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Abstract:  

In this paper, the numerical solution of differential-difference equation with two boundary 
layers is discussed. Using Taylor’s series, the given second order differential-difference 
equation is replaced by an asymptotically equivalent first order differential equation and solved 
by suitable choice of integrating factor and finite difference approximations. Numerical results 
for several test examples are presented to demonstrate the applicability of the method. 
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1. Introduction 
Singularly perturbed differential difference equations having two boundary layers occur in 
fluid mechanics, skin layer problems in electrical application, edge layer problems in solid 
mechanics, WKB problems, the modelling of steady and unsteady viscous flow problems with 
large Reynolds numbers, convective heat transport problems with large Peclet numbers and by 
different names in other branches of science and engineering. If we apply existing numerical 
methods to these problems, we get oscillatory results or bad results, because of boundary layers.  
Lange and Miura (1994a,b) were the first to present numerical methods to solve singularly 
perturbed differential difference equations. Kadalbajoo and Sharma (2005) have presented 
numerical treatment of boundary value problems for second order singularly perturbed delay 
differential equations. Recently, Adilaxmi et al. (2019) proposed a numerical method to solve 
singularly perturbed differential difference equations by numerical integration using non-
polynomial interpolating function and an initial value technique using exponential fitted 
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method. Derya Arslan (2019) has presented a novel hybrid method for singularly perturbed 
delay differential equations. Derya Arslan (2020) has discussed the numerical solution for 
singularly perturbed multi-point boundary value problems with the Numerical Integration 
Method. Mesfin Mekuria Woldaregay and Gemechis File Duressa (2020) have presented a 
higher order uniformly convergent numerical scheme for singularly perturbed differential 
difference equations with mixed small shifts. For more details of singular perturbation theory 
and problems one can refer to popular books by Bellman and Cooke (1963) Bender and Orsag 
(1978), Doolan et al (1977), Driver (1977), Elsgolts and Norkin (1973), Hale (1977), Miller et 
al. (1996), Nayfeh (1979), O’Malley (1974), Reddy and Awoke (2013) and Van Dyke (1964). 
In this paper, numerical solution of singularly perturbed differential-difference equation with 
two boundary layers is considered. Using Taylor’s series, the given second order singularly 
perturbed differential-difference equation is replaced by an asymptotically equivalent first 
order differential equation and solved by suitable choice of integrating factor and finite 
difference approximations.  Numerical results for several test examples are presented to 
demonstrate the applicability of the method. 
 
2. Description of the Method 
Consider singularly perturbed differential-difference equation with small shifts of mixed type 

𝜀𝜀𝑦𝑦′′(𝑥𝑥) + 𝑎𝑎(𝑥𝑥)𝑦𝑦(𝑥𝑥 − 𝛿𝛿) + 𝑐𝑐(𝑥𝑥)𝑦𝑦(𝑥𝑥) + 𝑏𝑏(𝑥𝑥)𝑦𝑦(𝑥𝑥 + 𝜂𝜂) = 𝑓𝑓(𝑥𝑥),     0 ≤ 𝑥𝑥 ≤ 1 , (1) 

under the boundary conditions 

  𝑦𝑦(𝑥𝑥) = 𝛼𝛼(𝑥𝑥),    −𝛿𝛿 ≤ 𝑥𝑥 ≤ 0,                 (2) 

                          𝑦𝑦(𝑥𝑥) = 𝛽𝛽(𝑥𝑥),  1 ≤ 𝑥𝑥 ≤ 1 + 𝜂𝜂,                          (3) 

where 0 < 𝜀𝜀 ≪ 1, 0 < 𝛿𝛿 = 𝑂𝑂(𝜀𝜀) and 0 < 𝜂𝜂 = 𝑂𝑂(𝜀𝜀) are the perturbation parameter, the delay 
parameter and the advance parameter respectively.  𝑎𝑎(𝑥𝑥), 𝑏𝑏(𝑥𝑥),  𝑐𝑐(𝑥𝑥), 𝑓𝑓(𝑥𝑥), 𝛼𝛼(𝑥𝑥)  and 𝛽𝛽(𝑥𝑥) 
are sufficiently differentiable in (0, 1). Assume  𝑎𝑎(𝑥𝑥) + 𝑏𝑏(𝑥𝑥) + 𝑐𝑐(𝑥𝑥) ≤ 0  on interval [0, 1], 
then the solution of Equation (1) - (3) exhibits two boundary layers in the interval [0, 1], for 
details, refer to Lange and Miura (1994 a, b). Taylor series expansion, in the neighbourhood of  
𝑥𝑥, gives 

                              𝑦𝑦(𝑥𝑥 − 𝛿𝛿) ≈ 𝑦𝑦(𝑥𝑥) − 𝛿𝛿𝑦𝑦′(𝑥𝑥) + 𝛿𝛿2

2
𝑦𝑦′′(𝑥𝑥),                                                    (4) 

                                           𝑦𝑦(𝑥𝑥 + 𝜂𝜂) ≈ 𝑦𝑦(𝑥𝑥) + 𝜂𝜂𝑦𝑦′(𝑥𝑥) + 𝜂𝜂2

2
𝑦𝑦′′(𝑥𝑥).                                            (5) 

Substituting (4) and (5) into (1), we get 

𝜀𝜀′𝑦𝑦′′(𝑥𝑥) + 𝐴𝐴(𝑥𝑥)𝑦𝑦′(𝑥𝑥) + 𝐵𝐵(𝑥𝑥)𝑦𝑦(𝑥𝑥) = 𝑓𝑓(𝑥𝑥),                                                (6) 

under boundary conditions 

 𝑦𝑦(0) = 𝛼𝛼(0) = 𝜑𝜑0,                                                   (7) 

