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Abstract  

 
In this paper, we construct cyclic-Mann type of iterative method for approximating a common 

fixed point of the finite family of nonself and nonexpansive mappings satisfying inward 

condition on a non-empty, closed and convex subset 𝐾 of a real uniformly convex Banach 

space 𝐸. We also construct the averaging algorithm to the class of nonexpansive mappings in 

2-uniformly smooth Banach space. We prove weak and strong convergence results for the 

iterative method. The results of this work extend results in the literature  
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1. Introduction 

 

Many problems arising in different branches of mathematics, such as optimization, variational 

analysis, game theory and differential equations can be modeled by the equation   

    𝑇𝑥 = 𝑥,   (1) 

where 𝑇 is a nonlinear operator (for example, see Colao and Marino (2008), Daman (2012), 

Dugundji (2003), Zegeye (2007) and Zhang (2008)). The solutions to this equation are called 

fixed points of 𝑇. Iterative methods are often used for approximating such fixed points, if they 

exist  (for example, see Berinde (2007), Browder (1968), Chidume (2009), Khan (2008) and 

Krasnoselskii (1955)). Fixed point results give conditions under which mappings have fixed 

point in which the desired iterative method converges to the solution. Over the last 40 years, 
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the theory of fixed point has been reached as a powerful and important tool in the study of 

nonlinear problems. In particular, fixed point techniques have been applied in diversified fields, 

such as science, economics, engineering, etc.  

Let 𝐾 be a non-empty, closed and convex subset of a real Banach space 𝐸 and  𝑇: 𝐾 → 𝐸 be an 

operator. Then, the most well-known method for solving the fixed point equation  

 𝑇𝑥 = 𝑥  

is the Picard successive iterations (for example, see Ciesielski (2007)) when 𝑇 is a strictly 

contraction; that is, 

 

 𝑇  is a strictly contraction if it satisfies 

 ‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝛼‖𝑥 − 𝑦‖, for some 0 ≤ 𝛼 < 1, ∀𝑥, 𝑦 ∈
𝐾, 

 (2) 

whereas, the mapping 𝑇 is called nonexpansive if it satisfies 

 ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝐾. (3) 

𝑇 is called quasi-nonexpansive if 𝐹(𝑇) is nonempty and  

 ‖𝑇𝑥 − 𝑝‖ ≤ ‖𝑥 − 𝑝‖, ∀𝑥 ∈ 𝐾  and  𝑝  is a fixed point of 𝑇. (4) 

𝑇 is called k-strictly pseudocontractive if there exists 𝑘 ∈ (0,1) and 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦)  

such that 

 〈𝑇𝑥 − 𝑇𝑦, 𝑗(𝑥 − 𝑦)〉 ≤ ‖𝑥 − 𝑦‖2 − 𝑘‖(𝐼 − 𝑇)𝑥 − (𝐼 − 𝑇)𝑦‖2, ∀ 𝑥, 𝑦 ∈ 𝐾, (5) 

where 𝐽: 𝐸 ⟶ 2𝐸  is normalized duality mapping given by 

 𝐽𝑥 = {𝑓 ∈ 𝐸∗: ⟨𝑓, 𝑥⟩ = ‖𝑥‖2 = ‖𝑓‖2},  

where 〈. , . 〉 denotes the generalized duality pairing which is analogous to an inner product in 

a Hilbert space. 

Consequently, several authors have studied iterative methods for approximating fixed points 

of nonexpansive mappings (for example, see Dugundji (2003), Ferreir (2002), Hukmi (2007), 

Ishikawa (1974), Reich (1979), Senter (1974), and  Zegeye (2013)). 

Although the sequence {𝑥𝑛}𝑛=0
∞  generated by Picard’s iterations converges in norm to the 

unique fixed point of strictly contraction mapping 𝑇,  the Picard successive iterations in general  

failed to converge if 𝑇 is not a strictly contraction. 

Furthermore, a more general iterative scheme is the one 

 𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝑥𝑛,       𝛼𝑛 ∈ (0,1), 𝑛 ≥ 0 , (6) 

which is the sequence satisfying appropriate conditions and the sequence{𝑥𝑛} is referred to as 

the Mann sequence (Mann (1953)) and when 𝛼𝑛 = 𝜆 we call it the Krasnoselskii-Mann’s  

iterative method and is reduced to 

 𝑥𝑛+1 = 𝜆𝑥𝑛 + (1 − 𝜆)𝑇𝑥𝑛,                       𝜆 ∈ (0,1), 𝑛 ≥ 0,  
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which was introduced by  Krasnoselskii (1955). 

Halpern, in Halpern (1967), also introduced an iterative scheme of the type   

 𝑥𝑛+1 = 𝛼𝑛𝑢 + (1 − 𝛼𝑛 )𝑇𝑥𝑛 , 𝛼𝑛 ∈ (0,1), 𝑛 ≥ 0, 𝑢, 𝑥0 ∈ 𝐾.  

Since then, various research effects have been made on the above iterative types for 

approximating a fixed point of mapping or common fixed point of family of mappings in 

Hilbert spaces and Banach spaces as well (for example, see Marino (2007), Suzuki (2005), Yao 

and Zhou (2009) and  Zeidler (1986)). 

In particular, the family of nonself and nonexpansive mappings arises in many fields, when the 

common domain of the given mappings is a proper subset of the given space, in which finding 

the common fixed point is very essential.  

We notice that the following notations and definitions are found in the literature (Berinde 

(2007) and Chidume (2009)). 

 

Definition 1.1. 

A uniformly convex space 𝐸 is a normed space 𝐸  in which for every 0 < 𝜀 < 2  there exists 

 a   𝛿 > 0 such that  

                for every 𝑥, 𝑦 ∈ 𝑆 =   {𝑥 ∈ 𝐸: ‖𝑥‖ = 1},  if ‖𝑥 − 𝑦‖ > 𝜀(𝑥 ≠ 𝑦), then  

 
‖

𝑥 + 𝑦

2
‖ ≤ 1 − 𝛿. 

 

For each 𝑥, 𝑦 ∈ 𝐸, the modulus of convexity of 𝐸 is defined by     

 𝛿𝐸(𝑡) = 𝑖𝑛𝑓 {1 −
‖𝑥+𝑦‖

2
, ‖𝑥‖ = ‖𝑦‖ = 1, ‖𝑥 − 𝑦‖ = 𝑡} ,             0 ≤ 𝑡 ≤ 2.  

Furthermore, 𝐸  is said to be uniformly convex if  𝛿𝐸(𝑡) > 0,  for all  0 < 𝑡 ≤ 2. 

Hilbert spaces, the Lebesgue space 𝐿𝑝, the sequence space 𝑙𝑝 and the Sobolev 𝑊𝑝
𝑚 spaces, for  

𝑝 ∈ (1, ∞), are examples of uniformly convex Banach spaces. 

