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Abstract

Nonstandard finite difference methods (NSFD) are used in physical sciences to approximate solu-
tions of ordinary differential equations whose analytical solution cannot be computed. Traditional
NSFD methods are elementary stable but usually only have first order accuracy. In this paper, we
introduce two new classes of numerical methods that are of second order accuracy and elemen-
tary stable. The methods are modified versions of the nonstandard two-stage explicit Runge-Kutta
methods and the nonstandard one-stage theta methods with a specific form of the nonstandard
denominator function. Theoretical analysis of the stability and accuracy of both modified NSFD
methods is presented. Numerical simulations that concur with the theoretical findings are also
presented, which demonstrate the computational advantages of the proposed new modified non-
standard finite difference methods.
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1. Introduction

The behavior of dynamic systems in science, engineering, and economics is often modeled by
ordinary differential equations (ODEs). Many of the ODEs are nonlinear and cannot be solved
analytically. Therefore, discretization methods must be used to approximate the solutions to non-
linear ODEs. Conventional explicit finite difference methods require a time-step size restriction
and may produce artificial fixed points and other undesirable behavior of the numerical solutions.
Nonstandard finite difference methods (NSFD) were first proposed by Mickens approximately
three decades ago (Mickens (1994)) to preserve certain important characteristics of the solutions
to nonlinear ODEs. Throughout the last two decades, NSFD methods have been developed and
applied to many specific problems in science and engineering (Chen and Kojouharov (1999);
Dimitrov and Kojouharov (2005a); Lubuma and Patidar (2005); Dimitrov and Kojouharov (2008);
Benz et al. (2009); Chen et al. (2009); Obaid et al. (2009); Suryanto et al. (2013)). Numerous re-
search efforts have also been made to generalize these findings (Dimitrov and Kojouharov (2006);
Dimitrov and Kojouharov (2007a); Dimitrov and Kojouharov (2007b); Dimitrov and Ko-
jouharov (2011); Anguelov et al. (2014); Wood et al. (2015); Wood et al. (2017)). NSFD methods
have also been developed, based on the standard theta methods (Anguelov and Lubuma (2001);
Lubuma and Roux (2003); Dimitrov and Kojouharov (2005b); Dimitrov and Kojouharov (2007b);
Anguelov et al. (2020)) and the standard two-stage explicit Runge-Kutta (ERK2) methods
(Anguelov and Lubuma (2001); Dimitrov and Kojouharov (2005b)) that preserve the local dy-
namical properties of the solutions near equilibrium points, however, the above methods are only
first order accurate. A second order accurate and elementary stable NSFD method was developed
for ODEs with polynomial right-hand sides (Chen et al. (2006)); however, the method is implicit
in its general form, which makes it computationally expensive.

In this work, we present a general modified nonstandard ERK2 method that is both of second order
accuracy and elementary stable, as well as explicit. In addition, we present a second-order modified
nonstandard one-stage theta method that is also of second order accuracy and elementary stable,
thereby improving the order of accuracy of the underlying numerical method. Our approach is
motivated by the second-order modified nonstandard two-stage theta method (Gupta et al. (2020);
Kojouharov et al. (2021)). The resulting new numerical methods preserve the important features of
their NSFD counterparts, while being of higher order accuracy, computationally simple and easy
to implement.

The paper is organized as follows. The new NSFD methods are presented and analyzed in Section
2. Several simulation examples are then shown in Section 3 that validate the theoretical results. In
Section 4, we provide our conclusions.