𝑦𝑦(1) = 𝛽𝛽(1) = 𝛾𝛾1,                                                   (8) 
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where 𝐴𝐴(𝑥𝑥) = 𝑏𝑏(𝑥𝑥)𝜂𝜂 − 𝑎𝑎(𝑥𝑥)𝛿𝛿,  𝐵𝐵(𝑥𝑥) = 𝑎𝑎(𝑥𝑥) + 𝑏𝑏(𝑥𝑥) + 𝑐𝑐(𝑥𝑥),  𝜀𝜀′ = 𝜀𝜀 + 𝑎𝑎(𝑥𝑥) 𝛿𝛿
2

2
+ 𝑏𝑏(𝑥𝑥) 𝜂𝜂

2

2
,  

𝜑𝜑0 and 𝛾𝛾1 are constants. Since 0 < 𝛿𝛿 ≪ 1 and 0 < 𝜂𝜂 ≪ 1, the transformation from Equation 
(1) to Equation (6) is permitted. For more details on the validity of this transformation one can 
refer to El’sgolt’s and Norkin (1973). 
 
We divide the interval [0, 1] into two subintervals �0, 1

2
� and �1

2
, 1�. Combine the solution of 

both subintervals to get the total solution of Equation (1). 
 
2.1. Problem with left end boundary layer in �𝟎𝟎, 𝟏𝟏

𝟐𝟐
� 

 
Taylor’s series expansion about the deviating argument √𝜀𝜀′ in the neighbourhood of point 𝑥𝑥, 
is  
                                          𝑦𝑦�𝑥𝑥 − √𝜀𝜀′� ≈ 𝑦𝑦(𝑥𝑥) − √𝜀𝜀′𝑦𝑦′(𝑥𝑥) + 𝜀𝜀′

2
𝑦𝑦′′(𝑥𝑥). (9) 

 
Substituting Equation (9) in Equation (6), we get 
 
                                         𝑦𝑦′(𝑥𝑥) = 𝑝𝑝(𝑥𝑥)𝑦𝑦�𝑥𝑥 − √𝜀𝜀′� + 𝑞𝑞(𝑥𝑥)𝑦𝑦(𝑥𝑥) + 𝑟𝑟(𝑥𝑥),                                 (10) 
where  

                                                                𝑝𝑝(𝑥𝑥) = −2
2√𝜀𝜀′+𝐴𝐴(𝑥𝑥)

,                                                          (11) 

                                                               𝑞𝑞(𝑥𝑥) = 2−𝐵𝐵(𝑥𝑥)
2√𝜀𝜀′+𝐴𝐴(𝑥𝑥)

,                                                            (12) 

                                                              𝑟𝑟(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)
2√𝜀𝜀′+𝐴𝐴(𝑥𝑥)

.                                                             (13) 

The transition from Equation (6) to Equation (10) is valid, because of the condition that √𝜀𝜀′ is 
small. For more details on the validity of this transition, one can refer El’sgolt’s and Norkin 
(1973). Now, we divide the interval [0, 1] into 𝑛𝑛 equal parts with constant mesh length  ℎ.  Let 
0 = 𝑥𝑥0,  𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 1 be the mesh points, then we have 𝑥𝑥𝑖𝑖 = 𝑖𝑖ℎ, 𝑖𝑖 = 0, 1, 2, … ,𝑛𝑛.         We 
choose 𝑁𝑁 such that   𝑥𝑥𝑁𝑁 = 1

2
.  Equation (10) can be written as 

 
                                               𝑦𝑦′(𝑥𝑥) − 𝑞𝑞𝑦𝑦(𝑥𝑥) = 𝑝𝑝𝑦𝑦�𝑥𝑥 − √𝜀𝜀′� + 𝑟𝑟(𝑥𝑥).                                       (14) 
 
By taking an integrating factor 𝑒𝑒−𝑞𝑞𝑥𝑥 for Equation (14) proceeding as in McCartin (2001), we 
obtain 

𝑑𝑑
𝑑𝑑𝑥𝑥

[𝑒𝑒−𝑞𝑞𝑥𝑥𝑦𝑦(𝑥𝑥)] = 𝑒𝑒−𝑞𝑞𝑥𝑥�𝑝𝑝𝑦𝑦�𝑥𝑥 − √𝜀𝜀′� + 𝑟𝑟(𝑥𝑥)�.                                  (15) 
 
On integrating Equation (15) from 𝑥𝑥𝑖𝑖 to 𝑥𝑥𝑖𝑖+1, we get  
 

𝑒𝑒−𝑞𝑞𝑥𝑥𝑖𝑖+1𝑦𝑦𝑖𝑖+1 − 𝑒𝑒−𝑞𝑞𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 = ∫ 𝑒𝑒−𝑞𝑞𝑥𝑥𝑥𝑥𝑖𝑖+1
𝑥𝑥𝑖𝑖

𝑝𝑝𝑦𝑦�𝑥𝑥 − √𝜀𝜀′�𝑑𝑑𝑥𝑥 + ∫ 𝑒𝑒−𝑞𝑞𝑥𝑥𝑥𝑥𝑖𝑖+1
𝑥𝑥𝑖𝑖

𝑟𝑟(𝑥𝑥)𝑑𝑑𝑥𝑥.             (16) 

Using Newton’s forward interpolation for y term, and taking p as constant in this paper for 
simplicity, we get 
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𝑒𝑒−𝑞𝑞𝑥𝑥𝑖𝑖+1𝑦𝑦𝑖𝑖+1 = 𝑒𝑒−𝑞𝑞𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

