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Abstract

In this paper, we investigate the inextensible flows of polynomial space curves in R3. We calculate
that the necessary and sufficient conditions for an inextensible curve flow are represented as a
partial differential equation involving the curvatures. Also, we expressed the time evolution of the
Frenet like curve (Flc) frame. Finally, an example of the evolution of the polynomial curve with
Flc frame is given and graphed.
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1. Introduction

Most nonlinear problems in physics, chemistry and biology can be explained with the help of the
parameters of curves and surfaces. In addition, the evolution equations of curves and surfaces have
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124 S. Şenyurt et al.

important application areas in computer image processing. Inelastic curve moving is a motion in
which the is maintained at the initial and final positions of the curve throughout the moving pro-
cess. In other words, if the arc-length change of the curve with respect to time is zero, this curve
is called an inelastic curve. The flows of the inelastic curve produce moving that do not contain
strain energy. For example, the swinging motion of a fixed-length string produces an inelastic
curve motion. Such examples are frequently encountered in physical applications. The moving
of the inelastic curve appears in computing imaging, computer animations, and even structural
mechanics. All these applications involve the evolution of curves over time. Gage and Hamil-
ton found new methods (Gage (1984); Gage and Hamilton (1986)) to study the curvature vector
fields of curves, that is, their variation with time along acceleration vectors, and Grayson (1987)
proved the conversion of closed planar curves into a circle using the heat equation. In addition,
Gage (1985) examined the plane curve evolution that preserves the area, and Kwon et al. inves-
tigate the moving of the inelastic curves in Euclidean space (Kwon and Park (1999); Kwon et
al. (2005)). Many studies have been done on the flow of curves for different frames and different
spaces (Baş and Körpınar (2013); Yıldız et al. (2013); Yıldız et al. (2014); Yıdız and Tosun (2017);
Gürbüz (2018); Eren and Kösal (2020); Kelleci and Eren (2020); Hussien and Mohamed (2016);
Körpınar and Baş (2019); Latifi and Ravazi (2008); Mohamed (2017); Turhan and Ayyıldız (2015);
Öğrenmiş and Yeneroğlu (2010); Solouma (2020); Solouma and Al-Dayel (2020)).

Our aim in this study is to investigate the inextensible flow of the polynomial curves. For this,
firstly, the concepts related to Flc frame defined along polynomial curves are given. Then, the
conditions of inextensible of the polynomial curve flow are expressed and the graph of this curve
is drawn using the Matlab program by giving an example.

2. Inextensible Flows of Polynomial Curves

In this section, let’s give the Flc frame expressed by Dede to be used throughout the article. Let
α = α(u) be a differentiable polynomial curve with arc-length parameter u. The Flc frame formula
of the polynomial curve α is given as

T ′ = v (d1D2 + d2D1) , D2
′ = v (−d1T + d3D1) , D1

′ = v (−d2T − d3D2) , (1)

where ‖α′‖ = v, the vectors T , D2 and D1 are the tangent, the normal-like and binormal-like
vector field and also, d1, d2 and d3 are the curvatures of the polynomial curve α (see for more
details (Dede (2019); Güven (2020))).

From now on, the main results for inextensible flows of polynomial space curves are discussed.
We suppose that

α : [0, l]× [0, w]→ R3,
(u, t)→ α (u, t) ,

is a one parameter family of polynomial curves, where l is the arc-length of the initial polynomial
curve. Let u be the polynomial curve parameterization variable, 0 ≤ u ≤ l. The speed of the curve
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α is defined by v =
∥∥∂α
∂u

∥∥ and also the arc-length of the curve α is represented by

s (u) =

u∫
0

∥∥∥∥∂α∂u
∥∥∥∥ du =

u∫
0

vdu,

where ∂
∂s

= 1
v
∂
∂u

or ds = vdu.

Definition 2.1.

Let α be a differentiable polynomial curve with Flc frame {T,D2, D1} in R3. Any flow of the
curve α can be presented in the following form:

∂α (u, t)

∂t
= fT + gD2 + hD1,

where f, g and h are scalar speeds of the curve α.

