θn}Li

]∣∣∣∣∣
≤ E [L1]

−d E
[
|ρ (B1, ϕ)| 1I{|ρ(Bi,ϕ)|>θn}L1

]
≤ E [L1]

−d E
[
exp (|ρ (B1, ϕ)| /4) 1I{|ρ(Bi,ϕ)|>θn}L1

]
.

We utilize the Holder’s inequality, and we obtain

sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣E [Λ̂N(a, ϕ)
]
− E

[
Λ̂∗

N(a, ϕ)
]∣∣∣

≤ E [L1]
−d (E [exp (|ρ (B1, ϕ)| /2) I{|ρ(Bi,ϕ)|>θn}

]) 1

2
(
E
(
L2
1

)) 1

2

≤ E [L1]
−d exp (−θn/4) (E [exp (|Λ (B1, ϕ)|)])

1

2

(
E
(
L2
1

)) 1

2

≤ Cφa (xn)
−d

2 exp (−θn/4) .

(28)
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Then, since θn = nγ/6, we can then write

sup
xn≤hL≤yn

sup
a∈S

sup
ϕ∈[−β0,β0]

∣∣∣E [Λ̂N(a, ϕ)
]
− E

[
Λ̂∗

N(a, ϕ)
]∣∣∣ = O

( log n

n1−γφa (xn)
d

)1/2
 .

Markov’s inequality is used to demonstrate the last stated result (8). In addition, for all ℓ, for all
ϕ ∈ Nn and for all ϵ > 0, and for all sup

xn≤hL≤yn

, we observe that

∑
P

(
sup

xn≤hL≤yn

sup
n≥1

sup
a∈S

∣∣∣Λ̂N(a, ϕ)− Λ̂∗
N(a, ϕ)

∣∣∣ > ϵ0

(√
log n

n1−γφa (xn)
d

))
≤C

∑
n≥1

n exp (−θn) .
(29)

The proof of (8) is completed while using the definition of θn, which in turn completes the demon-
stration of this Lemma. ■

Lemma 4.3.

Under hypotheses of Lemma 4.2 we have

sup
xn≤hL≤yn

sup
a∈S

∣∣∣E [Λ̂D(a)
]
− Λ̂D(a)

∣∣∣ = O

(√
log n

nφa (xn)
d

)
.

Proof:

We then use the compactness of S with respect to the notations of Lemma 4.2, so we have

sup
xn≤hL≤yn

sup
a∈S

∣∣∣Λ̂D(a)− E
[
Λ̂D(a)

]∣∣∣ ≤ sup
xn≤hL≤yn

sup
a∈S

∣∣∣Λ̂D(a)− Λ̂D (aℓ)
∣∣∣︸ ︷︷ ︸

Z′
1

+ sup
xn≤hL≤yn

sup
a∈S

∣∣∣Λ̂D (aℓ)− E
[
Λ̂D (aℓ)

]∣∣∣︸ ︷︷ ︸
Z′

2

+ sup
xn≤hL≤yn

sup
a∈S

∣∣∣E [Λ̂D (aℓ)
]
− E

[
Λ̂D(a)

]∣∣∣︸ ︷︷ ︸
Z′

3

.

• For Z ′
1 and Z ′

3,for all a ∈ S and for all sup
xn≤hL≤yn

, the Lipschitz condition on the kernel L permit

to write, for all a ∈ S∣∣∣Λ̂D(a)− Λ̂D (aℓ)
∣∣∣ = 1

nE [L1]
d
|

n∑
i=1

Li(a)−
n∑

i=1

Li (aℓ)

≤ C

φa (xn)
d+1

∥a− aℓ∥

≤ Cτn

φa (xn)
d+1

.
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By the fact that
τn

φa (xn)
d+1

= O

(√
log n

nφa (xn)
d

)
, the result follows directly,

sup
xn≤hL≤yn

sup
a∈S

∣∣∣Λ̂D(a)− Λ̂D (aℓ)
∣∣∣ = O

(√
log n

nφa (xn)
d

)
, a.co. , (30)

and

sup
xn≤hL≤yn

sup
a∈S

∣∣∣E [Λ̂D (aℓ)
]
− E

[
Λ̂D(a)