+ 𝑝𝑝� 𝑒𝑒−𝑞𝑞𝑥𝑥
𝑥𝑥𝑖𝑖+1

𝑥𝑥𝑖𝑖
�𝑦𝑦�𝑥𝑥𝑖𝑖 − √𝜀𝜀′� +

(𝑥𝑥 − 𝑥𝑥𝑖𝑖)
ℎ

�𝑦𝑦�𝑥𝑥𝑖𝑖+1 − √𝜀𝜀′� − 𝑦𝑦�𝑥𝑥𝑖𝑖 − √𝜀𝜀′��� 𝑑𝑑𝑥𝑥

+ � 𝑒𝑒−𝑞𝑞𝑥𝑥
𝑥𝑥𝑖𝑖+1

𝑥𝑥𝑖𝑖
�𝑟𝑟𝑖𝑖 +

(𝑥𝑥 − 𝑥𝑥𝑖𝑖)
ℎ

{𝑟𝑟𝑖𝑖+1 − 𝑟𝑟𝑖𝑖}� 𝑑𝑑𝑥𝑥,                                                       (17) 

 

𝑦𝑦𝑖𝑖+1 = 𝑒𝑒𝑞𝑞ℎ𝑦𝑦𝑖𝑖 + 𝑝𝑝𝑦𝑦�𝑥𝑥𝑖𝑖 − √𝜀𝜀′�� 𝑒𝑒𝑞𝑞(𝑥𝑥𝑖𝑖+1−𝑥𝑥)
𝑥𝑥𝑖𝑖+1

𝑥𝑥𝑖𝑖
𝑑𝑑𝑥𝑥

+
𝑝𝑝𝑦𝑦�𝑥𝑥𝑖𝑖+1 − √𝜀𝜀′�

ℎ
� 𝑒𝑒𝑞𝑞(𝑥𝑥𝑖𝑖+1−𝑥𝑥)
𝑥𝑥𝑖𝑖+1

𝑥𝑥𝑖𝑖
(𝑥𝑥 − 𝑥𝑥𝑖𝑖)𝑑𝑑𝑥𝑥

+
𝑝𝑝𝑦𝑦�𝑥𝑥𝑖𝑖 − √𝜀𝜀′�

ℎ
� 𝑒𝑒𝑞𝑞(𝑥𝑥𝑖𝑖+1−𝑥𝑥)
𝑥𝑥𝑖𝑖+1

𝑥𝑥𝑖𝑖
(𝑥𝑥𝑖𝑖 − 𝑥𝑥)𝑑𝑑𝑥𝑥 + 𝑟𝑟𝑖𝑖 � 𝑒𝑒𝑞𝑞(𝑥𝑥𝑖𝑖+1−𝑥𝑥)

𝑥𝑥𝑖𝑖+1

𝑥𝑥𝑖𝑖
𝑑𝑑𝑥𝑥

+
𝑟𝑟𝑖𝑖+1
ℎ

� 𝑒𝑒𝑞𝑞(𝑥𝑥𝑖𝑖+1−𝑥𝑥)
𝑥𝑥𝑖𝑖+1

𝑥𝑥𝑖𝑖
(𝑥𝑥 − 𝑥𝑥𝑖𝑖)𝑑𝑑𝑥𝑥

+
𝑟𝑟𝑖𝑖
ℎ
� 𝑒𝑒𝑞𝑞(𝑥𝑥𝑖𝑖+1−𝑥𝑥)
𝑥𝑥𝑖𝑖+1

𝑥𝑥𝑖𝑖
(𝑥𝑥𝑖𝑖 − 𝑥𝑥)𝑑𝑑𝑥𝑥.                                                                           (18) 

 
After evaluating the integrals involves in Equation (18), we get 
 

𝑦𝑦𝑖𝑖+1 = 𝑒𝑒𝑞𝑞ℎ𝑦𝑦𝑖𝑖 + 𝐽𝐽�𝑝𝑝𝑦𝑦�𝑥𝑥𝑖𝑖 − √𝜀𝜀′� + 𝑟𝑟𝑖𝑖� + 𝐾𝐾 �
𝑝𝑝𝑦𝑦�𝑥𝑥𝑖𝑖+1 − √𝜀𝜀′�

ℎ
+
𝑟𝑟𝑖𝑖+1
ℎ
�

+ 𝐿𝐿 �
𝑝𝑝𝑦𝑦�𝑥𝑥𝑖𝑖 − √𝜀𝜀′�

ℎ
+
𝑟𝑟𝑖𝑖
ℎ
� ,                                                                                        (19) 

where  

                                                                 𝐽𝐽 =
𝑒𝑒𝑞𝑞ℎ

𝑞𝑞
−

1
𝑞𝑞

 ,                                                                       (20) 

                                                              𝐾𝐾 = −
ℎ
𝑞𝑞
−

1
𝑞𝑞2

+
𝑒𝑒𝑞𝑞ℎ

𝑞𝑞2
,                                                           (21) 

                                                               𝐿𝐿 =
ℎ
𝑞𝑞

+
1
𝑞𝑞2
−
𝑒𝑒𝑞𝑞ℎ

𝑞𝑞2
.                                                               (22) 

 

From finite difference approximation, we have 
 

  𝑦𝑦�𝑥𝑥𝑖𝑖 − √𝜀𝜀′� ≈ �1 − √𝜀𝜀′

ℎ
� 𝑦𝑦𝑖𝑖 + √𝜀𝜀′

ℎ
𝑦𝑦𝑖𝑖−1 ,                              (23) 

 