2. Main Results

Let us consider the autonomous differential equation:
dx

dt
= f(x); x(t0) = x0, (1)

2
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where x : [t0, T ) → R, f ∈ C2(R;R) is differentiable, x0 ∈ R, and assume that Equation (1) has
a finite number of only hyperbolic equilibria. A general finite difference method for numerically
solving Equation (1) on the interval [t0, T ] can be written as

Dh(xn) = Fh(f ;xn), k = 0, · · · , Nt, (2)

where Dh(xn) ≈ dx

dt

∣∣∣∣
t=tn

, xn ≈ x(tn), and Fh(f ;xn) approximates f(x) in Equation (1), tn =

t0 + nh, n = 0, · · · , Nt, with mesh size h > 0. The numerical methods presented and analyzed
in this paper satisfy the two main properties of NSFD methods, as formalized by Anguelov and
Lubuma (2001), which are that the denominator function ϕ(h) from the discretization of the deriva-

tive, i.e.,Dh(xn) =
xn+1 − xn
ϕ(h)

is a non-negative function of the form ϕ(h) = h+O(h2), while the

right-hand side function is discretized non-locally, i.e., Fh(f ;xn) = g(xn, xn+1, h). Also, the new
numerical methods are elementary stable, according to the definition in (Anguelov and Lubuma
(2001)), which implies that the fixed points of the methods are the same as the equilibria of Equa-
tion (1) and vice-versa, and also that their local stability properties are the same for any value of
the step-size h.

2.1. General second-order modified nonstandard ERK2 methods

The following result holds for the general modified nonstandard ERK2 method:

Theorem 2.1.

Let f ∈ C2(R;R) and ϕ : R+ × R→ R+ satisfy the following conditions:

(i) ϕ(h, x) = h+O(h3) for all h > 0,

(ii) 0 < ϕ(h, x) <
2

|fx(x∗)|
, for all hyperbolic equilibria x∗ of Equation (1) with h > 0 and x ∈ R.

Then, the following general modified nonstandard ERK2 method for approximating the solution
of Equation (1):

xn+1 = xn + ϕ(h, xn)

{
(1− ω)f(xn) + ωf

(
xn +

1

2ω
f(xn)ϕ(h, xn)

)}
, 0 < ω ≤ 1, (3)

is elementary stable and of second-order accuracy, provided the method does not introduce addi-
tional fixed points other than those of Equation (1).

3
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Proof:

Using a Taylor series expansion about tn we obtain

x(tn+1)−

[
x(tn) + ϕ(h, x(tn))

{
(1− ω)f(x(tn)) + ωf

(
x(tn) +

1

2ω
f(x(tn))ϕ(h, x(tn))

)}]

=

[
x(tn) + hx′(tn) +

h2

2
x′′(tn) +

h3

6
x′′′(tn) +O(h4)

]
−

[
x(tn) + ϕ(h, x(tn))

{
(1− ω)f(x(tn)) + ω

(
f(x(tn)) +

1

2ω
ϕ(h, x(tn))f(x(tn))fx(x(tn))

+
1

2

(
1

2ω
f(x(tn))ϕ(h, x(tn))

)2

fxx(x(tn)) +O(h3)

)}]

= (h− ϕ(h, x(tn)))f(x(tn)) +

(
h2

2
− ϕ2(h, x(tn))

2

)
f(x(tn))fx(x(tn))

+
h3

6

(
fxx(x(tn))f 2(x(tn))) + f 2

x(x(tn))f(x(tn))

)
− 1

8ω
ϕ3(h, x(tn))f 2(x(tn))fxx(x(tn)) +O(h4).

Substituting the expression for ϕ(h, x(tn)) from condition (i) in Equation (4) yields

x(tn+1)−

[
x(tn) + ϕ(h, x(tn))

{
(1− ω)f(x(tn)) + ωf

(
x(tn) +

1

2ω
f(x(tn))ϕ(h, x(tn))

)}]
= O(h3),

which proves the second order accuracy of Method (3).

Next, applying Method (3) to the linearized version of Equation (1) in a neighborhood of an equi-
librium point x∗, i.e., for f(x) = fx(x∗)x, yields

xn+1 = xn + ϕ(h, xn)

{
(1− ω)fx(x∗)xn + ωfx(x∗)

(
xn +

1

2ω
fx(x∗)xnϕ(h, xn)

)}
.