]∣∣∣ = O

(√
log n

nφa (xn)
d

)
, a.co. (31)

• For all real η > 0, we have for Z ′
2, that

P

(
Z ′

2 > η

√
log n

nφa (xn)
d

)

≤ P

(
sup

xn≤hL≤yn

max
ℓ∈{1,...ρn}

∣∣∣Λ̂D (aℓ)− E
[
Λ̂D (aℓ)

]∣∣∣ > η

√
log n

nφa (xn)
d

)

≤ ℘n sup
xn≤hL≤yn

max
ℓ∈{1,...℘n}

P

(∣∣∣Λ̂D (aℓ)− E
[
Λ̂D (aℓ)

]∣∣∣ > η

√
log n

nφa (xn)
d

)
.

(32)

Using the same procedure as in Lemma 4.2 so we get, by changing Λ with 1,

sup
xn≤hL≤yn

P

(
sup
a∈S

∣∣∣Λ̂D(a)− E
[
Λ̂D(a)

]∣∣∣ > η

√
log n

nφa (xn)
d

)
≤ nγ−Cη2

.

With the right choice of η, we can obtain

sup
xn≤hL≤yn

∞∑
n=1

P

(
sup
a∈S

∣∣∣E [Λ̂D(a)
]
− Λ̂D(a)

∣∣∣ > η

√
log n

nφa (xn)
d

)
<∞. ■

Lemma 4.4.

Under the hypotheses of Lemma 4.1 we have

sup
xn≤hL≤yn

sup
a∈S

∣∣∣E [Λ̂D(a)−Υ(a)
]∣∣∣ = O(yϖn ).

Proof:

It is sufficient just to use the same reasoning as in Lemma 4.1,

E
[
Λ̂D(a)

]
=

1

E [L1]
d

∫
Rd

L

(
a− u

hL

)
Υ(u)du

=
1

E [L1]
E
[
L

(
d (a,A1)

hL

)
1IB(a,hL)Υ(A)

]
.
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Then, using analytical reasoning, we arrive at the following conclusion,

sup
xn≤hL≤yn

sup
a∈S

∣∣∣E [Λ̂D(a)
]
−Υ(a)

∣∣∣ = 1

E [L1]
E
[
L

(
d (a,A1)

hL

)
1IB(a,hL)|Υ(A)−Υ(a)|

]
.

So let us implement Lipschitz’s (H10) condition to obtain

1IB(a,hL/2) |Υ(A)−Υ(a)| ≤ C(hL/2)
ϖ.

We obtain what we require by changing

sup
xn≤hL≤yn

sup
a∈S

∣∣∣E [Λ̂D(a)
]
−Υ(a)

∣∣∣ ≤ Cyϖn .

The verification of this Lemma is then finalized. ■

Corollary 4.1.

Under the hypotheses of Lemma 4.3, we have

∃C > 0
∞∑
n=1

P
(
inf
a∈S

inf
xn≤hL≤an

Λ̂2(a) < C

)
<∞.

Proof:

Under Condition (H10) we have

E
[
Λ̂D(a)

]
→ ΛD(a) > 0.

As a result, there exists a constant C > 0 for n large enough,

E
[
Λ̂D(a)

]
≥ C for all hL ∈ (xn, yn) .

Therefore,

inf
a∈S

inf
hL∈(xn,yn)

Λ̂1(a) ≤
C

2
⇒ ∃hL ∈ (xn, yn) such that

∣∣∣E [Λ̂D(a)
]
− Λ̂D(a)

∣∣∣ ≥ C

2
,

which enables us to write

sup
a∈S

sup
hL∈(an,bn)

∣∣∣E [Λ̂D(a)
]
− Λ̂D(a)

∣∣∣ ≥ C

2
,

P
(
inf
a∈S

inf
hL∈(xn,yn)

Λ̂D(a) ≤
C

2

)
≤ P

(
sup
a∈S

sup
hL∈(xn,yn)

∣∣∣E [Λ̂D(a)
]
− Λ̂D(a)

∣∣∣ ≥ C

2

)
.

As a result of Lemma 4.3 and Lemma 4.4, we are able to obtain the desired result. ■

Lemma 4.5.