                                          𝑦𝑦�𝑥𝑥𝑖𝑖+1 − √𝜀𝜀′� ≈ �1 −
√𝜀𝜀′

ℎ
� 𝑦𝑦𝑖𝑖+1 +

√𝜀𝜀′

ℎ
𝑦𝑦𝑖𝑖 .                                     (24) 

 
Substituting Equations (23)-(24) in Equation (19), we get after rearranging/simplification: 
 
                  𝐸𝐸𝑖𝑖𝑦𝑦𝑖𝑖−1 − 𝐹𝐹𝑖𝑖𝑦𝑦𝑖𝑖 + 𝐺𝐺𝑖𝑖𝑦𝑦𝑖𝑖+1 = 𝐻𝐻𝑖𝑖,     𝑖𝑖 = 1,2, … ,𝑁𝑁 − 1.                                                (25) 
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where  

 𝐸𝐸𝑖𝑖 = −𝐽𝐽𝐽𝐽√𝜀𝜀′

ℎ
− 𝐿𝐿𝐽𝐽√𝜀𝜀′

ℎ2
, 

                                                      𝐹𝐹𝑖𝑖 = 𝐽𝐽𝑝𝑝 �1 −
√𝜀𝜀′

ℎ
� +

𝐾𝐾𝑝𝑝√𝜀𝜀′

ℎ2
+
𝐿𝐿𝑝𝑝
ℎ
�1 −

√𝜀𝜀′

ℎ
� + 𝑒𝑒𝑞𝑞ℎ, 

𝐺𝐺𝑖𝑖 = 1 −
𝐾𝐾𝑝𝑝
ℎ
�1 −

√𝜀𝜀′

ℎ
�, 

𝐻𝐻𝑖𝑖 = 𝐽𝐽𝑟𝑟𝑖𝑖 +
𝐾𝐾𝑟𝑟𝑖𝑖+1
ℎ

+
𝐿𝐿𝑟𝑟𝑖𝑖
ℎ

. 
 
 
2.2. Problem with right end boundary layer in �𝟏𝟏

𝟐𝟐
,𝟏𝟏� 

 
Taylor’s series expansion about the deviating argument √𝜀𝜀′ in the neighbourhood of point 𝑥𝑥, 
is 

                                          𝑦𝑦�𝑥𝑥 + √𝜀𝜀′� ≈ 𝑦𝑦(𝑥𝑥) + √𝜀𝜀′𝑦𝑦′(𝑥𝑥) +
𝜀𝜀′

2
𝑦𝑦′′(𝑥𝑥).                                       (26) 

 
Substituting Equation (26) in Equation (6), we get 
                                         𝑦𝑦′(𝑥𝑥) = 𝑝𝑝(𝑥𝑥)𝑦𝑦�𝑥𝑥 + √𝜀𝜀′� + 𝑞𝑞(𝑥𝑥)𝑦𝑦(𝑥𝑥) + 𝑟𝑟(𝑥𝑥),                                 (27) 

where  

                                                             𝑝𝑝(𝑥𝑥) =
−2

−2√𝜀𝜀′ + 𝐴𝐴(𝑥𝑥)
,                                                      (28) 

                                                            𝑞𝑞(𝑥𝑥) =
2 − 𝐵𝐵(𝑥𝑥)

−2√𝜀𝜀′ + 𝐴𝐴(𝑥𝑥)
,                                                      (29) 

                                                           𝑟𝑟(𝑥𝑥) =
𝑓𝑓(𝑥𝑥)

−2√𝜀𝜀′ + 𝐴𝐴(𝑥𝑥)
.                                                       (30) 

Equation (27) can be written as 
                                               𝑦𝑦′(𝑥𝑥) − 𝑞𝑞𝑦𝑦(𝑥𝑥) = 𝑝𝑝𝑦𝑦�𝑥𝑥 + √𝜀𝜀′� + 𝑟𝑟(𝑥𝑥).                                      (31) 

 
By taking an integrating factor 𝑒𝑒−𝑞𝑞𝑥𝑥 for equation (31) and proceeding as in McCartin (2001), 
we get. 
 

𝑑𝑑
𝑑𝑑𝑥𝑥

[𝑒𝑒−𝑞𝑞𝑥𝑥𝑦𝑦(𝑥𝑥)] = 𝑒𝑒−𝑞𝑞𝑥𝑥�𝑝𝑝𝑦𝑦�𝑥𝑥 + √𝜀𝜀′� + 𝑟𝑟(𝑥𝑥)�.                                         (32) 
 
On integrating Equation (32) from 𝑥𝑥𝑖𝑖−1 to 𝑥𝑥𝑖𝑖, we get  
 

𝑒𝑒−𝑞𝑞𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 − 𝑒𝑒−𝑞𝑞𝑥𝑥𝑖𝑖−1𝑦𝑦𝑖𝑖−1 = � 𝑒𝑒−𝑞𝑞𝑥𝑥
𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖−1
𝑝𝑝𝑦𝑦�𝑥𝑥 + √𝜀𝜀′�𝑑𝑑𝑥𝑥 + � 𝑒𝑒−𝑞𝑞𝑥𝑥

𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖−1
𝑟𝑟(𝑥𝑥)𝑑𝑑𝑥𝑥,           (33) 

 
Using Newton’s forward interpolation for y term, and taking p as constant in this paper for 
simplicity, we get 
 
    𝑒𝑒−𝑞𝑞𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 = 

5
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𝑒𝑒−𝑞𝑞𝑥𝑥𝑖𝑖−1𝑦𝑦𝑖𝑖−1 + 𝑝𝑝� 𝑒𝑒−𝑞𝑞𝑥𝑥
𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖−1
�𝑦𝑦�𝑥𝑥𝑖𝑖 + √𝜀𝜀′� +