 

Definition 1.2. (Berinde (2007) and Chidume  (2009)) 

A uniformly smooth space 𝐸  is a normed space in which for every 𝜀 > 0, there exists a  𝛿 > 0 

such that 

 for  all 𝑥, 𝑦 ∈ 𝐸, ‖𝑥‖ = 1, ‖𝑦‖ ≤ 𝛿,  

‖𝑥 + 𝑦‖ + ‖𝑥 − 𝑦‖ ≤ 2 + 𝜀‖𝑦‖. 

 For each 𝑥, 𝑦 ∈ 𝐸, the modulus Smoothness of 𝐸 is defined by  

 𝜌𝐸(𝑡) = 𝑆𝑢𝑝 {
‖𝑥+𝑦‖+‖𝑥−𝑦‖

2
− 1, ‖𝑥‖ = 1, ‖𝑦‖ = 𝑡},      𝑡 > 0.  

Furthermore, 𝐸 is uniformly convex,  if and only if   𝑙𝑖𝑚
𝑡→0

𝜌𝐸(𝑡)

𝑡
= 0. 
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Let 𝑝, 𝑞 > 1 be real numbers. Then, 𝐸  is said to be p-uniformly convex (respectively, q-

uniformly smooth) if there is a constant 𝑐 > 0 such that 𝛿𝐸(𝑡) ≥ 𝑐𝑡𝑝, (respectively, 

 

𝜌𝐸(𝑡) ≤ 𝑐𝑡𝑞). 

Hilbert spaces, the Lebesgue 𝐿𝑝, the sequence 𝑙𝑝 and the Sobolev 𝑊𝑝
𝑚 spaces, for  𝑝 ∈ (1, ∞) 

are examples of uniformly smooth Banach spaces. We also notice that for  𝑝 ≠ 2, the Lebesgue 

𝐿𝑝, the sequence 𝑙𝑝 and the Sobolev 𝑊𝑝
𝑚 spaces, for  𝑝 ∈ (1, ∞) are not Hilbert spaces. 

 

Definition 1.3. (Colao and Marino (2015)) 

A subset  𝐾 of a Banach space 𝐸 is said to be strictly convex if for any 𝑥, 𝑦 ∈ 𝜕𝐾, 𝑥 ≠ 𝑦, 0 <
𝑡 < 1,  𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝑖𝑛𝑡( 𝐾); that is, no line segment joining any two points of 𝐾 totally 

lies on the boundary of 𝐾.  
 

Definition 1.4. (Chidume (2009))  

Let  𝐸  be a real Banach space. Then, 

 

a)  a subset 𝐾 of  𝐸 is said to be a retract of 𝐾 if there exists a continuous map  𝑃: 𝐸 → 𝐾 such 

that  𝑃(𝑥) = 𝑥, for all 𝑥 ∈ 𝐾.  

b) a map  𝑃: 𝐸 → 𝐾 is said to be a retraction if  𝑃2 = 𝑃. It follows that if a map 𝑃 is a retraction, 

then  𝑃(𝑦) = 𝑦, for all  𝑦 in the range of 𝑃. 
c) a map  𝑃: 𝐸 → 𝐾 is said to be sunny, if  𝑃(𝑃𝑥 + 𝑡(𝑥 − 𝑃𝑥)) = 𝑃𝑥,  for all  𝑥 ∈ 𝐸 and  𝑡 ≥

0. 

d) a subset  𝐾 of  𝐸  is said to be a sunny nonexpansive retract of  𝐸, if there exists a sunny 

nonexpansive retraction of 𝐸 onto 𝐾 and it is said to be a nonexpansive retract of 𝐸, if there 

exists a nonexpansive retraction of 𝐸 onto 𝐾.  If 𝐻 is Hilbert space, then the metric 

projection 𝑃𝐾  is a sunny nonexpansive retraction from 𝐻 to any closed convex subset 𝐾 of 

𝐻 (for example, see  Berinde (2007) and Chidume (2009)). 

 

As a result, a number of research efforts have been made to find iterative methods for 

approximating a fixed point or common fixed point (when it exists) for nonexpansive and more 

general class of  mappings.  

Bauschke (1996) introduced Halpern type iterative method to approximate a common fixed 

point for a finite family of nonexpansive and self mappings (if it exists). He proved the 

convergence of the algorithm in the following theorem: 

 

Theorem 1.1. (Bauschke (1996)) 

Let  𝐾  be a non-empty, closed and convex subset of a Hilbert space, let, 𝑇𝑖, 𝑖 = 1,2,3, . . . , 𝑁  

be a finite family of nonexpansive mappings of 𝐾 into itself with 𝐹 = ⋂ 𝐹(𝑇𝑘)𝑁
𝑘=1  is non-

empty and 

  

 𝐹 = 𝐹(𝑇1𝑇2 … . 𝑇𝑁) 

       = 𝐹(𝑇𝑁𝑇𝑁−1 … . 𝑇1) 

                  = 𝐹(𝑇𝑁−1𝑇𝑁−2. . . . 𝑇1𝑇𝑁), 

 

 

 

where 𝐹(𝑇) is the set of all fixed points of 𝑇. Given 𝑢, 𝑥0 ∈ 𝐾, and  let {𝑥𝑛} be generated by  
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 𝑥𝑛+1 = 𝛼𝑛+1𝑢 + (1 − 𝛼𝑛+1)𝑇𝑛+1𝑥𝑛,       𝑛 ≥ 0,  

where 𝑇𝑛 = 𝑇𝑛(𝑚𝑜𝑑 𝑁),  𝛼𝑛 ∈ (0,1) satisfying the condition 

 ∑ |𝛼𝑛+𝑁 − 𝛼𝑛|𝑛≥1 < ∞.  

Then, the sequence {𝑥𝑛} converges strongly to 𝑃𝐹𝑢, where 𝑃: 𝐻 → 𝐹 is the metric projection. 

Since then, various authors have studied iterative methods similar to Theorem 1.1 in more 

general Banach spaces by using various conditions on the sequence {𝛼𝑛} (for example, see 

Colao et al.  (2008)), Ceng and Cubiotti (2007), Takahashi and Takahashi (2003), Plubtieng 

and Punpaeng (2007) and Ceng et al.  (2007)). Many authors have also studied iterative 

methods for more general class of mappings such as, k-strictly pseudocontractive mappings 

(for example, see Daman (2012), Halpern (1967), Osilike (2009) and Zhou (2008a)). 

All the above results are practical only for family of self mappings, however,  the mappings in 

many practical cases can be nonself. 

As a result, in 2005, Chidume et al. (2005) introduced an iterative method for common fixed 

points of family of nonself and nonexpansive mappings in reflexive Banach space provided 

that every non-empty, closed, bounded and convex subset of 𝐾 has the fixed point property for 

nonexpansive mappings. They proved the strong convergence of the iterative method in the 

following theorem. 