Under the hypotheses of Theorem 4.1, ϑ̂a for n large enough, it occurs and is almost surely unique.
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Proof:

The Λ strict monotony of involves:

sup
k1
n≤k≤k2

n

Λ (a, ϑa − ϵ) ≤ sup
k1
n≤k≤k2

n

Λ (a, ϑa) ≤ sup
k1
n≤k≤k2

n

Λ (a, ϑa + ϵ) .

Lemmas 4.1 and 4.3 and Corollary 4.1 show that for all real fixed ϕ, we have

sup
k1
n≤k≤k2

n

Λ̂(a, ϕ)− sup
k1
n≤k≤k2

n

Λ(a, ϕ) → 0, a.co.

So we obtain, for a sufficiently large n, that

sup
k1
n≤k≤k2

n

Λ̂ (a, ϑa − ϵ) ≤ 0 ≤ sup
k1
n≤k≤k2

n

Λ̂ (a, ϑa + ϵ) , a.co.

Λ̂(i, ϕ) is continuous for all ϕ since ρ and L are continuous functions. There exists a ϕ0 = ϑ̂a in
certain range [ϑa − ϵ, ϑa + ϵ] for all sup

k1
n≤k≤k2

n

Λ̂
(
a, ϑ̂a

)
= 0. Finally, the unicity of ϑ̂a is a direct

result of Λ’s strict monotony and L’s positivity. ■

4.2. Asymptotic Normality

Now we study the asymptotic normality of ϑ̂a for a fixed a ∈ S.

Theorem 4.2.

Assume that (H4)-(H5) hold, then we have that(
nφa (xn)

d

σ2 (a, ϑa)

)1/2 (
ϑ̂a − ϑa

)
D→ N (0, 1) as n→ ∞,

where,

σ2 (a, ϑa) =
E [Λ2

a (Bϑa) | A = a](
∂

∂ϕ
Λ (a, ϑa)

)2

∫
R′

L2(z)dz,

A =

{
a ∈ S,E

[
Λ2

a (B, ϑa) | A = a
] ∂
∂ϕ

Λ (a, ϑa) ̸= 0

}
,

and D→ denotes the convergence in distribution.

Proof:

We present the justification for the case of an increasing ρ, identical to Theorem 4.1, with the
decreasing situation achieved by including −ρ.

We define the case of all u ∈ R as follows, ϕ = ϑa + u
[
n̂φa (xn)

d
]−1/2

σ (a, ϑa).
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So we’ll be able to write if Λ̂D(a) ̸= 0 that

P


(
nφa (xn)

d

σ2 (a, ϑa)

)1/2 (
ϑ̂a − ϑa

)
< u


= P

{
ϑ̂a < ϑa + u

[
n̂φa (xn)

d
]−1/2

σ (a, ϑa)

}
= P

{
0 < Λ̂N(a, ϕ)

}
= P

{
E
[
Λ̂N(a, ϕ)

]
− Λ̂N(a, ϕ) < E

[
Λ̂N(a, ϕ)

]}
.

As a result, Theorem 4.2 follows from the intermediate results. ■

Lemma 4.6.

Under Hypotheses (H4), (H5), (H6)-(H9), we have

P
{(

Λ̂D(a) = 0
)}

−→ 0 as n −→ ∞.

Proof:

We have for all ε < 1, that

P
{
Λ̂D(a) = 0

}
≤ P

{
Λ̂D(a) ≤ 1− ε

}
≤ P

{∣∣∣Λ̂D(a)− 1
∣∣∣ ≥ ε

}
.

Lemma 4.3 and Lemma 4.4 are sufficient to demonstrate that

Λ̂D(a)− 1 → 0 in probability. (33)
■

Lemma 4.7.

Under the hypotheses of Theorem 4.2, we have for all sup
xn≤hL≤yn

, that

 nφa (xn)
d(

∂

∂ϕ
Λ (a, ϑa)

)2

σ2 (a, ϑa)


1/2 (

Λ̂N(a, ϕ)− E
[
Λ̂N(a, ϕ)

)]
 D→ N (0, 1), as n→ ∞.