For clarity of presentation, we present the analysis of the method only for one of the most popular

choices of parameter ω =
1

2
, which represents a modified nonstandard version of the classical

Heun’s method (Quarteroni et al. (2007)). For other values of ω the proof follows similarly. After
simplifying the above equation, we get

xn+1 =

[
1 + ϕ(h, xn)fx(x∗) +

ϕ2(h, xn)f 2
x(x∗)

2

]
xn.

Therefore, to show that the modified nonstandard ERK2 method (3), for ω =
1

2
, is elementary

stable, we need to prove that∣∣∣∣1 + ϕ(h, xn)fx(x∗) +
ϕ2(h, xn)f 2

x(x∗)

2

∣∣∣∣ < 1,

4
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if and only if x∗ is a stable equilibrium point.

Let x∗ be a stable fixed point. Then, |fx(x∗)| = −fx(x∗). Therefore, from condition (ii), we have

0 < ϕ(h, xn) < − 2

fx(x∗)
.

This implies

−2 < fx(x∗)ϕ(h, xn) < 0. (4)

Therefore, we get

ϕ(h, xn)(−fx(x∗))

2
< 1,

which yields

1 +
ϕ(h, xn)(fx(x∗))

2
> 0. (5)

Then, by multiplying Equation (4) with 1 +
ϕ(h, xn)(fx(x∗))

2
> 0, we get

−2

(
1 +

ϕ(h, xn)(fx(x∗))

2

)
< ϕ(h, xn)fx(x∗)

(
1 +

ϕ(h, xn)(fx(x∗))

2

)
< 0.

Since −ϕ(h, xn)(fx(x∗)) > 0, then −2 < −2 − ϕ(h, xn)(fx(x∗)). Using this fact in the above
equation, we now have

−2 < ϕ(h, xn)fx(x∗)

(
1 +

ϕ(h, xn)(fx(x∗))

2

)
< 0.

By adding 1 throughout, we then get

−1 < 1 + ϕ(h, xn)fx(x∗) +
ϕ2(h, xn)(f 2

x(x∗))

2
< 1.

Finally, we obtain ∣∣∣∣1 + ϕ(h, xn)fx(x∗) +
ϕ2(h, xn)f 2

x(x∗)

2

∣∣∣∣ < 1.

Now, if x∗ is an unstable fixed point, then |fx(x∗)| = fx(x∗). Therefore, we get∣∣∣∣1 + ϕ(h, xn)fx(x∗) +
ϕ2(h, xn)f 2

x(x∗)

2

∣∣∣∣ > 1,

since ϕ(h, xn)fx(x∗) > 0. �

The next lemma provides a more concrete way for constructing the nonstandard denominator func-
tion ϕ under particular circumstances.

Lemma 2.1.

Let φ : R→ R satisfy the following conditions:

5
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(1) φ(h) = h+O(h3),
(2) 0 < φ(h) < 1 for all h > 0.

Construct the denominator function as ϕ(h, xn) =
φ(hq)

q
, where the parameter q is chosen as

follows:

(1) Case 1: If the hyperbolic equilibrium points are easily computable, then choose q >
|fx(x∗)|

2
,

for all hyperbolic equilibria x∗ of Equation (3).

(2) Case 2: If the right hand side function is such that the hyperbolic equilibria are tedious to calcu-
late, then choose a variable q = |fx(xn)| at each time step, which yields a variable denominator
function ϕ(h, xn).

With this choice of the denominator function ϕ, Method (3) is elementary stable and of second-
order accuracy.

Proof:

To prove the above lemma, it is sufficient to show that ϕ(h, xn) satisfies properties (i) and (ii) of

Theorem 2.1. Since ϕ(h, xn) =
φ(hq)

q
= h+O(h3), this shows that condition (i) of Theorem 2.1

holds. Next, we prove that condition (ii) of Theorem 2.1 is also satisfied.

(1) Case 1: Since 0 < φ(h) < 1, we have 0 <
φ(qh)

q
<

1

q
<

2

|fx(x∗)|
.

