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Abstract

In this manuscript, we investigate the asymptotical stability of solutions of Riemann-Liouville
fractional neutral systems associated to multiple time-varying delays. Then, we use the linear ma-
trix inequality (LMI) and the Lyapunov-Krasovskii method to obtain sufficient conditions for the
asymptotical stability of solutions of the system when the given delays are time dependent and one
of them is unbounded. Finally, we present some examples to indicate the efficacy of the conse-
quences obtained.

Keywords: Asymptotical stability; Fractional neutral systems; Riemann-Liouville derivative;
Lyapunov functional; LMI
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1. Introduction

The systems of fractional differential equations have become a widely studied topic for so many
authors, which have recently found application in fields such as control theory, engineering, physics
and biology. However, most of the recent studies are on the Caputo fractional derivative; very
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100 E. Korkmaz and A. Ozdemir

little work has been done on the Riemann-Liouville fractional derivative. In particular, delayed
neutral equation systems remain an open problem. We aim to obtain sufficient conditions for the
asymptotic stability of the system by taking variable delay instead of fixed delays in the study of
Liu et al. (2017).

Although the history of fractional derivatives is as old as ordinary derivatives, it has been the sub-
ject of research by many scientists recently such as Podlubny (1999), Kilbas et al. (2006), Zhou
and Jiao (2010), Tunç et al. (2020), Graef et al. (2016), Tarasov (2013), Liu et al. (2014), Shahri et
al. (2015), Bohner et al. (2021), Hristova and Tunc (2019), Tunç et al. (2021), Zafar et al. (2021)
and Deng and Deng (2014). In particular, resources related to solutions of fractional differential
equations and their qualitative behavior can be listed as Matignon (1996), Lu and Chen (2009),
Deng et al. (2007) and Li et al. (2010). Unlike the ordinary derivative, the fractional derivative
has several different descriptions. These descriptions are mostly not equal with their counterparts,
see, for example, Podlubny (1999) and Kilbas et al. (2006). Among these definitions, the Caputo
derivative and the Riemman-Liouville derivative are very popular. Some of the studies on the Ca-
puto derivative are Duarte-Mermoud et al. (2015), Yang et al. (2017), Chen et al. (2014), Liu et al.
(2016a), Liu et al. (2016c), Chen et al. (2016), Brzdek and Eghbali (2016) and Aguila-Camacho et
al. (2010). However, studies on the Riemman-Liouville derivative are fewer.

The fractional differential equations having initial conditions, which are defined by the Caputo
derivative, are of integer order as in ordinary differential equations. However, the fractional differ-
ential equations having initial conditions, which are defined by the Riemann-Liouville derivative,
are of fractional order. Most researchers consider that it is not easy to measure the initial conditions
given in fractional order, even though this idea can not be proven easily most of the time. Heymans
and Podlubny (2006) investigate geometric and physical interpretations for Riemman-Liouville
differentiation.

If entire roots of the characteristic equation possess negative real parts, Qian et al. (2010), show
the asymptotically stablity of solutions of the fractional linear system. Altun and Tunç (2020)
constructed a Lyapunov-Krasovskii functional for asymptotic stability of solutions of nonlinear
fractional equations. Liu et al. (2016b) and Liu et al. (2016d) explore fractional singular systems
and nonlinear systems by expanding the inequality to Riemann-Liouville derivatives. Moreover,
they determine various conditions on delay-independent stability. Li et al. (2015) remind the cur-
rent conditions connected with the asymptotical stability of fractional neutral systems in terms of
matrix norm matrices and matrix measure of the system.

2. Main Results

In this section, we introduce some fundamental definitons of fractional calculus together with
improtant lemmas.

Note that n-dimensional Euclidean space is denoted by Rn. The set of entire n × n real matrices
indicated by Rn×n. The Euclidean norm of a real vector x is denoted by ‖x‖. The spectral norm of

2

Applications and Applied Mathematics: An International Journal (AAM), Vol. 17 [], Iss. 1, Art. 7

https://digitalcommons.pvamu.edu/aam/vol17/iss1/7



AAM: Intern. J., Vol. 17, Issue 1 (June 2022) 101

matrixA is indicated by ‖A‖. WhenA < 0 (orA > 0), the symmetric matrixA is negative definite
(or positive definite). The Riemman-Liouville fractional derivative and integral are described in
Podlubny (1999).

Now, we present stability of solutions of fractional linear neutral systems having time-varying
delays. We further consider linear matrix inequality to determine sufficient conditions on asymp-
totical stability of solutions of these systems.