Proof:

For a fixed a ∈ S, identical to Lemma 4.2, we write

Λ̂N(a, ϕ)− E
[
Λ̂N(a, ϕ)

]
=Λ̂N(a, ϕ)− Λ̂∗

N(a, ϕ) + Λ̂∗
N(a, ϕ)

− E
[
Λ̂∗

N(a, ϕ)
]
+ E

[
Λ̂∗

N(a, ϕ)
]
− E

[
Λ̂N(a, ϕ)

]
,
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where Λ̂∗
N(a, ϕ) is already given in Lemma 4.2. Once more we utilize the same justifications like

in Lemma 4.2, then we have nφa (xn)
d(

∂

∂ϕ
Λ (a, ϑa)

)2

σ2 (a, ϑa)


1/2

| Λ̂N(a, ϕ)− Λ̂∗
N(a, ϕ) |= op(1),

and  nφa (xn)
d(

∂

∂ϕ
Λ (a, ϑa)

)2

σ2 (a, ϑa)


1/2

| E
[
Λ̂∗

N(a, ϕ)
]
− E

[
Λ̂N(a, ϕ)

]
|= o(1).

Then it’s only a matter of demonstrating the asymptotic normality of nφa (xn)
d(

∂

∂ϕ
Λ (a, ϑa)

)2

σ2 (a, ϑa)


1/2 ∣∣∣Λ̂∗

N(a, ϕ)− E
[
Λ̂∗

N(a, ϕ)
]∣∣∣ .

This is what we’ve done:

ρ∗ (Bi, ϕ) = ρa (Bi, ϕ) 1I|ρ(Bi,ϕ)|<θn , Ωi =
1

nE [L1]
d
(Liρ

∗ (Bi, ϕ)− E [Liρ
∗ (Bi, ϕ)]) ,

Wni =

√
nφa (hL)

dΩi, and Yn =
n∑

i=1

Wni,

then,

Yn =

√
nφa (hL)

d
(
Λ̂∗

N(a, ϕ)− E
[
Λ̂∗

N(a, ϕ)
])
.

As a consequence, our claimed result is now

Yn → N (0, σ1(a)) , (34)

where σ2
1(a) =

(
∂

∂ϕ
Λ (a, ϑa)

)2

σ2 (a, ϑa).

To do that, we use the simple methodology of Doob (1953). After all, we assume two series of
natural numbers tending to ∞, ζ = ζn, and η = ηn, such that ζ = o

(
n1/2θ−1

n φa (xn)
d/2
)

and

η = O (ζ1−ς) for a certain ς ∈ (0, 1) and we divided Yn into

Yn = Zn + Z ′
n +Dℓ, with Zn =

ℓ∑
j=1

Uj, and Z ′
n =

ℓ∑
j=1

ξj,
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where

Uj :=
∑
i∈Ij

Wni, ξj :=
∑
i∈Jj

Wni, Dℓ :=
n∑

i=ℓ(ζ+η)+1

Wni,

with

Ij = {(j − 1)(ζ + η) + 1, . . . , (j − 1)(ζ + η) + ζ},
Jj = {(j − 1)(ζ + η) + ζ + 1, . . . , j(ζ + η)}.

Observe that, for ℓ =

[
n

ζ + η

]
, (where [.] stands for the integer part), we have

ℓη

n
→ 0, and

ℓζ

n
→ 1,

η

n
→ 0, which imply that

ζ

n
→ 0 as n→ ∞. Now, our asymptotic result is based on

E (Z ′
n)

2
+ E (Dℓ)

2 → 0, (35)

Zn → N
(
0, σ2

1(a)
)
. (36)

For the proof of (35), the stationarity of variables is used to obtain

E (Z ′
n)

2
= ℓVar (ξ1) + 2

∑
1≤i<j≤ℓ

|Cov (ξi, ξj)| , (37)

ℓVar (ξ1) ≤ ηℓVar (Wn1) + 2ℓ
∑

1≤i<j≤η

|Cov (Wni,Wnj)| . (38)

A first expression in (38) in the upper right-hand hand can be deduced from (21) and the fact that
ℓη

n
→ 0. In reality,

ηℓVar (Wn1) = φa (hL)
d nℓηVar (Ω1) = O

(
ℓη

n

)
→ 0, as n→ ∞. (39)

Then, the second term is as follows

ℓ
∑

1≤i<j≤η

|Cov (Wni,Wnj)| = ℓnφa (hL)
d
∑

1≤i<j≤η

|Cov (Ωi,Ωj)| ,

after that, according to (22), we demonstrate that

sup
xn≤hL≤yn

∑
1≤i<j≤η

|Cov (Ωi,Ωj)| = o

(
η

n2φa (xn)
d

)
.