(2) Case 2: Since f is continuously differentiable, fx is continuous, and, hence, |fx| is also con-

tinuous. Let ε =
|fx(x∗)|

2
, where x∗ is a hyperbolic equilibrium. By continuity of |fx|, there

exists a δ(x∗) such that, if |xn − x∗| < δ(x∗), then

||fx(xn)| − |fx(x∗)|| < ε =
|fx(x∗)|

2
,

This gives

−|fx(x∗)|
2

< |fx(xn)| − |fx(x∗)| < |fx(x∗)|
2

. (6)

Then, using the left inequality in (6), we get

|fx(x∗)|
2

< |fx(xn)| = q. (7)

Thus, we have

1

q
<

2

|fx(x∗)|
.

6
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Note that Equation (7) implies, if |xn − x∗| < δ(x∗), then fx(xn) 6= 0 whenever fx(x∗) 6= 0.
Since 0 < φ(h) < 1, we have

0 <
φ(hq)

q
<

1

q
,

and, therefore,

0 < ϕ(h, xn) <
1

q
<

2

|fx(x∗)|
.

�

Remark 2.1.

For example, the function φ(h) = tanh(h) satisfies the conditions of Lemma 2.1 and can be
used to construct a denominator function ϕ(h, xn) that ensures the second-order accuracy and the
elementary stability of Method (3).

2.2. Second-order modified nonstandard theta methods

The following result holds for the second-order modified nonstandard one-stage theta method.

Theorem 2.2.

Let f ∈ C2(R;R) and ϕ : R+ × R→ R+ satisfy the following conditions:

(i) ϕ(h, x) = h+ (1− 2θ)fx(x)
h2

2
+O(h3).

(ii) 0 < ϕ(h, x) <
2

|2θ − 1||fx(x∗)|
, 0 ≤ θ ≤ 1, θ 6= 1

2
, for all hyperbolic equilibria x∗ of (1) with

h > 0 and x ∈ R.

Then, the modified nonstandard one-stage theta method:

xn+1 − xn
ϕ(h, xn)

= f (θxn+1 + (1− θ)xn) , (8)

for approximating the solution of Equation (1) is both elementary stable and of second-order ac-
curacy.

Proof:

First we consider the modified nonstandard one-stage theta method (8). We use a Taylor series

7
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expansion about tn to obtain

x(tn+1)− [x(tn) + ϕ(h, x(tn))f (θx(tn+1) + (1− θ)x(tn))]

=

[
x(tn) + hx′(tn) +

h2

2
x′′(tn) +O(h3)

]
−

[
x(tn) + ϕ(h, x(tn))f

(
θx(tn) + θhx′(tn) + θ

h2

2
x′′(tn) +O(h3) + x(tn)− θx(tn)

)]

= hx′(tn) +
h2

2
x′′(tn)− ϕ(h, x(tn))f

(
x(tn) + θhx′(tn) + θ

h2

2
x′′(tn) +O(h3)

)
+O(h3).

Introducing the notation h̄ = θhx′(tn) + θ
h2

2
x′′(tn) +O(h3) yields

x(tn+1)− [x(tn) + ϕ(h, x(tn))f (θx(tn+1) + (1− θ)x(tn))]

= hx′(tn) +
h2

2
x′′(tn)− ϕ(h, x(tn))f

(
x(tn) + h̄

)
+O(h3)

= hx′(tn) +
h2

2
x′′(tn)− ϕ(h, x(tn))

(
f(x(tn)) + h̄fx(x(tn) +O(h2)

)
+O(h3)

= hx′(tn) +
h2

2
x′′(tn)−

[
h+ (1− 2θ)fx(x(tn))

h2

2

] (
f(x(tn)) + h̄fx(x(tn) +O(h2)

)
+O(h3)

= O(h3).

Therefore, the numerical method (8) is of second-order accuracy.