Let the fractional neutral system be given by the following,

t0D
α
t x(t) =Ax(t) +Bx(t− τ1(t)) + Ct0D

α
t x(t− τ2(t)), (1)

where 0 < α < 1, x(t) ∈ Rn is the state vector, A,B,C ∈ Rn×n are constant matrices, for all
t > t0, τ1(t), τ2(t) > 0 are time-varying delays.

We also indicate an operator Φ : Φ(xt) = x(t)− Cx(t− τ2(t)). Note that the operator Φ is stable
if ‖C‖ < 1. If the zero solution of the homogeneous difference equation Φ(xt) = 0, t ≥ 0 is
uniformly asymptotically stable then the operator Φ is called to be stable (see Hale (1977)).

Theorem 2.1.

The trival solution of system (1) is asymptotically stable, if ‖C‖ < 1, for all t > t0, τ ′i(t) ≤
di < 1 (i = 1, 2), τ2(t) bounded function. There exist positive and symmetric define matrices
P,Q,R1, R2 such that the following LMI satisfies:

M =

M11 M12 M13

MT
12 M22 M23

MT
13 M

T
23 M33

 < 0, (2)

where

M11 = PA+ ATP +Q+ AT (R1 +mR2)A,
M12 = PB + AT (R1 +mR2)B,
M13 = PC + AT (R1 +mR2)C,
M22 = BT (R1 +mR2)B − (1− d1)Q,
M23 = BT (R1 +mR2)C,
M33 = CT (R1 +mR2)C − (1− d2)R1,

and m is a constant such that |τ2(t)| ≤ m.

Proof:

Let the Lyapunov-Krasovskii functional be defined by:

V (t) =t0D
α−1
t (xT (t)Px(t)) +

∫ t

t−τ1(t)
xT (s)Qx(s)ds+

∫ 0

−τ2(t)
(t0D

α
t x(t+ s))TR1(t0D

α
t x(t+ s))ds

+

∫ t

t−τ2(t)

∫ t

θ

(t0D
α
s x(s))TR2(t0D

α
s x(s))dsdθ. (3)

3
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From Property 2.8 in Kilbas et al. (2006) and Lemma 2.2 in Liu et al. (2016a), the derivative of
V (t) is obtained along the trajectories of system (1) as follows:

V̇ (t) =t0D
α
t (xT (t)Px(t)) + xT (t)Qx(t)− (1− τ ′1(t))xT (t− τ1(t))Qx(t− τ1(t))

+ (t0D
α
t x(t))TR1(t0D

α
t x(t))− (1− τ ′2(t))(t0Dα

t x(t− τ2(t)))TR1(t0D
α
t x(t− τ2(t)))

+ τ2(t)(t0D
α
t x(t))TR2(t0D

α
t x(t))− (1− τ ′2(t))

∫ t

t−τ2(t)
(t0D

α
s x(s))TR2(t0D

α
s x(s))ds

≤2xT (t)P t0D
α
t x(t) + xT (t)Qx(t)− (1− d1)xT (t− τ1(t))Qx(t− τ1(t))

+ (t0D
α
t x(t))TR1(t0D

α
t x(t))− (1− d2)(t0Dα

t x(t− τ2(t)))TR1(t0D
α
t x(t− τ2(t)))

+m(t0D
α
t x(t))TR2(t0D

α
t x(t)). (4)

Now considering Equation (1), we write as

2xT (t)P t0D
α
t x(t) =2xT (t)P [Ax(t) +Bx(t− τ1(t)) + Ct0D

α
t x(t− τ2(t))]

=xT (t)(PA+ ATP )x(t) + 2xT (t)PBx(t− τ1(t))
+ 2xT (t)PCt0D

α
t x(t− τ2(t)), (5)

and

(t0D
α
t x(t))TR1(t0D

α
t x(t)) +m(t0D

α
t x(t))TR2(t0D

α
t x(t))

= [Ax(t) +Bx(t− τ1(t)) + Ct0D
α
t x(t− τ2(t))]T (R1 +mR2)

× [Ax(t) +Bx(t− τ1(t)) + Ct0D
α
t x(t− τ2(t))]

=xT (t)AT (R1 +mR2)Ax(t) + xT (t)AT (R1 +mR2)Bx(t− τ1(t))
+ xT (t)AT (R1 +mR2)Ct0D

α
t x(t− τ2(t)) + xT (t− τ1(t))BT (R1 +mR2)Ax(t)

+ xT (t− τ1(t))BT (R1 +mR2)Bx(t− τ1(t))
+ xT (t− τ1(t))BT (R1 +mR2)Ct0D

α
t x(t− τ2(t))