 

Theorem 1.2. ((Chidume et al. (2005), Theorem 3.1) 

Let 𝐾  be a non-empty closed convex subset of a reflexive real Banach space 𝐸 which has a 

uniformly Gateaux differentiable norm. Assume  that 𝐾 is a sunny nonexpansive retraction of  

𝐸 with 𝑄  as the sunny nonexpansive retraction. Assume that every non-empty, closed, bounded 

and convex subset of 𝐾 has the fixed point property for the class of  nonexpansive mappings.  

Let 𝑇1, 𝑇2, . . . 𝑇𝑁: 𝐾 → 𝐸 be a finite family of nonexpansive and weakly inward mappings with 

𝐹 = ⋂ 𝐹(𝑇𝑘)𝑁
𝑘=1  is non-empty, and let   𝑇𝑛 = 𝑇𝑛(𝑚𝑜𝑑 𝑁), where   

 𝐹 = 𝐹(𝑇1𝑇2 … . 𝑇𝑁) 

        = 𝐹(𝑇𝑁𝑇𝑁−1 … . 𝑇1) 

                   = 𝐹(𝑇𝑁−1𝑇𝑁−2. . . . 𝑇1𝑇𝑁). 

 

 

Given 𝑢, 𝑥0 ∈ 𝐾, let the sequence {𝑥𝑛} be generated by the iteration  

 𝑥𝑛+1 = 𝛼𝑛+1𝑢 + (1 − 𝛼𝑛+1)𝑄𝑇𝑛+1𝑥𝑛,         𝑛 ≥ 0,  

where {𝑎𝑛} is a real sequence which satisfies the following conditions: 

       (i)   𝑙𝑖𝑚
𝑛→∞

𝑎𝑛 = 0;                                                      (ii)   ∑ 𝛼𝑛
∞
𝑛=0 = ∞; 

        and either  

        (iii)   ∑ |𝛼𝑛+𝑁 − 𝛼𝑛|𝑛≥1 < ∞       or                    (iii)*   𝑙𝑖𝑚
𝑛→∞

𝑎𝑛+𝑁−𝑎𝑛

𝑎𝑛+𝑁
= 0.  

Then, the sequence {𝑥𝑛} converges strongly to a common fixed point of the family 

{𝑇1, 𝑇2, . . . , 𝑇𝑁}. 
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Furthermore, if  𝑃𝑢 = 𝑙𝑖𝑚
𝑛→∞

𝑥𝑛, for each  𝑢 ∈ 𝐾, then 𝑃 is a sunny nonexpansive retraction of 𝐾 

onto 𝐹.   

Furthermore, in 2007, Hukmi  et al. (2007) and  later on, in 2008, Kiziltunc and Yildirim  (2008) 

also introduced iterative methods by using projection of sunny nonexpansive retraction. They 

also proved convergence with the assumption of Opial’s condition. However, Colao and 

Marino presented that the computation for the metric projection for sunny nonexpansive 

retraction is expensive, even in real Hilbert space, metric projection computation may require 

another approximation method. 

As a result, in 2015, Colao and Marino  (2015) introduced Krasnoselskii-Mann iterative method 

for inward mapping. 

 

Definition 1.5. 

A mapping  𝑇: 𝐾 → 𝐻 on a non-empty subset 𝐾 of a real Hilbert space 𝐾 is said to be inward 

(or to satisfy the inward condition) if for any 𝑥 ∈ 𝐾, it holds that  

 𝑇𝑥 ∈ 𝐼𝐾(𝑥) = {𝑥 + 𝑐(𝑢 − 𝑥): 𝑐 ≥ 1 , 𝑢 ∈ 𝐾},  

and 𝑇 is said to satisfy weakly inward condition if  𝑇𝑥 ∈ 𝐼𝐾(𝑥)̅̅ ̅̅ ̅̅ ̅̅  (the closure of 𝐼𝐾(𝑥)). 

 

Moreover, Colao and Marino proved both weak and strong convergence of the iterative method 

in the following theorem: 

 

Theorem 1.3. (Colao and Marino (2015)). 

Let 𝐾  be a convex, closed and nonempty subset of a real Hilbert space 𝐻,  let  𝑇: 𝐾 → 𝐻 be a 

nonself and nonexpansive mapping and  for any given  𝑥 ∈ 𝐾,  let   ℎ: 𝐾 ⟶ ℝ be defined by 

the mapping ℎ(𝑥) = 𝑖𝑛𝑓{𝜆 ≥ 0: 𝜆𝑥 + (1 − 𝜆)𝑥 ∈ 𝐾}. Then,  the algorithm 

 𝑥0 ∈ 𝐾,                                         

𝛼0 = max {
1

2
, ℎ(𝑥0)},               

𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝑥𝑛,

𝛼𝑛+1 = max{𝛼𝑛, ℎ(𝑥𝑛+1)} ,    
 

 

 

is well-defined and  if 𝐾  is strictly convex and  𝑇  is nonexpansive, nonself and inward mapping 

with 𝐹(𝑇) is non-empty, then the sequence {𝑥𝑛} converges weakly to 𝑝 ∈ 𝐹 = 𝐹(𝑇). Moreover, 

if  ∑ (1 − 𝛼𝑛
∞
𝑛=0 ) < ∞,  then the convergence is strong. 

In 2017, Takele and Reddy (2017a,2017b) extended the result of Colao and Marino (2015) for 

approximating a common fixed point of family of nonself and nonexpansive and strictly 

pseudocontractive mappings in real Hilbert space. They constructed cyclic algorithm for 

approximating a common fixed point of family of nonself and nonexpansive mappings in real 

Hilbert space. 

 

Although weak and strong convergence results for approximating a common fixed point of the 

family of nonself and nonexpansive mappings have been proved, the results were only in 

Hilbert space settings. 
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We raised open quation, can we construct an iterative method which converges weakly and 

strongly for approximating a common fixed point of a finite family of nonself, nonexpansive 

and inward mappings in a real uniformly convex Banach space which is more general than  

Hilbert space? The sequence space 𝑙𝑝(1 < 𝑝 < ∞) is a uniformly convex Banach space which 

satisfies Opial’s condition and for 𝑝 ≠ 2, 𝑙𝑝(1 < 𝑝 < ∞) is not Hilbert space (for example, see 

Chidume (2009), p. 61). 

Thus, it is the purpose of this paper to answer the raised question and prove strong convergence 

results for approximating a common fixed point of nonself mappings in real uniformly convex  

Banach space satisfying Opial’s condition, which is more general than a Hilbert space. 

 

2. Preliminary Concepts 

 In this paper, we frequently use the following concepts. 