(𝑥𝑥 − 𝑥𝑥𝑖𝑖)
ℎ

�𝑦𝑦�𝑥𝑥𝑖𝑖 + √𝜀𝜀′� − 𝑦𝑦�𝑥𝑥𝑖𝑖−1 + √𝜀𝜀′��� 𝑑𝑑𝑥𝑥

+ � 𝑒𝑒−𝑞𝑞𝑥𝑥
𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖−1
�𝑟𝑟𝑖𝑖

+
(𝑥𝑥 − 𝑥𝑥𝑖𝑖)

ℎ
{𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑖𝑖−1}� 𝑑𝑑𝑥𝑥,                                                                                      (34) 

𝑦𝑦𝑖𝑖 = 𝑒𝑒𝑞𝑞ℎ𝑦𝑦𝑖𝑖−1 + 𝑝𝑝𝑦𝑦�𝑥𝑥𝑖𝑖 + √𝜀𝜀′�� 𝑒𝑒𝑞𝑞(𝑥𝑥𝑖𝑖−𝑥𝑥)
𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖−1
𝑑𝑑𝑥𝑥 +

𝑝𝑝𝑦𝑦�𝑥𝑥𝑖𝑖 + √𝜀𝜀′�
ℎ

� 𝑒𝑒𝑞𝑞(𝑥𝑥𝑖𝑖−𝑥𝑥)
𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖−1
(𝑥𝑥 − 𝑥𝑥𝑖𝑖)𝑑𝑑𝑥𝑥

+
𝑝𝑝𝑦𝑦�𝑥𝑥𝑖𝑖−1 + √𝜀𝜀′�

ℎ
� 𝑒𝑒𝑞𝑞(𝑥𝑥𝑖𝑖−𝑥𝑥)
𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖−1
(𝑥𝑥𝑖𝑖 − 𝑥𝑥)𝑑𝑑𝑥𝑥 + 𝑟𝑟𝑖𝑖 � 𝑒𝑒𝑞𝑞(𝑥𝑥𝑖𝑖−𝑥𝑥)

𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖−1
𝑑𝑑𝑥𝑥

+
𝑟𝑟𝑖𝑖
ℎ
� 𝑒𝑒𝑞𝑞(𝑥𝑥𝑖𝑖−𝑥𝑥)
𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖−1
(𝑥𝑥 − 𝑥𝑥𝑖𝑖)

+
𝑟𝑟𝑖𝑖−1
ℎ

� 𝑒𝑒𝑞𝑞(𝑥𝑥𝑖𝑖−𝑥𝑥)
𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖−1
(𝑥𝑥𝑖𝑖 − 𝑥𝑥) 𝑑𝑑𝑥𝑥.                                                                        (35) 

  
After evaluating the integrals involves in Equation (35), we get 
 

𝑦𝑦𝑖𝑖 = 𝑒𝑒𝑞𝑞ℎ𝑦𝑦𝑖𝑖−1 + 𝐽𝐽�𝑝𝑝𝑦𝑦�𝑥𝑥𝑖𝑖 + √𝜀𝜀′� + 𝑟𝑟𝑖𝑖� + 𝐾𝐾 �
𝑝𝑝𝑦𝑦�𝑥𝑥𝑖𝑖 + √𝜀𝜀′�

ℎ
+
𝑟𝑟𝑖𝑖
ℎ
�

+ 𝐿𝐿 �
𝑝𝑝𝑦𝑦�𝑥𝑥𝑖𝑖−1 + √𝜀𝜀′�

ℎ

+
𝑟𝑟𝑖𝑖−1
ℎ
� ,                                                                                                                   (36) 

 
where  

                                                              𝐽𝐽 =
𝑒𝑒𝑞𝑞ℎ

𝑞𝑞
−

1
𝑞𝑞

,                                                                         (37) 

                                                             𝐾𝐾 = −
ℎ𝑒𝑒𝑞𝑞ℎ

𝑞𝑞
−

1
𝑞𝑞2

+
𝑒𝑒𝑞𝑞ℎ

𝑞𝑞2
,                                                     (38) 

                                                            𝐿𝐿 =
ℎ𝑒𝑒𝑞𝑞ℎ

𝑞𝑞
+

1
𝑞𝑞2

−
𝑒𝑒𝑞𝑞ℎ

𝑞𝑞2
 .                                                        (39) 

 
From finite difference approximation, we have 
 

                                       𝑦𝑦�𝑥𝑥𝑖𝑖 + √𝜀𝜀′� ≈ �1 −
√𝜀𝜀′

ℎ
� 𝑦𝑦𝑖𝑖 +

√𝜀𝜀′

ℎ
𝑦𝑦𝑖𝑖+1  ,                                          (40) 

                                      𝑦𝑦�𝑥𝑥𝑖𝑖−1 + √𝜀𝜀′� ≈ �1 −
√𝜀𝜀′

ℎ
� 𝑦𝑦𝑖𝑖−1 +

√𝜀𝜀′

ℎ
𝑦𝑦𝑖𝑖.                                          (41) 