Therefore,

ℓ
∑

1≤i<j≤η

|Cov (Wni,Wnj)| = o

(
ℓη

n

)
→ 0, as n→ ∞. (40)
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We use the stationarity to evaluate the second term in the right-hand side of (37),∑
1≤i<j≤ℓ

|Cov (ξi, ξj)| =
ℓ−1∑
l=1

(ℓ− l) |Cov (ξ1, ξl+1)|

≤ ℓ

ℓ−1∑
l=1

|Cov (ξ1, ξl+1)|

≤ ℓ
ℓ−1∑
l=1

∑
(i,j)∈J1×Jl+1

Cov (Wni,Wnj) .

So, for all (i, j) ∈ J1 × Jj, we have |i− j| ≥ ζ + 1 > ζ, then for all sup
xn≤hL≤yn

, we have that

∑
1≤i<j≤ℓ

|Cov (ξi, ξj)| ≤ ℓ
Cθ2n

nφa (xn)
d+2

ζ∑
i=1

ℓ(ζ+η)∑
j=2ζ+η+1,|i−j|>ζ

∆i,j

≤ Cℓζθ2n

nφa (xn)
d+2

∆ζ

≤ Cℓζθ2n

nφa (xn)
d+2

e−aζ → 0.

Finally, when this last finding is combined with (38) and (40), we can write

E (Z ′
1)

2 → 0 as n→ ∞.

When (n− ℓ(ζ + η)) ≤ ζ , we get

E (Dℓ)
2 ≤ (n− ℓ(ζ + η))Var (Wn1) + 2

∑
1≤i<j≤n

|Cov (Wni,Wnj)|

≤ ζ Var (Wn1) + 2
∑

1≤i<j≤n

|Cov (Wni,Wnj)|

≤ ζnφa (xn)
d Var (Ω1) + nφa (xn)

d
∑

1≤i<j≤n

|Cov (Ωi,Ωj)|

≤ Cζ

n
+ o(1).

Then,

E (Dℓ)
2 → 0, as n→ ∞.

Proof of (36): it is focused on∣∣∣∣∣E(eiϕ∑ℓ
j=1

Uj

)
−

ℓ∏
j=1

E
(
eiϕUj

)∣∣∣∣∣→ 0, (41)

and

ℓVar (U1) → σ2
1(a), ℓE

(
U2
11I{U1>ϵσ1(a)}

)
→ 0. (42)

23

Nadjet et al.: M-Regression Estimation

Published by Digital Commons @PVAMU, 2022



356 B. Nadjet et al.

Proof of (41): we have that∣∣∣E(eiϕ∑ℓ
j=1

Uj

)
−
∏ℓ

j=1 E
(
eiϕUj

)∣∣∣
≤
∣∣∣E(eiϕ∑ℓ

j=1
Uj

)
− E

(
eiϕ

∑ℓ−1
j=1

Uj

)
E
(
eiϕUℓ

)∣∣∣
+
∣∣∣E(eiϕ∑ℓ−1

j=1
Uj

)
−
∏ℓ−1

j=1 E
(
eiϕUj

)∣∣∣ , (43)

∣∣∣Cov (eiϕ∑ℓ−1
j=1

Uj , eiϕUℓ

)∣∣∣+ ∣∣∣∣∣E(eiϕ∑ℓ−1
j=1

Uj

)
−

ℓ−1∏
j=1

E
(
eiϕUj

)∣∣∣∣∣ , (44)

and after that, we’ve had∣∣∣∣∣E(eiϕ∑ℓ
j=1

Uj

)
−

ℓ∏
j=1

E
(
eiϕUj

)∣∣∣∣∣ ≤ ∣∣∣Cov (eiϕ∑ℓ−1
j=1

Uj , eiϕUℓ

)∣∣∣
+
∣∣∣Cov (eiϕ∑ℓ−2

j=1
Uj , eiϕUℓ−1

)∣∣∣
+ · · ·+

∣∣Cov (eiϕU2 , eiϕU1
)∣∣ .