We suppose that s (u, t) =
u∫
0

vdu is be the arc-length variation. In that case, the curve α cannot be

any elongation or compression, if one can be expressed by the condition

∂s (u, t)

∂t
=

u∫
0

∂v

∂t
du = 0,

here u ∈ [0, l].

Definition 2.2.

A polynomial curve evolution α (u, t) and its flow α(u,t)
∂t

in R3 are said to be inextensible if

∂

∂t

∥∥∥∥∂α (u, t)

∂u

∥∥∥∥ = 0.

Theorem 2.1.

Let α be a differentiable polynomial curve with respective to Flc frame {T,D2, D1} in R3. If
∂α
∂t

= fT + gD2 + hD1 is a flow of α, then there exists the following equation:

∂v

∂t
=
∂f

∂u
− v (gd1 + hd2) ,

where f, g and h are scalar speeds of the curve α.
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Proof:

Taking the differential of the equation v2 =
〈
∂α
∂u
, ∂α
∂u

〉
with respect to t, one is easily found that

2v
∂v

∂t
=

∂

∂t

〈
∂α

∂u
,
∂α

∂u

〉
= 2

〈
∂α

∂u
,
∂

∂t

∂α

∂u

〉
.

Since ∂
∂t

and ∂
∂u

commute and also using the Flc formula and the equation ∂α
∂t

= fT + gD2+hD1,
we have

2v ∂v
∂t

= 2
〈
∂α
∂u
, ∂
∂u

(fT + gD2 + hD1)
〉

= 2
〈
vT,

(
∂f
∂u
− vgd1 − vhd2

)
T +

(
∂g
∂u

+ vfd1 − vhd3
)
D2 +

(
∂h
∂u

+ vfd2 + vgd3
)
D1

〉
= 2v

(
∂f
∂u
− vgd1 − vhd2

)
.

So, we get
∂v

∂t
=
∂f

∂u
− v (gd1 + hd2) . (2)

�

Theorem 2.2.

Let ∂α
∂t

= fT + gD2 + hD1 be a flow of with Flc frame {T,D2, D1} in R3. Then the flow is
inextensible if and only if

∂f

∂s
= gd1 + hd2.

Proof:

Assume that the flow of α is inextensible. Considering the equations ∂
∂s

= 1
v
∂
∂u

and (2) together,
we have

∂v

∂t
=
∂f

∂u
− v (gd1 + hd2) =

∂f

∂s

∂s

∂u
− v (gd1 + hd2) =

(
∂f

∂s
− gd1 − hd2

)
v.

Since v 6= 0, it follows that

∂f

∂s
= gd1 + hd2. (3)

4
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Conversely, the proof is easily completed by following a similar way to the above. �

Theorem 2.3.

Let ∂α
∂t

= fT + gD2 + hD1 be a flow of α with the Flc frame {T,D2, D1} in R3. If the flow of α
is inextensible, then the differentiations of {T,D2, D1} with respect to t is

∂T

∂t
=

(
∂g

∂s
+ fd1 − hd3

)
D2 +

(
∂h

∂s
+ fd2 + gd3

)
D1,

∂D2

∂t
= −

(
∂g

∂s
+ fd1 − hd3

)
T + ϕD1,

∂D1

∂t
= −

(
∂h

∂s
+ fd2 + gd3

)
T − ϕD2,

where ϕ =
〈
∂D2

∂t
, D1

〉
.

Proof:

Suppose that the flow ∂α
∂t

= fT + gD2 + hD1 of α with the Flc frame {T,D2, D1} is inextensible.
It seems that

∂T

∂t
=

∂

∂t

(
∂α

∂s

)
=

∂

∂s

(
∂α

∂t

)
=

∂

∂s
(fT + gD2 + hD1)

=
∂f

∂s
T + f

∂T

∂s
+
∂g

∂s
D2 + g

∂D2

∂s
+
∂h

∂s
D1 + h

∂D1

∂s
.

Using the Flc formula given by (2.1) and Equation (3), we get

∂T

∂t
=

(
∂g

∂s
+ fd1 − hd3

)
D2 +

(
∂h

∂s
+ fd2 + gd3

)
D1.