+ (t0D
α
t x(t− τ2(t)))TCT (R1 +mR2)Ax(t)

+ (t0D
α
t x(t− τ2(t)))TCT (R1 +mR2)Bx(t− τ1(t))

+ (t0D
α
t x(t− τ2(t)))TCT (R1 +mR2)Ct0D

α
t x(t− τ2(t)). (6)

From (4), (5) and (6), one has

V̇ (t) ≤ ξTMξ, (7)

where

M =

M11 M12 M13

MT
12 M22 M23

MT
13 M

T
23 M33

 < 0,

M11 = PA+ ATP +Q+ AT (R1 +mR2)A,
M12 = PB + AT (R1 +mR2)B,
M13 = PC + AT (R1 +mR2)C,
M22 = BT (R1 +mR2)B − (1− d1)Q,
M23 = BT (R1 +mR2)C,
M33 = CT (R1 +mR2)C − (1− d2)R1,

4
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and

ξ = (xT (t), xT (t− τ1(t)), (t0Dα
t x(t− τ2(t)))T )T .

From inequality (2), since V̇ (t) is negative definite the trivial solution of system (1) is asymptoti-
cally stable. �

Theorem 2.2.

The trivial solution of system (1) is asymptotically stable, if ‖C‖ < 1, for all t > t0, τ ′i(t) ≤
di < 1 (i = 1, 2) , τ2(t) bounded function. There exist positive and symmetric define matrices
P,Q1, Q2, R such that the following LMI statisfies:

N =

N11 N12 N13

NT
12 N22 N23

NT
13 N

T
23 N33

 < 0, (8)

where

N11 = PA+ ATP +Q1 +Q2 +mATRA,
N12 = PB +mATRB,
N13 = −ATPC,
N22 = mBTRB − (1− d1)Q1,
N23 = −BTPC,
N33 = −(1− d2)Q2,

and m is a constant such that |τ2(t)| ≤ m.

Proof:

Let the Lyapunov-Krasovskii functional be defined by:

V (t) =t0D
α−1
t ((x(t)− Cx(t− τ2(t)))TP (x(t)− Cx(t− τ2(t))))

+

∫ t

t−τ1(t)
xT (s)Q1x(s)ds+

∫ t

t−τ2(t)
xT (s)Q2x(s)ds

+

∫ t

t−τ2(t)

∫ t

θ

(t0D
α
s (x(s)− Cx(s− τ2(s))))TR(t0D

α
s (x(s)− Cx(s− τ2(s))))dsdθ. (9)

From Property 2.8 in Kilbas et al. (2006) and Lemma 2.2 in Liu et al. (2016a), the derivative of

5
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104 E. Korkmaz and A. Ozdemir

V (t) is obtained along the trajectories of system (1) as follows:

V̇ (t) =t0D
α
t ((x(t)− Cx(t− τ2(t)))TP (x(t)− Cx(t− τ2(t))))

+ xT (t)Q1x(t)− (1− τ ′1(t))xT (t− τ1(t))Q1x(t− τ1(t))
+ xT (t)Q2x(t)− (1− τ ′2(t))xT (t− τ2(t))Q2x(t− τ2(t))
+ τ2(t)(t0D

α
t (x(t)− Cx(t− τ2(t))))TR(t0D

α
t (x(t)− Cx(t− τ2(t))))

− (1− τ ′2(t))
∫ t

t−τ2(t)
(t0D

α
s (x(s)− Cx(s− τ2(s))))TR(t0D

α
s (x(s)− Cx(s− τ2(s))))ds

≤2(x(t)− Cx(t− τ2(t)))TP t0D
α
t (x(t)− Cx(t− τ2(t)))

+ xT (t)Q1x(t)− (1− d1)xT (t− τ1(t))Q1x(t− τ1(t))
+ xT (t)Q2x(t)− (1− d2)xT (t− τ2(t))Q2x(t− τ2(t))
+m(t0D

α
t (x(t)− Cx(t− τ2(t))))TR(t0D

α
t (x(t)− Cx(t− τ2(t)))). (10)

Thus, we obtain the following equalities:

2(x(t)−Cx(t− τ2(t)))TP t0D
α
t (x(t)− Cx(t− τ2(t)))

=2(x(t)− Cx(t− τ2(t)))TP (Ax(t) +Bx(t− τ1(t)))
=xT (t)(PA+ ATP )x(t)− 2xT (t− τ2(t))CTPAx(t)

+ 2xT (t)PBx(t− τ1(t))− 2xT (t− τ2(t))CTPBx(t− τ1(t)) (11)

and

m(t0D
α
t (x(t)− Cx(t− τ2(t))))TR(t0D

α
t (x(t)− Cx(t− τ2(t))))