 

Definition 2.1. (Browder (1968)) 

A mapping 𝑇 from a non-empty subset 𝐾 of a real Banach space 𝐸 to 𝐸 is said to be demi 

closed at 𝑝  if  {𝑥𝑛} is a sequence in 𝐾 such that {𝑥𝑛} converges weakly to some 𝑥∗ ∈ 𝐾 and 

{𝑇𝑥𝑛} converges strongly to 𝑝, then 𝑇𝑥∗ = 𝑝. If 𝐼 − 𝑇  is demi-closed at 0, then  𝑇 is said to be 

demi closed (said to satisfy demi closedness principle). 

 

Definition 2.2. ((Opial (1967)) 

A Banach space 𝐸  is said to satisfy Opial’s condition if for any sequence {𝑥𝑛} in 𝐸 , 𝑥𝑛 

converges weakly to some 𝑥 ∈ 𝐸 implies that   

  lim
𝑛⟶∞

inf‖𝑥𝑛 − 𝑥‖ < lim
𝑛⟶∞

inf‖𝑥𝑛 − 𝑦‖,               ∀𝑦 ∈ 𝐸, 𝑦 ≠ 𝑥.  

                                

Definition 2.3. (Bauschke (2001))  

Let 𝐾  be a non-empty. Then, a sequence {𝑥𝑛} in 𝐾 is said to be Fejer monotone with respect 

to a subset 𝐹 of 𝐾 if  ∀𝑥 ∈ 𝐹, ‖𝑥𝑛+1 − 𝑥‖ ≤ ‖𝑥𝑛 − 𝑥‖,     ∀𝑛. 

  

Lemma 2.1. (Zeidler (1986))  

Let  𝐸  be a uniformly convex Banach space and let {𝑥𝑛} 𝑎𝑛𝑑 {𝑦𝑛} in 𝐸  be two sequences. If 

there exists a constant 𝑟 ≥ 0 such that lim 𝑠𝑢𝑝
𝑛→∞

‖𝑥𝑛‖ ≤ 𝑟, lim 𝑠𝑢𝑝
𝑛→∞

‖𝑦𝑛‖ ≤ 𝑟 and 𝑙𝑖𝑚
𝑛→∞

‖𝜆𝑛𝑥𝑛 +

(1 − 𝜆𝑛)𝑦𝑛‖ = 𝑟 for {𝜆𝑛} ⊂ [𝜀, 1 − 𝜀] ⊂ (0,1), for some 𝜀 ∈ (0,1), then we have  ‖𝑥𝑛 −
𝑦𝑛‖ → 0. 

 

Theorem 2.1. (Browder (1967) and Goebel (1990)) 

The demi closedness principle for nonexpansive mappings holds in a Banach space, which is 

either uniformly convex or satisfies Opial’s condition.  

 

Definition 2.4. (Senter (1974)) 
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Let  𝐾 be a subset of a Banach space 𝐸. Then,  a mapping 𝑇: 𝐾 → 𝐸 with  𝐹 = 𝐹(𝑇) is  non-

empty and  𝐹 ⊂ 𝐾 is said to satisfy Condition(𝐻) if there is a non decreasing function 

𝑓: [0, ∞) → [0, ∞) with 𝑓(0) = 0 and 𝑓(𝑟) > 0 for 𝑟 ∈ (0, ∞) satisfying the condition  

      
‖𝑥 − 𝑇𝑥‖ ≥ 𝑓(𝑑(𝑥, 𝐹),  ∀𝑥 ∈ 𝐾, 

where  

 𝑑(𝑥, 𝐹) = 𝑖𝑛𝑓{‖𝑥 − 𝑓‖, 𝑓 ∈ 𝐹}.   

Lemma 2.2. (Xu (1991))  

Let  𝑝 > 1, 𝑅 > 1 be two fixed numbers and  𝐸 be a Banach space. Then,  𝐸 is uniformly 

convex if and only if there exists a continuous, strictly increasing and convex function 

𝑔: [0, ∞) → [0, ∞) with 𝑔(0) = 0 such that 

 

 ‖𝜆𝑥 + (1 − 𝜆)𝑦‖𝑝 ≤ 𝜆‖𝑥‖𝑝 + (1 − 𝜆)‖𝑦‖𝑝 − 𝑊𝑝(𝜆)𝑔(‖𝑥 − 𝑦‖), 

∀ 𝑥, 𝑦 ∈ 𝐵𝑅(0) = {𝑥 ∈ 𝐸: ‖𝑥‖ < 𝑅} and 𝜆 ∈ [0,1], 

 

where 

 𝑊𝑝(𝜆) = 𝜆𝑝(1 − 𝜆) + 𝜆(1 − 𝜆)𝑝.  

   

Lemma 2.3. (See, (Browder (1967), Ferreira-Oliveira (2002)) 

Let  𝐸 be a complete metric space and  𝐾 ⊆ 𝐸 be non-empty. If {𝑥𝑛} in 𝐾 is Fejer monotone 

with respect to 𝐹 ⊂ 𝐾,  then {𝑥𝑛} is bounded. Furthermore, if a cluster point 𝑥 of {𝑥𝑛} belongs 

to 𝐹, then {𝑥𝑛} converges strongly to 𝑥. In particular, in real Hilbert space, given the set of all 

weakly cluster points of the sequence {𝑥𝑛}, 𝜔𝑤(𝑥𝑛) = {𝑥: ∃𝑥𝑛𝑘
→ 𝑥  𝑤𝑒𝑎𝑘𝑙𝑦}, then {𝑥𝑛} 

converges weakly to a point 𝑥 ∈ 𝐹 if and only if  𝜔𝑤(𝑥𝑛) ⊆ 𝐹. 
 

Definition 2.5. (Guo  et al. (2016)) 

Let 𝐹 and  𝐾 be two closed, convex and nonempty subsets of a Hilbert space 𝐻 and 𝐹 ⊂ 𝐾. 

For any sequence {𝑥𝑛} ⊂ 𝐾, if {𝑥𝑛} converges strongly to an element 𝑥 ∈ 𝜕𝐾\𝐹,  𝑥𝑛 ≠ 𝑥, then 
{𝑥𝑛}is not Fejer-monotone with respect to 𝐹 ⊂ 𝐾. In this case, we say that the pair (F, K) 

satisfies S-condition. 

 

Lemma 2.4. (Zhou (2008b))  

Let 𝑇1, 𝑇2, … , 𝑇𝑁: 𝐾 → 𝐸 be nonself, nonexpansive and inward mappings on a non-empty and 

convex subset of a 2-uniformily smooth Banach space, let 𝜇𝑖 > 0,   𝑖 = 1,2, … , 𝑁, and 

 ∑ 𝜇𝑖
𝑁
𝑖=1 = 1.  Then,  𝑇 = ∑ 𝜇𝑖𝑇𝑖

𝑁
𝑖=1  is nonexpansive and inward mapping with      

 𝐹 = 𝐹(𝑇) 

                      = ⋂ 𝐹(𝑇𝑖
𝑁
𝑖=1 ).  