 
Substituting Equations (40)-(41) in Equation (36), we get 
 

                                𝐸𝐸𝑖𝑖𝑦𝑦𝑖𝑖−1 − 𝐹𝐹𝑖𝑖𝑦𝑦𝑖𝑖 + 𝐺𝐺𝑖𝑖𝑦𝑦𝑖𝑖+1 = 𝐻𝐻𝑖𝑖,     𝑖𝑖 = 𝑁𝑁 + 1,𝑁𝑁 + 2, … , 𝑛𝑛 − 1,                (42) 
 
where  

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 17 [], Iss. 1, Art. 14

https://digitalcommons.pvamu.edu/aam/vol17/iss1/14



218 R.P. Singh and Y.N. Reddy 

           𝐸𝐸𝑖𝑖 = −𝑒𝑒𝑞𝑞ℎ − 𝐿𝐿𝐽𝐽
ℎ
�1 − √𝜀𝜀′

ℎ
�, 

                                                      𝐹𝐹𝑖𝑖 = −1 + 𝐽𝐽𝑝𝑝 �1 −
√𝜀𝜀′

ℎ
� +

𝐿𝐿𝑝𝑝√𝜀𝜀′

ℎ2
+
𝐾𝐾𝑝𝑝
ℎ
�1 −

√𝜀𝜀′

ℎ
�, 

𝐺𝐺𝑖𝑖 = −
𝐽𝐽𝑝𝑝√𝜀𝜀′

ℎ
−
𝐾𝐾𝑝𝑝√𝜀𝜀′

ℎ2
, 

𝐻𝐻𝑖𝑖 = 𝐽𝐽𝑟𝑟𝑖𝑖 + 𝐾𝐾𝑟𝑟𝑖𝑖
ℎ

+ 𝐿𝐿𝑟𝑟𝑖𝑖−1
ℎ

. 
 
We have a system of 𝑛𝑛 − 2 equations from both left and right end boundary layer problem with 
𝑛𝑛 + 1 unknowns. From the given boundary conditions, Equation (7) and Equation (8), we get 
two equations i.e. 

𝑦𝑦(0) = 𝛼𝛼(0) = 𝜑𝜑0, 
𝑦𝑦(1) = 𝛽𝛽(1) = 𝛾𝛾1. 

 
We need one more equation to solve for the unknowns (𝑦𝑦0,𝑦𝑦1, … ,𝑦𝑦𝑛𝑛). For this, we consider 
the Equation. (6) at 𝜀𝜀 = 0 and the point 𝑥𝑥 = 𝑥𝑥𝑁𝑁, we get 
  

𝐴𝐴(𝑥𝑥𝑁𝑁)𝑦𝑦′(𝑥𝑥𝑁𝑁) + 𝐵𝐵(𝑥𝑥𝑁𝑁)𝑦𝑦(𝑥𝑥𝑁𝑁) = 𝑓𝑓(𝑥𝑥𝑁𝑁). 
 
Using second order central finite difference approximation for derivative, we get  
 

𝐴𝐴𝑁𝑁
2ℎ

𝑦𝑦𝑁𝑁−1 − 𝐵𝐵𝑁𝑁𝑦𝑦𝑁𝑁 + �−
𝐴𝐴𝑁𝑁
2ℎ
�𝑦𝑦𝑁𝑁+1 = −𝑓𝑓𝑁𝑁 . 

 
With the above equations, we now have 𝑛𝑛 + 1 equations to solve 𝑛𝑛 + 1  : (𝑦𝑦0,𝑦𝑦1, … , 𝑦𝑦𝑛𝑛).  
Using invariant imbedding algorithm given in the book Bellman and Cooke (1963) we get the 
solution. 
 
3. Numerical Experiments 
 
The exact solution of the differential -difference equation 
 

                       𝜀𝜀𝑦𝑦′′(𝑥𝑥) + 𝑎𝑎(𝑥𝑥)𝑦𝑦(𝑥𝑥 − 𝛿𝛿) + 𝑐𝑐(𝑥𝑥)𝑦𝑦(𝑥𝑥) + 𝑏𝑏(𝑥𝑥)𝑦𝑦(𝑥𝑥 + 𝜂𝜂) = 𝑓𝑓(𝑥𝑥),     0 ≤ 𝑥𝑥 ≤ 1, 
 
with the boundary conditions 𝑦𝑦(𝑥𝑥) = 𝛼𝛼(𝑥𝑥),    −𝛿𝛿 ≤ 𝑥𝑥 ≤ 0 and  𝑦𝑦(𝑥𝑥) = 𝛽𝛽(𝑥𝑥), 1 ≤ 𝑥𝑥 ≤ 1 + 𝜂𝜂 
with constant coefficients ( 𝑎𝑎(𝑥𝑥) = 𝑎𝑎, 𝑏𝑏(𝑥𝑥) = 𝑏𝑏, 𝑐𝑐(𝑥𝑥) = 𝑐𝑐,𝑓𝑓(𝑥𝑥) = 𝑓𝑓,𝛼𝛼(𝑥𝑥) = 𝛼𝛼, 𝛽𝛽(𝑥𝑥) = 𝛽𝛽) is 
given by 
 

𝑦𝑦(𝑥𝑥) = [{(1−𝑎𝑎−𝑏𝑏−𝑐𝑐)exp(𝑚𝑚2)−1}exp(𝑚𝑚1𝑥𝑥)−{(1−𝑎𝑎−𝑏𝑏−𝑐𝑐)exp(𝑚𝑚1)−1}exp(𝑚𝑚2𝑥𝑥)]
[(𝑎𝑎+𝑏𝑏+𝑐𝑐)(exp(𝑚𝑚1)−exp(𝑚𝑚2))] + 1

(𝑎𝑎+𝑏𝑏+𝑐𝑐),      (43) 
 
where  

                    𝑚𝑚1 =
�(𝑎𝑎𝛿𝛿−𝑏𝑏𝜂𝜂)+�(𝑏𝑏𝜂𝜂−𝑎𝑎𝛿𝛿)2−4𝜀𝜀(𝑎𝑎+𝑏𝑏+𝑐𝑐)�

2𝜀𝜀
, 

 

𝑚𝑚2 =
�(𝑎𝑎𝛿𝛿 − 𝑏𝑏𝜂𝜂) −�(𝑏𝑏𝜂𝜂 − 𝑎𝑎𝛿𝛿)2 − 4𝜀𝜀(𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐)�

2𝜀𝜀
. 
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Example 1.   Consider the differential-difference equation having layer at both ends 
 

                      𝜀𝜀𝑦𝑦′′(𝑥𝑥) − 2𝑦𝑦(𝑥𝑥 − 𝛿𝛿) − 𝑦𝑦(𝑥𝑥) − 2𝑦𝑦(𝑥𝑥 + 𝜂𝜂) = 1,     0 ≤ 𝑥𝑥 ≤ 1, 
 
with the boundary conditions 𝑦𝑦(0) = 1   and   𝑦𝑦(1) = 0. The exact solution is given by 
Equation (43). Numerical results are shown in Table 1 and 2 and the layer behaviour in Figure 
1 and 2 for different values of parameters. 
 