Next, we show that the numerical method (8) is elementary stable. This is equivalent to showing∣∣∣∣1 + (1− θ)fx(x∗)ϕ(h, xn)

1− θfx(x∗)ϕ(h, xn)

∣∣∣∣ < 1,

if and only if x∗ is a stable hyperbolic equilibrium.

First, if x∗ is a stable equilibrium point, then fx(x∗) < 0. We now consider two cases:

(1) If 0 ≤ θ < 1/2, we have |2θ − 1| = 1− 2θ. From condition (ii), we then obtain

0 < ϕ(h, xn) < − 2

(1− 2θ)fx(x∗)
.

This implies

−2 < (1− 2θ)fx(x∗)ϕ(h, xn) < 0,

which then gives us

−2 + 2θfx(x∗)ϕ(h, xn) < fx(x∗)ϕ(h, xn) < 2θfx(x∗)ϕ(h, xn). (9)

Since fx(x∗) < 0, we have that 1 − θfx(x∗)ϕ(h, xn) > 1. Thus, by dividing (9) by 1 −
θfx(x∗)ϕ(h, xn) and adding 1 throughout, we get

−1 < 1 +
fx(x∗)ϕ(h, xn)

1− θfx(x∗)ϕ(h, xn)
<

1 + θfx(x∗)ϕ(h, xn)

1− θfx(x∗)ϕ(h, xn)
< 1, since fx(x∗) < 0.

8
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This now implies that

−1 <
1 + (1− θ)fx(x∗)ϕ(h, xn)

1− θfx(x∗)ϕ(h, xn)
< 1. (10)

(2) If 1/2 < θ ≤ 1, we have |2θ − 1| = 2θ − 1. From condition (ii), we then obtain,

0 < ϕ(h, xn) < − 2

(2θ − 1)fx(x∗)
.

This implies

− 2

(2θ − 1)
< fx(x∗)ϕ(h, xn) < 0, since fx(x∗) < 0.

After multiplying by (1− θ) and adding 1 throughout, we then obtain

1− 2(1− θ)
|2θ − 1|

< 1 + (1− θ)fx(x∗)ϕ(h, xn) < 1. (11)

Now, we have

1− 2(1− θ)
2θ − 1

=
4θ − 3

2θ − 1
.

Since θ > 1/2, we have 4θ − 3 > −1. Additionally, we have 2θ − 1 < 1. Thus,

−1 <
4θ − 3

2θ − 1
.

From (11), we have

−1 < 1 + (1− θ)fx(x∗)ϕ(h, xn) < 1.

Again, since fx(x∗) < 0, we have 1− θfx(x∗)ϕ(h, xn) > 1, which implies

−1 <
1 + (1− θ)fx(x∗)ϕ(h, xn)

1− θfx(x∗)ϕ(h, xn)
< 1. (12)

Thus, Equations (10) and (12) give us∣∣∣∣1 + (1− θ)fx(x∗)ϕ(h, xn)

1− θfx(x∗)ϕ(h, xn)

∣∣∣∣ < 1, 0 ≤ θ ≤ 1,

whenever x∗ is a stable equilibrium point.

Next, if x∗ is an unstable equilibrium point, then fx(x∗) > 0. This implies

1 + (1− θ)fx(x∗)ϕ(h, xn) > 1− θϕ(h, xn)fx(x∗). (13)

We now again consider two cases:

(1) If 0 ≤ θ < 1/2, then 1− 2θ > 0. This implies

2 + (1− 2θ)fx(x∗)ϕ(h, xn) > 0.

Thus,

1 + (1− θ)fx(x∗)ϕ(h, xn) > θϕ(h, xn)fx(x∗)− 1. (14)

9
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Equations (13) and (14) imply∣∣∣∣1 + (1− θ)fx(x∗)ϕ(h, xn)

1− θfx(x∗)ϕ(h, xn)

∣∣∣∣ > 1. (15)

(2) If 1/2 < θ ≤ 1, then 2θ − 1 > 0. From condition (ii), we then obtain

0 < ϕ(h, xn) <
2

(2θ − 1)fx(x∗)
.