(45)

Utilizing the property of the quasi-association to write∣∣Cov (eiϕU2 , eiϕU1
)∣∣ ≤ Cϕ2θ2n

nφa (hL)
d+2

∑
i∈I1

∑
j∈I2

∆i,j,

by applying this inequality to each term on the right-hand side of (45), we get∣∣∣∣∣E(eiϕ∑ℓ
j=1 Uj

)
−

ℓ∏
j=1

E
(
eiϕUj

)∣∣∣∣∣
≤ Cϕ2θ2n

nφa (hL)
d+2

∑
i∈I1

∑
j∈I2

∆i,j +
∑

i∈I1∪I2

∑
j∈I3

∆i,j + · · ·+
∑

i∈I1∪···∪Iℓ−1

∑
j∈Iℓ

∆i,j

 .
Observe that for each and every ℓ− 1 ≥ l ≥ 2, (i, j) ∈ Il× Il+1, we have η < η+1 ≤ |i− j|, then∑

i∈I1∪...∪Il−1

∑
j∈Il

∆i,j ≤ p∆η.

For all sup
xn≤hL≤yn

, inequality (44) becomes∣∣∣∣∣E(eiϕ∑ℓ
j=1 Uj

)
−

ℓ∏
j=1

E
(
eiϕUj

)∣∣∣∣∣ ≤ Cϕ2θ2n

nφa (xn)
d+2

ℓζ∆η

≤ Cϕ2θ2n

nφa (xn)
d+2

ℓζe−aη → 0.
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Then, for (42), we utilize similar arguments as those in (37), to obtain

lim
n→∞

ℓVar (U1) = lim
n→∞

ℓζ Var (Wn1)

= lim
n→∞

ℓ ζ nφa (hL)
d Var (Ω1) .

On the other hand,

Var (Ω1) =
1

n2φa (hL)
2d

{
E
[
L2
(
h−1
L (a− Ai)

)
ρ2a (Bi, ϕ)

]
−E

[
L2
(
φa (hL)

−1 (a− Ai)
)
ρ2a (Bi, ϕ) 1I|ρ(Bi,ϕ)>θn

]}
− 1

n2

(
1

φa (hL)
d
E
[
L
(
φa (hL)

−1 (a− Ai)
)
ρa (Bi, ϕ) 1I|ρ(Bi,ϕ)|<θn

])2

.

In the same way of (8) and Lemma 4.1, for all sup
xn≤hL≤yn

, we show that

Var (Ω1) =
σ2
1(a)

n2φa (xn)
d
+ o

(
1

n2φa (xn)
d

)
.

Hence,

ℓVar (U1) =
ℓζσ2

1(a)

n
+ o

(
ℓζ

n

)
→ σ2

1(a).

Now we are able to use Tchebychev’s inequality with the second part of (42), and utilising the fact

that |U1| ≤ Cζ |Wn1| ≤
Cθnζ√
nφa (hL)

d
, to obtain

ℓE
(
U2
11I{U1>ϵσ1(a)}

)
≤ Cθ2nζ

2ℓ

nhd
P (U1 > ϵσ1(a))

≤ Cθ2nζ
2ℓ

nφa (hL)
d

Var (U1)

ϵ2σ2
1(a)

= O

(
θ2nζ

2

nφa (xn)
d

)
.

which completes the proof. ■

Lemma 4.8.

Under Hypotheses (H4), (H5) and (H9) and if the bandwidth parameter hL satisfies as sup
xn≤hL≤yn

,

we have  nφa (xn)
d(

∂

∂ϕ
Λ (a, ϑa)

)2

σ2 (a, ϑa)


1/2

E
[
Λ̂N(a, ϕ)

]
= u+ o(1), as n→ +∞.
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Proof:

By simple analytical arguments we write

E
[
Λ̂N(a, ϕ)

]
=

∫
Rd

H(a− hLz, ϕ)L(z)dz.