Example 2.  Consider the differential-difference equation having layer at both ends 
 

                      𝜀𝜀𝑦𝑦′′(𝑥𝑥) + 0.25𝑦𝑦(𝑥𝑥 − 𝛿𝛿) − 𝑦𝑦(𝑥𝑥) + 0.25𝑦𝑦(𝑥𝑥 + 𝜂𝜂) = 1,     0 ≤ 𝑥𝑥 ≤ 1, 
 
with the boundary conditions 𝑦𝑦(0) = 1   and   𝑦𝑦(1) = 0. The exact solution is given by 
Equation (43). Numerical results are shown in Table 3 and 4 and the layer behaviour in Figure 
3 and 4 for different values of parameters. 
 
Example 3.  Consider the differential-difference equation having layer at both ends 
 

       𝜀𝜀𝑦𝑦′′(𝑥𝑥) − 𝑦𝑦(𝑥𝑥 − 𝛿𝛿) − 𝑦𝑦(𝑥𝑥) − 3𝑦𝑦(𝑥𝑥 + 𝜂𝜂) = 1,     0 ≤ 𝑥𝑥 ≤ 1, 
 
with the boundary conditions 𝑦𝑦(0) = 1   and   𝑦𝑦(1) = 0. The exact solution is given by 
Equation (43). Numerical results are shown in Table 5 and 6 and the layer behaviour in Figure 
5 and 6 for different values of Parameters. 
 
4. Discussion and Conclusions 
 
In this paper, numerical solution of differential-difference equation with two boundary layers 
is discussed. Using Taylor’s series, the given second order differential-difference equation is 
replaced by an asymptotically equivalent first order differential equation and solved by suitable 
choice of integrating factor and finite difference approximations. Finite difference 
approximation is taken on equidistant mesh to discretize the continuous problem. Scheme is 
simple and easy to implement on considered problems also applicable on wide range of 
problems. The numerical results for several test examples are presented to demonstrate the 
applicability of the method. We can observe that by decreasing the perturbation parameter 
absolute error is decreased. It shows that whenever perturbation parameter is very small or 
tending towards zero, the scheme gives good results.  
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APPENDIX 
 

Table 1: Results for Example-1 with ℎ = 0.01, 𝜀𝜀 = 0.001, 𝛿𝛿 = 0.001 and 𝜂𝜂 = 0.003 
𝑥𝑥 Our Solution  Exact Solution Result by Kadalbajoo 

and Sharma (2005) 
0.00 1 1 1 
0.02 -0.01518168 0.10347453 0.10808822 
0.04 -0.17153515 -0.12325267 -0.12090137 
0.06 -0.19561598 -0.18059095 -0.17969220 
0.08 -0.19932479 -0.19509153 -0.19478617 
0.1 -0.19989600 -0.19875867 -0.19866140 
0.2 -0.19999999 -0.19999871 -0.19999850 
0.3 -0.19999999 -0.19999999 -0.19999999 
0.4 -0.20000000 -0.19999999 -0.19999999 
0.5 -0.20000000 -0.19999999 -0.19999999 
0.6 -0.20000000 -0.19999999 -0.19999999 
0.7 -0.19999999 -0.19999999 -0.19999999 
0.8 -0.19999999 -0.19999990 -0.19999988 
0.9 -0.19999031 -0.19986131 -0.19985167 
1.0 0 0 0 

 
 
 

 
Figure 1: Example-1 with  ℎ = 0.01, 𝜀𝜀 = 0.001, 𝛿𝛿 = 0.001 and 𝜂𝜂 = 0.003 
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Table 2: Results for Example-1 with ℎ = 0.01, 𝜀𝜀 = 0.0001, 𝛿𝛿 = 0.002 and 𝜂𝜂 = 0.003 
 

𝑥𝑥 Our Solution Exact Solution Result by Kadalbajoo and 
Sharma (2005) 

0.0 1 1 1 
0.02 -0.14130475 -0.18333232 -0.17310964 
0.04 -0.19712905 -0.19976849 -0.19939742 
0.06 -0.19985957 -0.19999678 -0.19998649 
0.08 -0.19999313 -0.19999995 -0.19999969 
0.1 -0.19999966 -0.19999999 -0.19999999 
0.2 -0.19999999 -0.20000000 -0.20000000 
0.3 -0.20000000 -0.20000000 -0.20000000 
0.4 -0.20000000 -0.20000000 -0.20000000 
0.5 -0.20000000 -0.20000000 -0.20000000 
0.6 -0.20000000 -0.20000000 -0.20000000 
0.7 -0.20000000 -0.20000000 -0.20000000 
0.8 -0.19999999 -0.20000000 -0.20000000 
0.9 -0.19999996 -0.19999999 -0.19999999 
1.0 0 0 0 

 
 
 
 