This implies

2 + (1− 2θ)fx(x∗)ϕ(h, xn) > 0.

Therefore, using similar arguments as in the previous case, we obtain∣∣∣∣1 + (1− θ)fx(x∗)ϕ(h, xn)

1− θfx(x∗)ϕ(h, xn)

∣∣∣∣ > 1. (16)

Thus, from Equations (15) and (16), we now have∣∣∣∣1 + (1− θ)fx(x∗)ϕ(h, xn)

1− θfx(x∗)ϕ(h, xn)

∣∣∣∣ > 1, 0 ≤ θ ≤ 1,

whenever x∗ is an unstable equilibrium point. �

Remark 2.2.

Under the conditions of Theorem 2.2, the modified nonstandard two-stage theta method, consid-
ered in Kojouharov et al. (2021) and given as

xn+1 − xn
ϕ(h, xn)

= θf(xn+1) + (1− θ)f(xn), (17)

is also both elementary stable and second-order accurate.

3. Numerical Simulations

To illustrate the advantages of the proposed new modified NSFD methods, we first consider the
following logistic growth equation:

dx

dt
= ax

(
1− x

K

)
, (18)

where a > 0 is the intrinsic growth rate constant and K > 0 is the carrying capacity of the
environment. Here, x∗ = 0 is an unstable equilibrium and x∗ = 1 is a stable equilibrium of
Equation (18).

We present a set of numerical simulations for a = 2 and K = 1. The new second-order modified

nonstandard explicit Runge-Kutta (SONS ERK2) method (3) with ω =
1

2
, is numerically com-

pared to the standard ERK2 method and the NSFD ERK2 method (Anguelov and Lubuma (2001);
Dimitrov and Kojouharov (2005b)). We use the nonstandard denominator function

ϕ(h, x) =
tanh(qh)

q
, with q = 2.5 >

max{|fx(0)|, |fx(1)|}
2

= 1.
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Figure 1. Numerical solutions of Equation (18) with q = 2.5, x0 = 0.6, and using h = 1.5 in (a)

The SONS ERK2 method is of second-order accuracy and elementary stable, while the ERK2

method is also second-order accurate but unstable for h >
2

a
= 1, and the NSFD ERK2 method

is elementary stable but only first-order accurate. Accordingly, for h = 1.5, we see in Figure 1(a)
that the ERK2 method does not converge to the exact solution whereas both the SONS ERK2 and
NSFD ERK2 methods correctly mimic the behavior of the exact solution.

To better visualize the second-order accuracy of the new SONS ERK2 method (3), we denote the
numerical solution for a given mesh size h as xh. Let us define the l∞ error as

E(h) = ‖xh − x‖∞,

where

‖y‖∞ = max
k=0,··· ,Nt

|yk|,

represents the discrete l∞ norm of the vector y, and x represents the exact solution of Equation (1).
Figure 1(b) shows the error plot for NSFD ERK2 and SONS ERK2 methods, where the slopes of
the error lines are 1 and 2, respectively. This numerically verifies that the SONS ERK2 method is
second-order accurate while the NSFD ERK2 method is only first-order accurate.

As a second example, we consider the following differential equation which is a modification of
the predator pit model in population ecology (Yeargers et al. (1996), p. 115):

dx

dt
= −

(
x− b+

1

2

)
(x− b)

(
x− b− 1

2

)
. (19)

Equation (19) has x∗ = b as an unstable equilibrium while x∗ = b ± 1
2

are both stable equilibria,
with max{|fx(x∗)|} = 1

2
. To support the results of Theorem 2.1, we perform numerical simulations

using the nonstandard denominator function

ϕ(h, x) =
tanh(qh)

q
, with q = 0.26 >

max{|fx(x∗)|}
2

= 0.25.
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Figure 2. Numerical solutions of Equation (19) for b =
1

2
, with q = 0.26, x0 = 0.6, and using h = 6 in (a) and h = 3

in (b)

First, we consider b =
1

2
, which results in the right-hand side function

f(x) = −x3 +
3

2
x2 − 1

2
x.