 

     

Lemma 2.5. (Shehu (2015)) 

Let 𝐾 be a non-empty and convex subset of a real Banach space 𝐸 with Frechet differentiable 

norm and has the smoothness constant 𝑐 > 0. Let 𝑇: 𝐾 ⟶ 𝐸  be k-strictly pseudocontractive 
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mapping on the space. Then, for any 𝛼 ∈ (0,1) ⋂(0, 𝜇], 𝜇 = 𝑚𝑖𝑛 {1,
2𝑘

𝑐
 }  the mapping 𝑇𝛼 

defined by 𝑇𝛼𝑥 = 𝛼𝑥 + (1 − 𝛼)𝑇𝑥  is nonexpansive and  𝐹(𝑇𝛼) = 𝐹(𝑇).  

 

3.  Result and discussions 

 
Let 𝑇1, 𝑇2, … , 𝑇𝑁: 𝐾 ⟶ 𝐸  be a finite family of nonself and nonexpansive mappings on a non-

empty, closed and convex subset 𝐾of a real Banach space 𝐸. 

Our objective is to introduce an iterative method for common fixed point of the family and 

determine conditions for convergence of the iterative method. 

In lowering the requirement of metric projection calculation we assume the mappings to be 

inward, and we prove the following lemma, which will be used to prove weak and strong 

convergence of the iterative method in a real uniformly convex Banach space which is more 

general than Hilbert space.  

 

Lemma 3.1.  

Suppose 𝑇1, 𝑇2, . . . , 𝑇𝑁: 𝐾 → 𝐸 are nonself and nonexpansive mappings satisfying inward 

condition. If for each  𝑘 ∈ {1,2, . . . , 𝑁}, we define  ℎ𝑘: 𝐾 → ℜ  by 

 ℎ𝑘(𝑥) = 𝑖𝑛𝑓{𝜆 ≥ 0: 𝜆𝑥 + (1 − 𝜆)𝑇𝑘𝑥 ∈ 𝐾},  

then the following hold:  

a) ∀𝑥 ∈ 𝐾, ℎ𝑘(𝑥) ∈ [0,1] and ℎ𝑘(𝑥) = 0  if and only if 𝑇𝑘(𝑥) ∈ 𝐾; 

 

b)  if  ∀𝑥 ∈ 𝐾,  𝛼𝑘 ∈ [ℎ𝑘(𝑥),1], then  𝛼𝑘𝑥 + (1 − 𝛼𝑘)𝑇𝑘(𝑥) ∈ 𝐾; 

 

c) if 𝑇𝑘 is inward mapping, then  ∀𝑥 ∈ 𝐾, ℎ𝑘(𝑥) < 1;  

 if  𝑇𝑘𝑥 ∉ 𝐾, then ℎ𝑘(𝑥)𝑥 + (1 − ℎ𝑘(𝑥))𝑇𝑘𝑥 ∈ 𝐾. 

 

Proof: 

a) Clearly, ℎ𝑘(𝑥) ≥ 0  and if  𝜆 = 1, we have  𝑥 ∈ 𝐾.  

Thus, 

 ℎ𝑘(𝑥) = 𝑖𝑛𝑓{ 𝜆 ≥ 0: 𝜆𝑥 + (1 − 𝜆)𝑇𝑘𝑥 ∈ 𝐾} ∈ [0,1].  

   Moreover,  if  ℎ𝑘(𝑥) = 0, for 𝜆 = 0, then 𝑇𝑘(𝑥) ∈ 𝐾. Suppose 𝑇𝑘𝑥 ∈ 𝐾,  then for 𝜆 = 0, we    

    have  ℎ𝑘(𝑥) = 0.  Thus, ℎ𝑘(𝑥) = 0 if and only if  𝑇𝑘(𝑥) ∈ 𝐾. 

b) If ∈ 𝐾, 𝛼𝑘 ∈ [ℎ𝑘(𝑥),1], then 

                

 ℎ𝑘(𝑥) = 𝑖𝑛𝑓{𝜆 ≥ 0: 𝜆𝑥 + (1 − 𝜆)𝑇𝑘𝑥 ∈ 𝐾} 

≤ 𝛼𝑘 

≤ 1 . 

 

                                      

  Thus,  𝛼𝑘𝑥 + (1 − 𝛼𝑘)𝑇𝑘(𝑥) ∈ 𝐾. 
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c) If  𝑇𝑘 is inward mapping, then for all 𝑥 ∈ 𝐾, we have 

 

 𝑇𝑘𝑥 ∈ 𝐼𝑘(𝑥) = {𝑥 + 𝑐(𝑢 − 𝑥): 𝑐 ≥ 1, 𝑢 ∈ 𝐾},   

 
Thus, 

  𝑇𝑘(𝑥) = 𝑥 + 𝑐(𝑢 − 𝑥) ⇔
𝑇𝑘(𝑥)

𝑐
+ (1 −

1

𝑐
) 𝑥 = 𝑢 ∈ 𝐾.  

     Thus,  ℎ𝑘(𝑥) ≤ 1 −
1

𝑐
< 1 which gives  ℎ𝑘(𝑥) < 1. 

d) If  𝑇𝑘𝑥 ∉ 𝐾, then ℎ𝑘(𝑥) > 0. Let  𝜂𝑘𝑛
∈ (0, ℎ𝑘(𝑥)) be a sequence of real numbers such    

 that  𝜂𝑘𝑛
→ ℎ𝑘(𝑥). Then  𝜂𝑘𝑛

𝑥 + (1 − 𝜂𝑘𝑛
)𝑇𝑘(𝑥) ∉ 𝐾.  Since  𝜂𝑘𝑛

→ ℎ𝑘(𝑥), we have 

 

 ‖[𝜂𝑘𝑛
𝑥 + (1 − 𝜂𝑘𝑛

)𝑇𝑘𝑥] − [ℎ𝑘(𝑥)𝑥 + (1 − ℎ𝑘(𝑥))𝑇𝑘𝑥]‖ 

= |𝜂𝑘𝑛
− ℎ𝑘(𝑥)|‖𝑥 − 𝑇𝑘(𝑥)‖ → 0. 

 

 

Thus, the limit point of the sequence, which is in the complement of 𝐾 must be on the 

boundary of 𝐾. Therefore, if  𝑇𝑘𝑥 ∉ 𝐾, then ℎ𝑘(𝑥)𝑥 + (1 − ℎ𝑘(𝑥))𝑇𝑘𝑥 ∈ 𝜕𝐾.                     

Using the lemma we will prove our main theorem which is given below. 

  

Theorem 3.2. 