 
Figure 2: Example-1 with ℎ = 0.01, 𝜀𝜀 = 0.0001, 𝛿𝛿 = 0.002 and 𝜂𝜂 = 0.003 
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Table 3: Results for Example- 2 with ℎ = 0.01, 𝜀𝜀 = 0.0001, 𝛿𝛿 = 0.003 and η = 0.001 
 

𝑥𝑥 Our Solution Exact Solution Result by Kadalbajoo 
and Sharma (2005) 

0.0 1 1 1 
0.02 -1.02446681 -1.23393241 -1.22465608 
0.04 -1.68277833 -1.80438015 -1.79961393 
0.06 -1.89684658 -1.95004732 -1.94821062 
0.08 -1.96645680 -1.98724429 -1.98661514 
0.1 -1.98909250 -1.99674275 -1.99654071 
0.2 -1.99996034 -1.99999646 -1.99999601 
0.3 -1.99999985 -1.99999999 -1.99999999 
0.4 -1.99999999 -1.99999999 -1.99999999 
0.5 -1.99999999 -1.99999999 -1.99999999 
0.6 -1.99999999 -1.99999999 -1.99999999 
0.7 -1.99999995 -1.99999999 -1.99999999 
0.8 -1.99998521 -1.99999913 -1.99999904 
0.9 -1.99456154 -1.99868292 -1.99861919 
1.0 0 0 0 

 
 
 
 
 

 
Figure 3: Example- 2 with ℎ = 0.01, 𝜀𝜀 = 0.0001, 𝛿𝛿 = 0.003 and η = 0.001 
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Table 4: Results for Example-2 with ℎ = 0.01, 𝜀𝜀 = 0.0001, 𝛿𝛿 = 0.00001 and η = 0.0003 
𝑥𝑥 Our Solution  Exact Solution Result by Kadalbajoo 

and Sharma (2005) 
0.0 1 1 1 
0.02 -1.05889666 -1.27593191 -1.25361769 
0.04 -1.70477483 -1.82524180 -1.81430448 
0.06 -1.90738753 -1.95782105 -1.95380005 
0.08 -1.97094736 -1.98981985 -1.98850572 
0.1 -1.99088615 -1.99754296 -1.99714029 
0.2 -1.99997231 -1.99999798 -1.99999727 
0.3 -1.99999991 -1.99999999 -1.99999999 
0.4 -1.99999999 -1.99999999 -1.99999999 
0.5 -2.00000000 -1.99999999 -1.99999999 
0.6 -1.99999999 -1.99999999 -1.99999999 
0.7 -1.99999993 -1.99999999 -1.99999999 
0.8 -1.99997991 -1.99999844 -1.99999790 
0.9 -1.99366142 -1.99823880 -1.99795071 
1.0 0 0 0 

 
 
 
 
 

 
 

Figure 4: Example-2 with ℎ = 0.01, 𝜀𝜀 = 0.0001, 𝛿𝛿 = 0.00001 and η = 0.0003 
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Table 5: Results for Example-3 with ℎ = 0.01, 𝜀𝜀 = 0.0001, 𝛿𝛿 = 0.007 and η = 0.003 
 

𝑥𝑥 Our Solution  Exact Solution Result by Kadalbajoo and 
Sharma (2005) 

0.0 1 1 1 
0.02 -0.15197485 -0.18333232 -0.1731096 
0.04 -0.19807798 -0.19976849 -0.19939742 
0.06 -0.19992307 -0.19999678 -0.19998649 
0.08 -0.19999692 -0.19999995 -0.19999969 
0.1 -0.19999987 -0.19999999 -0.19999999 
0.2 -0.19999999 -0.20000000 -0.20000000 
0.3 -0.20000000 -0.20000000 -0.20000000 
0.4 -0.20000000 -0.20000000 -0.20000000 
0.5 -0.20000000 -0.20000000 -0.20000000 
0.6 -0.20000000 -0.20000000 -0.20000000 
0.7 -0.20000000 -0.20000000 -0.20000000 
0.8 -0.19999999 -0.20000000 -0.20000000 
0.9 -0.19999998 -0.19999999 -0.19999999 
1.0 0 0 0 

 
 
 
 

 
Figure 5: Example-3 with  ℎ = 0.01, 𝜀𝜀 = 0.0001, 𝛿𝛿 = 0.007 and η = 0.003 
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Table 6:  Results for Example-3 with ℎ = 0.01, 𝜀𝜀 = 0.0001, 𝛿𝛿 = 0.007 and η = 0.005 
𝑥𝑥 Our Solution  Exact Solution Result by Kadalbajoo and 

Sharma (2005) 
0.0 1 1 1 
0.02 -0.15817225 -0.17158406 -0.16845338 
0.04 -0.19854203 -0.19932711 -0.19917067 
0.06 -0.19994918 -0.19998406 -0.19997819 
0.08 -0.19999822 -0.19999962 -0.19999942 
0.1 -0.19999993 -0.19999999 -0.19999998 
0.2 -0.19999999 -0.20000000 -0.20000000 
0.3 -0.20000000 -0.20000000 -0.20000000 
0.4 -0.20000000 -0.20000000 -0.20000000 
0.5 -0.20000000 -0.20000000 -0.20000000 
0.6 -0.20000000 -0.20000000 -0.20000000 
0.7 -0.20000000 -0.20000000 -0.20000000 
0.8 -0.20000000 -0.20000000 -0.20000000 
0.9 -0.19999999 -0.19999999 -0.20000000 
1.0 0 0 0 

 
 
 
 
 

 
Figure 6: Example-3 with ℎ = 0.01, 𝜀𝜀 = 0.0001, 𝛿𝛿 = 0.007 and η = 0.005 
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