We utilize a Taylor expansion of H
(
a− hLz, ϑa + u

[
nφa (xn)

d
]−1/2

σ (a, ϑa)

)
, with sup

xn≤hL≤yn

to write

E
[
Λ̂N(a, ϕ)

]
= u

[
nφa (xn)

d
]−1/2

σ (a, ϑa) Λ
′(a, ϑ(a)) + o(yn).

The result is then a consequence of (H4). ■

5. Simulation study

In this section, we evaluate the behavior of our results over finite sample data. More precisely our
main aim is to show the easy implementation of the kNN M-Regression estimator against the CV
(Cross Validation) kernel estimator given by Ferraty and Vieu (2006) and to examine the influence
of the degree of dependency on this asymptotic property. For this purpose, we generate functional
observations by considering the following functional nonparametric model

Bi = Λ (Ai) + ϵi for i = 1, . . . , n,

where the ϵi ’s are generated according to a normal distribution N (0, 0.5). It is well documented
that the linear process is quasi-associated variables satisfies condition (H5). Thus, we generate the
quasi-associates functional regressor as follow

Ai(t) =
i+m∑
k=i+1

Zk(t) where, Zk(t) = sin (Wk ∗ t) + Vk ∗ t t ∈
[
0,
π

2

]
,

and (Wk)k (respectively (Vk)k) are independent and identically distributed as N (1, 0.5) (respec-
tively N (0, 1)). The Ai ’s curves are discretized in the same grid which is composed of 100 points
in [0, π/2] and are plotted in Figure 1 for three values of m = 1 (independent case), 5 and 10.
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Figure 1. The curves Ai(t), t ∈ [0, π/2] for i = 1, . . . , 150 and m = 1, 5, 10
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Furthermore, the scalar variable Bi is computed by the regression operator

Λ(a) = 5

∫ π/2

0

1

1 + |a(t)|
dt.

Figure 1 displays the curves of the sample sizes n = 150. Second, we need to select a suitable
semi-metric d(., .), kernel L(.), smoothing parameter kopt for functional kNN estimator and hopt
for CV kernel estimator. For that purpose, we choose the asymmetrical quadratic kernel defined as

L(u) =
3

4

(
1− u2

)
1[0,1](u). Meanwhile, because of the smoothness of curves Ai(t), we consider

the following semimetric based on the first derivative

dderiv (Ai, Aj) =

√∫ π/2

0

(
A′

i(t)− A′
j(t)
)2

dt, ∀Ai, Aj ∈ G.

In what follows, we randomly split the 150-sample into two parts: one is a training sample
(Ai, Bi)

100
i=1 which is used to model, and the other is a testing sample (Aj, Bj)

150
j=101 which is used to

verify the prediction effect. On the one hand, by the training sample, we can select the optimal pa-
rameter kopt for kNN kernel and robust estimator, and the optimal parameter hopt for CV classical
kernel and robust estimator by the following cross-validation procedures, respectively. Concretely,

we select kopt = argmink CV1(k), where CV1(k) =
n∑

i=1

(
Bi − m̂kNN

(−i) (A)
)2

and

m̂kNN
(−i) (A) =

n∑
j=1,j ̸=i

BjL

(
dderiv (Aj, A)

Ek(A)

)
n∑

j=1,j ̸=i

L

(
dderiv(Aj;A)

Ek(A)

) .

And the robust kNN one by kopt = argmink CV2(k), where CV2(k) =
n∑

i=1

(
Bi − Λ̂kNN

(−i) (X)
)2

and

Λ̂kNN
(−i) (A) = argmin

t

n∑
j=1,j ̸=i

ρ(Bj, t)L

(
dderiv (Aj, A)

Ek(A)

)
n∑

j=1,j ̸=i

L

(
dderiv(Aj, A)

Ek(A)

) .

Similarly, we choose hopt = argminhL
CV (hL) for the CV classic and robust methods, where

CV3(hL) =
n∑

i=1

(
Bi − m̂CV

(−i)(A)
)2

and CV4(hL) =
n∑

i=1

(
Bi − Λ̂CV

(−i)(A)
)2

,

where m̂CV
(−i)(A) =

n∑
j=1,j ̸=i

BjL

(
dderiv (Aj, A)

Ek(A)

)
n∑

j=1,j ̸=i

L

(
dderiv(Aj;A)

hL(A)

) ,
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and Λ̂CV
(−i)(A) = argmint

n∑
j=1,j ̸=i

ρ(Bj, t)L

(
dderiv (Aj, A)

Ek(A)

)
n∑

j=1,j ̸=i

L

(
dderiv(Aj, A)

hL(A)

) .