Let 𝑇1, 𝑇2, . . . , 𝑇𝑁: 𝐾 → 𝐸 be a family of nonself, nonexpansive and inward mappings on a non-

empty, closed and convex subset 𝐾 of a real uniformly convex Banach space 𝐾 such that 

𝐹 = ⋂ 𝐹(𝑇𝑘)𝑁
𝑘=1  is non-empty. Let 𝑇𝑘 = 𝑇𝑘(𝑀𝑜𝑑𝑁)+1, 𝑥0 ∈ 𝐾, and for each 𝑘 ∈ {1,2, . . . , 𝑁} we 

define ℎ𝑘: 𝐾 → ℜ  by  ℎ𝑘(𝑥) = 𝑖𝑛𝑓{𝜆 ≥ 0: 𝜆𝑥 + (1 − 𝜆)𝑇𝑘𝑥 ∈ 𝐾}. Then, the sequence {𝑥𝑛} 

given by 

 𝑥1 ∈ 𝐾,                                                     

𝛼1 = max{𝛼, ℎ1(𝑥1)} , 𝛼 > 0,              

𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝑛𝑥𝑛,          

𝛼𝑛+1 = max{𝛼𝑛, ℎ𝑛+1(𝑥𝑛+1)},         
 
 

 

 

is well-defined and if {𝛼𝑛} ⊂ [𝜀, 1 − 𝜀] ⊂ (0,1)  for some 𝜀 ∈ (0,1), then the sequence {𝑥𝑛} 

converges  weakly  to some element 𝑝 of 𝐹 = ⋂ 𝐹(𝑇𝑘)𝑁
𝑘=1  provided that 𝐸 satisfies Opial’s 

condition.  

 

Proof:  

By Lemma 3.1,  the sequence {𝑥𝑛} is well-defined and is in 𝐾. Thus, we first prove {𝑥𝑛} is 

Fejer monotone with respect to 𝐹.  Let  𝑝 ∈ 𝐹.  Then, we have the following inequality: 

 ‖𝑥𝑛+1 − 𝑝‖ = ‖𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝑛𝑥𝑛 − 𝑝‖ 

                                   ≤ 𝛼𝑛‖𝑥𝑛 − 𝑝‖ + (1 − 𝛼𝑛)‖𝑇𝑛𝑥𝑛 − 𝑇𝑛𝑝‖ 

                                   ≤ 𝛼𝑛‖𝑥𝑛 − 𝑝‖ + (1 − 𝛼𝑛)‖𝑥𝑛 − 𝑝‖ 

= ‖𝑥𝑛 − 𝑝‖ . 

 

(7) 

Thus, {𝑥𝑛} is Fejer monotone with respect to  𝐹.  Since ‖𝑥𝑛 − 𝑝‖ is decreasing and bounded 

below it converges and hence, the sequences {𝑥𝑛} and {𝑇𝑛𝑥𝑛} are bounded. Suppose 

‖𝑥𝑛 − 𝑝‖ → 𝑟 ≥ 0 as 𝑛 → ∞, then ‖𝑥𝑛+1 − 𝑝‖ → 𝑟 as 𝑛 → ∞ and hence,     
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 ‖𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝑛𝑥𝑛 − 𝑝‖ = ‖𝑥𝑛+1 − 𝑝‖  

is bouded. 

Also by Lemma 2.2 in Xu (1991), in real uniformly convex Banach space 𝐸,  we see that  

for 𝑝 > 1, 𝑅 > 1 real numbers there exists a continuous, strictly increasing and convex function  

                    𝑔: [0, ∞) → [0, ∞) with 𝑔(0) = 0 such that  

 ‖𝜆𝑥 + (1 − 𝜆)𝑦‖𝑝 ≤ 𝜆‖𝑥‖𝑝 + (1 − 𝜆)‖𝑦‖𝑝 − 𝑊𝑝(𝜆)𝑔(‖𝑥 − 𝑦‖), 

∀ 𝑥, 𝑦 ∈ 𝐵𝑅(0) = {𝑥 ∈ 𝐸: ‖𝑥‖ < 𝑅} and 𝜆 ∈ [0,1], 

 

 

where  

 𝑊𝑝(𝜆) = 𝜆𝑝(1 − 𝜆) + 𝜆(1 − 𝜆)𝑝. (8) 

Since {𝑥𝑛} and {𝑇𝑛𝑥𝑛} are bounded, 𝑅 can be chosen so that {𝑥𝑛 − 𝑝}, {𝑇𝑛𝑥𝑛 − 𝑝} ⊆ 𝐵𝑅(0). 

If we take  𝑝 = 2 > 1, then  equation (8) is reduced to the following inequality: 

 ‖𝛼𝑛(𝑥𝑛 − 𝑝) + (1 − 𝛼𝑛)(𝑇𝑛𝑥𝑛 − 𝑝)‖2                                                                               
≤ 𝛼𝑛‖𝑥𝑛 − 𝑝‖2 + (1 − 𝛼𝑛)‖𝑇𝑛𝑥𝑛 − 𝑝‖2 − 𝑊2(𝜆)𝑔(‖𝑥 − 𝑦‖). 

 

Since each 𝑇𝑛 is nonexpansive, the following holds:  

 ‖𝑥𝑛+1 − 𝑝‖2 = ‖𝛼𝑛(𝑥𝑛 − 𝑝) + (1 − 𝛼𝑛)(𝑇𝑛𝑥𝑛 − 𝑝)‖2                                                                
≤ 𝛼𝑛‖𝑥𝑛 − 𝑝‖2 + (1 − 𝛼𝑛)‖𝑇𝑛𝑥𝑛 − 𝑝‖2 − 𝛼𝑛(1 − 𝛼𝑛)𝑔(‖𝑥𝑛 − 𝑇𝑛𝑥𝑛‖), 

 

and  

 ‖𝑇𝑛𝑥𝑛 − 𝑝‖ ≤ ‖𝑥𝑛 − 𝑝‖.  

Thus, we have  

 ‖𝑥𝑛+1 − 𝑝‖2 ≤ ‖𝑥𝑛 − 𝑝‖2 − 𝛼𝑛(1 − 𝛼𝑛)𝑔(‖𝑥𝑛 − 𝑇𝑛𝑥𝑛‖), (9) 

which implies that 

 
∑ 𝛼𝑛(1 − 𝛼𝑛)𝑔(‖𝑥𝑛 − 𝑇𝑛𝑥𝑛‖) ≤ ∑(‖𝑥𝑛 − 𝑝‖2 − ‖𝑥𝑛+1 − 𝑝‖2

∞

𝑛=1

∞

𝑛=1

). 
 

(10) 

Since {‖𝑥𝑛 − 𝑝‖} converges and terms of the sequence in the right hand side will be cancelled, 

we have 

 
∑ 𝛼𝑛(1 − 𝛼𝑛)𝑔(‖𝑥𝑛 − 𝑇𝑛𝑥𝑛‖) ≤ ∑(‖𝑥𝑛 − 𝑝‖2 − ‖𝑥𝑛+1 − 𝑝‖2

∞

𝑛=1

∞

𝑛=1

). 

< ∞. 