Differentiating the Flc frame with respect to t as follows;

5
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0 =
∂

∂t
〈T,D2〉 =

〈
∂T

∂t
,D2

〉
+

〈
T,
∂D2

∂t

〉
=
∂g

∂s
+ fd1 − hd3 +

〈
T,
∂D2

∂t

〉
,

0 =
∂

∂t
〈T,D1〉 =

〈
∂T

∂t
,D1

〉
+

〈
T,
∂D1

∂t

〉
=
∂h

∂s
+ fd2 + gd3 +

〈
T,
∂D1

∂t

〉
,

0 =
∂

∂t
〈D2, D1〉 =

〈
∂D2

∂t
,D1

〉
+

〈
D2,

∂D1

∂t

〉
= ϕ+

〈
D2,

∂D1

∂t

〉
,

0 =
∂

∂t
〈D2, D2〉 =

〈
∂D2

∂t
,D2

〉
+

〈
D2,

∂D2

∂t

〉
= 2

〈
∂D2

∂t
,D2

〉
,

0 =
∂

∂t
〈D1, D1〉 =

〈
∂D1

∂t
,D1

〉
+

〈
D1,

∂D1

∂t

〉
= 2

〈
∂D1

∂t
,D1

〉
.

Thus, we obtain

∂D2

∂t
= −

(
∂g

∂s
+ fd1 − hd3

)
T + ϕD1,

∂D1

∂t
= −

(
∂h

∂s
+ fd2 + gd3

)
T − ϕD2,

where ϕ =
〈
∂D2

∂t
, D1

〉
. �

Theorem 2.4.

Suppose that the curve flow ∂α
∂t

= fT + gD2 + hD1 is inextensible. Then the partial differential
equations of the curvatures d1, d2 and d3 of the curve α with respect to t satisfy

∂d1
∂t

=
∂

∂s

(
∂g

∂s
+ fd1 − hd3

)
− d3

(
∂h

∂s
+ fd2 + gd3

)
+ d2ϕ,

∂d2
∂t

=
∂

∂s

(
∂h

∂s
+ fd2 + gd3

)
+ d3

(
∂g

∂s
+ fd1 − hd3

)
− d1ϕ,

∂d3
∂t

= d1

(
∂h

∂s
+ fd2 + gd3

)
− d2

(
∂g

∂s
+ fd1 − hd3

)
+
∂ϕ

∂s
,

where ϕ =
〈
∂D2

∂t
, D1

〉
.

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 17 [], Iss. 1, Art. 9

https://digitalcommons.pvamu.edu/aam/vol17/iss1/9



AAM: Intern. J., Vol. 17, Issue 1 (June 2022) 129

Proof:

Since the curve α is inextensible curve, it implies that ∂
∂s

and ∂
∂t

commutative, that is,

∂

∂s

(
∂T

∂t

)
=

∂

∂t

(
∂T

∂s

)
,
∂

∂s

(
∂D2

∂t

)
=

∂

∂t

(
∂D2

∂s

)
and

∂

∂s

(
∂D1

∂t

)
=

∂

∂t

(
∂D1

∂s

)
.

From here,

∂

∂s

(
∂T

∂t

)
=

(
−d1

(
∂g

∂s
+ fd1 − hd3

)
− d2

(
∂h

∂s
+ fd2 + gd3

))
T+

(
∂

∂s

(
∂g

∂s
+ fd1 − hd3

)
− d3

(
∂h

∂s
+ fd2 + gd3

))
D2+

(
d3

(
∂g

∂s
+ fd1 − hd3

)
+

∂

∂s

(
∂h

∂s
+ fd2 + gd3

))
D1

and
∂

∂t

(
∂T

∂s

)
=

(
−d1

(
∂g

∂s
+ fd1 − hd3

)
− d2

(
∂h

∂s
+ fd2 + gd3

))
T+

(
∂d1
∂t
− d2ϕ

)
D2 +

(
∂d2
∂t

+ d1ϕ

)
D1.

Comparing the last two equations, we obtain:

∂d1
∂t

=
∂

∂s

(
∂g

∂s
+ fd1 − hd3

)
− d3

(
∂h

∂s
+ fd2 + gd3

)
+ d2ϕ,

∂d2
∂t

=
∂

∂s

(
∂h

∂s
+ fd2 + gd3

)
+ d3

(
∂g

∂s
+ fd1 − hd3

)
− d1ϕ.