Figure 2(a) shows a comparison of the SONS ERK2 method with the standard ERK2 method, for
h = 6 and initial condition x0 = 0.6. Simulations show that the ERK2 method does not converge
to the exact solution for large values of h, while the SONS ERK2 method preserves the local
stability properties of the equilibrium x∗ = 1 for any value of the step-size h. Figure 2(b) shows
a comparison of the SONS ERK2 method with the combined NSFD method (Chen et al. (2006))
for h = 3. The two numerical methods reproduce the correct behavior of the exact solution as they
are both of second order accuracy and elementary stable; however, the combined NSFD method is
implicit in nature and, therefore, not as computationally easy to implement.
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Figure 3. Numerical solutions of Equation (19) for b =
1

2
√
3

, with x0 = 0.6, and using h = 6, q = 0.26 in (a) and

h = 4, q = 0.45 in (b)
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Next, we consider b =
1

2
√

3
, that results in the right-hand side function

f(x) = −x3 +

√
3

2
x2 − 1

12
√

3
.

A similar set of numerical comparisons was performed as in the case with b = 1
2

and the same
results were obtained, as shown in Figure 3. In this case, the combined NSFD method, which is of
second-order accuracy and elementary stable, does not require a nonstandard denominator func-
tion, since the right-hand side function f(x) does not contain a first term (Chen et al. (2006)).
However, it is again an implicit method, and therefore still not as computationally easy to imple-
ment as the explicit SONS ERK2 method.

In the third example, we consider the Michaelis-Menten model (Allen (2007)), where the rate of
change of the nutrient concentration x(t) used by a cell for growth and development is modeled by
the following differential equation:

dx

dt
= − kmaxx

kn + x
. (20)

Here, the parameter kmax > 0 is the maximum rate of uptake by the cell of the nutrient and kn > 0

is the half-saturation constant. Given that f(x) = − kmaxx

kn + x
, yields f ′(0) = −kmax/kn < 0 and,

therefore, x∗ = 0 is a stable equilibrium of Equation (20). In the numerical simulations, we take
kn = 0.2, kmax = 0.8, with an initial condition x(0) = 0.1, and q = 0.25 for the comparison of our
method with the NSFD ERK2 method.
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Figure 4. Numerical solutions of Equation (20) with x0 = 0.1

Figure 4(a) shows a comparison of the SONS ERK2 method with the ERK2 method, where we
see that the ERK2 method introduces artificial equilibria for h = 0.51 and becomes unstable when
h = 0.65, while the SONS ERK2 method behaves very well for arbitrary large values of h. Figure
4(b) shows a comparison of our method with the nonstandard ERK2 method which is elementary
stable but only of first-order accuracy, and therefore, the numerical solution of the SONS ERK2
method converges faster to the stable equilibrium x∗ = 0.
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Remark 3.1.

The modified nonstandard theta methods (8) and (17) with θ = 0 reduce to the same second-order
nonstandard explicit Euler (SONSEE) method (Gupta et al. (2020)), which is presented, analyzed,
and numerically investigated in Gupta et al. (2020) and Kojouharov et al. (2021).

4. Conclusion

In this paper, second-order modified nonstandard Runge-Kutta and theta methods for one-
dimensional autonomous differential equations were constructed and analyzed. The new numerical
methods were developed based on modifications of the nonstandard denominator functions used
in NSFD methods. The methods were shown to be of second order accuracy, which is an improve-
ment in the accuracy of their NSFD counterparts, while preserving their stability properties. Using
a set of numerical simulations, the two-stage modified nonstandard explicit Runge-Kutta methods
were compared to the NSFD ERK2 method, the standard ERK2 method, and the combined NSFD
method, which verified the theoretical results and demonstrated the strengths of the proposed new
numerical methods.
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