 

(11) 

Since 0 < 𝛼𝑛 < 1 and {𝛼𝑛} ⊂ [𝜖, 1 − 𝜖] ⊂ (0,1), we have  

 𝑊2(𝛼𝑛) = 𝛼𝑛(1 − 𝛼𝑛) 

≥ 𝜖2 

 

11

Takele and Reddy: Convergence theorems for common fixed point

Published by Digital Commons @PVAMU, 2019



AAM: Intern. J., Special Issue No. 4 (March 2019)                                                                                        187 
 

> 0. 

Hence, 

 
∑ 𝑔(‖𝑥𝑛 − 𝑇𝑛𝑥𝑛‖)

∞

𝑛=1

< ∞. 
 

Thus,  𝑔(‖𝑥𝑛 − 𝑇𝑛𝑥𝑛‖) ⟶ 0 as  𝑛 ⟶ ∞. Since 𝑔  is continuous, strictly increasing and convex 

function, we have 

 lim
𝑛⟶∞

sup‖𝑥𝑛 − 𝑇𝑛𝑥𝑛‖ = 0.  

Moreover, since lim
𝑛→∞

‖𝑥𝑛 − 𝑝‖ = 𝑟 ≥ 0,   

 lim
𝑛⟶∞

sup‖𝑇𝑛𝑥𝑛 − 𝑝‖ ≤ lim
𝑛⟶∞

sup‖𝑥𝑛 − 𝑝‖  

         = 𝑟, 

 

and  

 lim
𝑛⟶∞

‖𝛼𝑛(𝑥𝑛 − 𝑝) + (1 − 𝛼𝑛)(𝑇𝑛𝑥𝑛 − 𝑝)‖ = lim
𝑛⟶∞

‖𝑥𝑛+1 − 𝑝‖ . 

                                                   = 𝑟. 

 

Thus, by the Lemma 2.1 in Zeidler (1986), we have  

 lim
𝑛→∞

‖𝑥𝑛 − 𝑇𝑛𝑥𝑛‖ = 0.  

Hence, by triangle inequality we have  

 Lim
𝑛⟶∞

‖𝑥𝑛+1 − 𝑥𝑛‖ = lim
𝑛→∞

‖𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝑛𝑥𝑛 − 𝑥𝑛‖    

               = lim
𝑛⟶∞

(1 − 𝛼𝑛)‖𝑥𝑛 − 𝑇𝑛𝑥𝑛‖ 

                              = 0.        

   

(12) 

So, since lim
𝑛→∞

‖𝑥𝑛 − 𝑇𝑛𝑥𝑛‖ = 0, ∀𝑖 = 1,2, … , 𝑁,  𝑇𝑛+𝑖  is nonexpansive and  by induction  

∀𝑖 = 1,2, … , 𝑁,   lim
𝑛→∞

‖𝑥𝑛 − 𝑥𝑛+𝑖‖ = 0, we get 

 ‖𝑥𝑛 − 𝑇𝑛+𝑖𝑥𝑛‖ ≤ ‖𝑥𝑛 − 𝑥𝑛+𝑖‖ + ‖𝑥𝑛+𝑖 − 𝑇𝑛+𝑖𝑥𝑛+𝑖‖ + ‖𝑇𝑛+𝑖𝑥𝑛+𝑖 − 𝑇𝑛+𝑖𝑥𝑛‖  

≤ 2‖𝑥𝑛 − 𝑥𝑛+𝑖‖ + ‖𝑥𝑛+𝑖 − 𝑇𝑛+𝑖𝑥𝑛+𝑖‖ ⟶ 0. 
(13) 

Therefore,  ∀𝑖 = 0, 1,2, … , 𝑁, lim
𝑛→∞

‖𝑥𝑛 − 𝑇𝑛+𝑖𝑥𝑛‖ = 0 as  𝑛 ⟶ ∞. 

Moreover, if ∀𝑙 = 1,2, … , 𝑁, lim
𝑛→∞

‖𝑥𝑛 − 𝑇𝑙𝑥𝑛‖ = 0, then by Theorem 2.1 in a uniformly 

convex Banach space, demi closedness principle is satisfied. Thus, suppose 𝑥𝑛 → 𝑥 weakly 

and 𝑥𝑛 − 𝑇𝑙𝑥𝑛 → 0 strongly. Then,  𝑇𝑙 is demi closed, hence, 

 𝑇𝑙𝑥 = 𝑥. (14) 

Since every uniformly convex Banach space is reflexive and {𝑥𝑛} is bounded, {𝑥𝑛} has a 

weakly convergence subsequence {𝑥𝑛𝑗
} which converges weakly to 𝑥 ∈ 𝐾.  
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Suppose 𝑥𝑛 → 𝑝 weakly; that is, there is a subsequence {𝑥𝑛𝑘
} of  {𝑥𝑛} such that 𝑥𝑛𝑘

→ 𝑝 weakly 

and let  𝑛𝑘 = 𝑗(𝑚𝑜𝑑 𝑁) + 1, for some 1 ≤ 𝑗 ≤ 𝑁. For any 𝑙 ∈ {1,2, . . . , 𝑁} there exists 1 ≤
𝑖 ≤ 𝑁 such that 𝑛𝑘+𝑖 = 𝑙(𝑚𝑜𝑑 𝑁) + 1. Thus, we have 

 

  
Lim
𝑘⟶∞

‖𝑥𝑛𝑘  − 𝑇𝑙𝑥𝑛𝑘
‖ = 0. (15) 

Thus,  𝑝 ∈ 𝐹(𝑇𝑙).  Since 𝑙 is arbitrary, we have  𝑝 ∈ 𝐹 = ⋂ 𝐹(𝑇𝑙
𝑁
𝑙=1 ).  

It is sufficient  to show that  𝑥𝑛 → 𝑝 weakly, thus, suppose there  exists a subsequence {𝑥𝑛𝑘
} 

of {𝑥𝑛}  such that  𝑥𝑛𝑗𝑘
→ 𝑞, similarly  𝑞 ∈ 𝐹. Supose 𝑝 ≠ 𝑞, we have  

  

 Lim
𝑛⟶∞

‖𝑥𝑛 − 𝑝‖ = limsup 
𝑘⟶∞

‖𝑥𝑛𝑘
− 𝑝‖  

                            < limsup
𝑘⟶∞

‖𝑥𝑛𝑘
− 𝑞‖ 

                       = lim
𝑘→∞

‖𝑥𝑛𝑘
− 𝑞‖ 

                     < lim 
𝑛⟶∞

‖𝑥𝑛 − 𝑝‖, 

 

 

 

(16) 

 

which is contradiction, hence,  𝑝 = 𝑞. 

Therefore, the sequence {𝑥𝑛} converges weakly to  𝑝 ∈ 𝐹 = ⋂ 𝐹(𝑇𝑙
𝑁
𝑙=1 ), which completes the 

proof of weak convergence.                                                                                                       

We also have the following strong convergence theorem. 

 

Theorem 3.3.  