=m [Ax(t) +Bx(t− τ1(t))]T R [Ax(t) +Bx(t− τ1(t))]
=mxT (t)ATRAx(t) +mxT (t)ATRBx(t− τ1(t)) +mxT (t− τ1(t))BTRAx(t)

+mxT (t− τ1(t))BTRBx(t− τ1(t)). (12)

From (10), (11) and (12), one has

V̇ (t) ≤ ξTNξ, (13)

where

N =

N11 N12 N13

NT
12 N22 N23

NT
13 N

T
23 N33

 < 0,

N11 = PA+ ATP +Q1 +Q2 +mATRA,

N12 = PB +mATRB,

N13 = −ATPC,
N22 = mBTRB − (1− d1)Q1,
N23 = −BTPC,

N33 = −(1− d2)Q2,

and

ξ = (xT (t), xT (t− τ1(t)), xT (t− τ2(t)))T .

6
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From inequality (8), since V̇ (t) is negative definite the trivial solution of system (1) is asymptoti-
cally stable. �

3. Numerical Examples

We give the following two examples to demonstrate the proposed technique.

Example 3.1.

Let the fractional system is given by:

t0D
α
t x(t) =Ax(t) +Bx(t− τ1(t)) + Ct0D

α
t x(t− τ2(t)), (14)

where α ∈ (0, 1), τ1(t) = 0.7t, τ2(t) = 6 + 0.4 sin(t)

A =

[
−10 2

0 −6

]
, B =

[
0.3 0.2
0 0.1

]
and C =

[
0.2 0
0 0.1

]
.

Let us choose d1 = 0.75, d2 = 0.5, m = 6.5,

P =

[
272.6339 0

0 272.6339

]
, Q =

[
607.2883 0

0 607.2883

]
,

R1 =

[
30.0517 0

0 30.0517

]
, R2 =

[
2.0625 0

0 2.0625

]
.

A straightforward calculation shows that

M =



−499.5947 −323.8912 −48.5837 −32.3891 −32.3891 0
−323.8912 −926.0005 26.0748 18.5718 17.3832 1.1886
−48.5837 26.0748 −147.9109 2.6075 2.6075 0
−32.3891 18.5718 2.6075 −149.6492 1.7383 0.4346
−32.3891 17.3832 2.6075 1.7383 −13.2875 0

0 1.1886 0 0.4346 0 −14.5913

 < 0.

Due to condition (2) and Theorem 2.1, the trivial solution of system (14) is asymptotically stable.

Example 3.2.

Let the fractional system be given by:

t0D
α
t x(t) =Ax(t) +Bx(t− τ1(t)) + Ct0D

α
t x(t− τ2(t)), (15)

where α ∈ (0, 1), τ1(t) = 0.6t, τ2(t) = 4 + 0.2 sin(t),

A =

[
−5 1
0 −3

]
, B =

[
0.5 0.2
0 0.5

]
, C =

[
0.1 0
0 0.2

]
.

7
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Let us choose d1 = 0.65, d2 = 0.3 and m = 5,

P =

[
0.6183 0

0 0.6183

]
, Q1 =

[
0.5014 0

0 0.5014

]
,

Q2 =

[
0.8418 0

0 0.8418

]
, R =

[
0.0295 0

0 0.0295

]
.

A straightforward calculation shows that

N =



−1.1523 −0.1192 −0.0596 −0.0238 0.3092 0
−0.1192 −0.8916 0.0737 0.1174 −0.0618 0.3710
−0.0596 0.0737 −0.1386 0.0147 −0.0309 0
−0.0238 0.1174 0.0147 −0.1327 −0.0124 −0.0618
0.3092 −0.0618 −0.0309 −0.0124 −0.5893 0

0 0.3710 0 −0.0618 0 −0.5893

 < 0.

Due to condition (8) and Theorem 2.2, the trivial solution of system (15) is asymptotically stable.

4. Conclusion

In this paper, we use Lyapunov-Krasovskii method to analyze Riemann-Liouville fractional neutral
systems with multiple time-varying delays, sufficient conditions on asymptotical stability are ob-
tained by using linear matrix equation inequality. The obtained sufficient conditions are expressed
in terms of LMI to find the less conservative criteria and can be easily solved. The most important
advantage of the method used is that we can take integer order derivatives of Lyapunov functional
to comparing to the fractional Lyapunov stability theorem. It is showed that it is convenient and
efficient to check stability of practical fractional systems with the given two examples by using the
Matlab-LMI Toolbox.
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