Similarly, by using ∂
∂s

(
∂D1

∂t

)
= ∂

∂t

(
∂D1

∂s

)
, it is seen that

∂

∂s

(
∂D1

∂t

)
=

(
− ∂

∂s

(
∂h

∂s
+ fd2 + gd3

)
+ d1ϕ

)
T+

(
−d1

(
∂h

∂s
+ fd2 + gd3

)
− ∂ϕ

∂s

)
D2+

(
−d2

(
∂h

∂s
+ fd2 + gd3

)
− ϕd3

)
D1

7
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and
∂

∂t

(
∂D1

∂s

)
=

(
d3

(
∂g

∂s
+ fd1 − hd3

)
− ∂d2

∂t

)
T+

(
−d2

(
∂g

∂s
+ fd1 − hd3

)
− ∂d3

∂t

)
D2+

(
−d2

(
∂h

∂s
+ fd2 + gd3

)
− d3ϕ

)
D1.

Thus, we find
∂d3
∂t

= d1

(
∂h

∂s
+ fd2 + gd3

)
− d2

(
∂g

∂s
+ fd1 − hd3

)
+
∂ϕ

∂s
. �

Example 2.1.

Let α (u, t) be a polynomial curve evolution expressed by

α (u, t) =

(
u+ t,

u2 + t2

2
,
u3 + t3

6

)
.

For the flow ∂α(u,t)
∂t

= fT + gD2 + hD1 of α , it is found that

∂α (u, t)

∂u
=

(
1, u,

u2

2

)
.

Also, the speed of the curve is calculated as v =
∥∥∂α
∂u

∥∥ = (2+u2)
2

. So, since ∂v
∂t

= 0, the flow ∂α(u,t)
∂t

is inextensible. Moreover, the tangent, principal normal like, binormal like vector field and the
curvatures of the polynomial curve are as follows:

T =

(
2

2 + u2
,

2u

2 + u2
,

u2

2 + u2

)
,

D2 =

(
− u2√

1 + u2 (2 + u2)
,− u3√

1 + u2 (2 + u2)
,
2
√
1 + u2

2 + u2

)
,

D1 =

(
u√

1 + u2
,− 1√

1 + u2
, 0

)

8
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and

d1 =
4u√

1 + u2(2 + u2)2
, d2 = −

4√
1 + u2(2 + u2)2

, d3 =
2u2

(1 + u2) (2 + u2)2
.

For the curve flow, from the equation ∂α(u,t)
∂t

=
(
1, t, t

2

2

)
=fT + gD2 + hD1, we get

f =

〈
∂α (u, t)

∂t
, T

〉
=

(2 + ut)2

2 (2 + u2)
,

g =

〈
∂α (u, t)

∂t
,D2

〉
= −(u− t) (u+ t+ u2t)√

1 + u2 (2 + u2)
,

h =

〈
∂α (u, t)

∂t
,D1

〉
=

u− t√
1 + u2

.

From here, differentiation of f with respect to u, we have

∂f

∂u
= −2 (u− t) (2 + ut)

(2 + u2)2
.

On the other hand, the following given equation can be calculated:

v (gd1 + hd2) = −
2 (u− t) (2 + ut)

(2 + u2)2
.

It is easily seen from these last equations that ∂f
∂u

= v (gd1 + hd2). So, we can say that the curve
flow is inextensible.

3. Conclusion

The inextensible flows of any space curve are considered from a different point of view, but at
points where the n-th order derivative is zero, the inextensible flows of the curves are not examined
so far. With the help of the Flc frame defined for polynomial curves at points where the n-th order
derivative is zero, we investigate the inextensible flows of polynomial space curves in R3. For this
purpose, we have calculated that the necessary and sufficient conditions for an inextensible curve
flow are represented as a partial differential equation containing the curvatures. We also expressed
the time evolution of the Flc frame. Thus, a new perspective has been given to the flows of curves
and become a new source for further research.
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Figure 1. The evolution of the red, blue, green, and black colored the polynomial curve for t = 0, 1, 2, 3, respectively,
and u ∈ (−5, 5)
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