Theoretical support for such cross-validation procedure has been given as well for dependent data
in Härdle and Vieu (1992) as for functional data in Rachdi and Vieu (2007). On the other hand,
by the testing sample, we can calculate the prediction values of the response variables denoted by
(Bj)

150
j=101. Thus, the predicted responses for the four methods are illustrated in Figure 2 where we

see that the forecasting of kNN estimator is more accurate than that of CV kernel one under the
quasi-associates functional dependent sample.

Prediction results for: m=1
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Prediction results for: m=5
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Prediction results for: m=10

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●●

●

● ● ●
●

●
●

0.8 1.0 1.2 1.4 1.6 1.8

1
.0

1
.4

Classic CV

Responses of testing sample

P
re

d
ic

te
d

 r
e

s
p

o
n

s
e

s

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●●

●

● ● ●
●

●
●

0.8 1.0 1.2 1.4 1.6 1.8

1
.0

1
.4

Rbust CV

Responses of testing sample

P
re

d
ic

te
d

 r
e

s
p

o
n

s
e

s

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

● ●
●

●
●

●

0.8 1.0 1.2 1.4 1.6 1.8

0
.9

1
.2

1
.5

Classic KNN

Responses of testing sample

P
re

d
ic

te
d

 r
e

s
p

o
n

s
e

s

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

● ●
●

●
●

●

0.8 1.0 1.2 1.4 1.6 1.8

0
.9

1
.2

1
.5

Rbust KNN

Responses of testing sample

P
re

d
ic

te
d

 r
e

s
p

o
n

s
e

s

Figure 2. Prediction of the classical and robust estimator with CV and kNN methods, respectively

Now, we carry out 100 independent replications which allows to compute 100 values for MSE
and to display their distribution by means of a boxplot. Figure 3 shows the boxplots of the MSE

of the prediction values.
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Figure 3. The boxplots of the MSE of the prediction values by the four methods for the different degree of dependency
without outliers

Meanwhile, let us calculate the average of MSE of kNN estimator and CV kernel estimator.
The results are reported in Table 1.

Table 1. Comparison between the four methods in the presence of outliers with different degree of dependency

m Number of Outliers Classic CV Robust CV Classic kNN Robust kNN
0 0.037514 0.037881 0.015731 0.016489

1 6 502.040275 62.369308 558.648462 0.051654
12 1772.638790 101.099854 1993.288220 0.161468
18 3800.416704 180.703892 4157.818408 0.418262
0 0.008346 0.008406 0.010926 0.011399

5 6 111.125504 11.549593 119.765797 0.035228
12 400.821394 29.412965 420.740074 0.099072
18 864.387731 61.053536 929.041219 0.261310
0 0.003400 0.003400 0.003780 0.003784

10 6 43.848807 1.388947 46.273798 0.026864
12 164.544865 10.976110 169.472108 0.080355
18 360.790930 26.130611 376.862336 0.183755
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We observe in Table 1 that in the presence of outliers, the kNN robust regression gives better results
than the other models, in a sense that, even if theMSE value of all methods increases substantially
relative to the number of the perturbed points, it remaining very low for the kNN robust one.

6. Conclusion

The uniform kNN reliability approach is a smoothing alternative that allows for the development
of an adaptive estimator for a variety of statistical problems, including bandwidth choice.

In our situation, furthermore, uniform consistency is not a straightforward extension of the point-
wise approach, as it necessitates the use of additional methods and techniques. The assumption
that the bandwidth parameter in the kNN method is a random variable adds to the complexity of
this problem.

In the situation of quasi-associated results, the key innovation of this approach is to estimate the
regression function by mixing two essential statistical techniques: the M-regression method and
the kNN procedures. This strategy allowed for the development of a new estimator that combines
the benefits of both methods.

To summarize, the behavior of the developed estimator is unaffected by the number of outliers in
the data collection. In comparison to the classical kernel method, the mixture of the kNN algorithm
and the robust method allows for a reduction in the impact of outliers in results.
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