Let  𝑇1, 𝑇2, . . . 𝑇𝑁: 𝐾 → 𝐸 be a finite family of nonself, nonexpansive and inward mappings on 

a non-empty, closed and convex subset 𝐾 of a real uniformly convex Banach space 𝐸 such that  

𝐹 = ⋂ 𝐹(𝑇𝑘)𝑁
𝑘=1  is non-empty. Let 𝑇𝑘 = 𝑇𝑘(𝑀𝑜𝑑 𝑁) + 1, 𝑥0 ∈ 𝐾, for each 𝑘 ∈ {1,2, . . . , 𝑁}, 

let ℎ𝑘: 𝐾 ⟶ ℝ be defined by ℎ𝑘(𝑥) = 𝑖𝑛𝑓{𝜆 ≥ 0: 𝜆𝑥 + (1 − 𝜆)𝑇𝑘𝑥 ∈ 𝐾}. Then,  the sequence 

{𝑥𝑛} given by  

 𝑥1 ∈ 𝐾,                                         

𝛼1 = max{𝛼, ℎ1(𝑥1)} , 𝛼 > 0,   

𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝑛𝑥𝑛,

𝛼𝑛+1 = max{𝛼𝑛, ℎ𝑛+1(𝑥𝑛+1)} ,
 
 

 

 

is well-defined and if ∑ (1 − 𝛼𝑛) < ∞∞
𝑛=0  and (F,K) satisfies S-condition, then the sequence 

{𝑥𝑛} converges strongly to some element 𝑝 of  𝐹 = ⋂ 𝐹(𝑇𝑘)𝑁
𝑘=1 . 

 

Proof: 

 

If  ∑ (1 − 𝛼𝑛) < ∞∞
𝑛=0   and (F,K) satisfies S-condition, then by the boundedness of {𝑥𝑛} and 

{𝑇𝑛𝑥𝑛} we have  

  ‖𝑥𝑛+1 − 𝑥𝑛‖ ≤ ‖𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝑛𝑥𝑛 − 𝑥𝑛‖ 

          = (1 − 𝛼𝑛)‖𝑥𝑛 − 𝑇𝑛𝑥𝑛‖ 

= (1 − 𝛼𝑛)𝑀, 
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for some 𝑀 > 0. 
 

Thus,  

  ∑ ‖𝑥𝑛+1 − 𝑥𝑛‖∞
𝑛=1 ≤ ∑ ‖𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝑛𝑥𝑛 − 𝑥𝑛‖∞

𝑛=1  

                  = ∑ (1 − 𝛼𝑛)‖𝑥𝑛 − 𝑇𝑛𝑥𝑛‖∞
𝑛=1  

     ≤ ∑ 2(1 − 𝛼𝑛)∞
𝑛=1 𝑀 

                                        < ∞. 

 

Thus, the sequence {𝑥𝑛} is a strongly Cauchy sequence, hence, it is Cauchy, thus  it converges. 

Thus, since 𝑇𝑛 is inward mapping by Lemma 3.1 together S-condition, we have that the 

sequence {𝑥𝑛} converges strongly to some 𝑝 ∈ 𝐹 = ⋂ 𝐹(𝑇𝑙
𝑁
𝑙=1 ). This completes the proof.                                                                                                          

 

 

Theorem 3.4. 

Let 𝑇: 𝐾 → 𝐸 be a nonself, nonexpansive and inward mapping on  a non-empty, closed and 

strictly convex subset 𝐾 of a real uniformly convex Banach space 𝐾 such that 𝐹 = 𝐹(𝑇) is 

nonempty. Let ℎ: 𝐾 → ℜ be defined by ℎ(𝑥) = 𝑖𝑛𝑓{𝜆 ≥ 0: 𝜆𝑥 + (1 − 𝜆)𝑇𝑥 ∈ 𝐾}, and let 𝛼 ∈
(0,1) be fixed.  Then,  the sequence {𝑥𝑛} defined by  

 

              𝑥1 ∈ 𝐾,                                         

𝛼1 = max{𝛼, ℎ(𝑥1)} , 𝛼 > 0,   

𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝑥𝑛,

𝛼𝑛+1 = max{𝛼𝑛, ℎ(𝑥𝑛+1)} ,    
 
 

 

is well-defined and if {𝛼𝑛} ⊂ [𝜀, 1 − 𝜀] ⊂ (0,1) for some 𝜀 ∈ (0,1), then {𝑥𝑛} converges 

weakly to some element 𝑝  of 𝐹 = 𝐹(𝑇) provided that 𝐸 satisfies Opial’s condition. Moreover, 

if 𝐾  is strictly convex and  ∑ (1 − 𝛼𝑛) < ∞∞
𝑛=1 , then the convergence is strong. 

 

Proof:  

Weak convergence part is consequence of Theorem 3.2. Thus, the sequence {𝑥𝑛} converges 

weakly to 𝑝 ∈ 𝐹, which completes the proof of weak convergence. Moreover, if  
∑ (1 − 𝛼𝑛) < ∞∞

𝑛=1   and  𝐾 is strictly convex, then by the boundedness of {𝑥𝑛} and {𝑇𝑥𝑛} we 

have  

 ‖𝑥𝑛+1 − 𝑥𝑛‖ ≤ ‖𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝑥𝑛 − 𝑥𝑛‖ 

          = (1 − 𝛼𝑛)‖𝑥𝑛 − 𝑇𝑥𝑛‖ 

                                  = (1 − 𝛼𝑛)𝑀,  

 

 

for some 𝑀 > 0. 
Thus,  

  ∑ ‖𝑥𝑛+1 − 𝑥𝑛‖∞
𝑛=1 ≤ ∑ ‖𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝑥𝑛 − 𝑥𝑛‖∞

𝑛=1  

                   = ∑ (1 − 𝛼𝑛)‖𝑥𝑛 − 𝑇𝑥𝑛‖∞
𝑛=1  

       ≤ ∑ 2(1 − 𝛼𝑛)∞
𝑛=1 𝑀 

 < ∞. 

 

We see that the sequence {𝑥𝑛} is strongly Cauchy, hence, it is a Cauchy sequence. 
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Since by Lemma 3.1 {𝑥𝑛} is in 𝐾  and  𝐾  is closed and convex subset of the reflexive Banach 

space 𝐸,  we have  𝑥𝑛 → 𝑥 ∈ 𝐾.  
Hence, by Lemma 3.1(a), we have ℎ(𝑥) < 1, thus, by definition of ℎ we see that for any 𝛽 ∈
[ℎ(𝑥),1),       

 𝛽𝑥 + (1 − 𝛽)𝑇𝑥 ∈ 𝐾.  (17) 

Since  𝑙𝑖𝑚
𝑛→∞

𝛼𝑛 = 𝑙𝑖𝑚
𝑛→∞

𝑚𝑎𝑥{𝛼𝑛−1, ℎ(𝑥𝑛)} = 1,  there must exist a subsequence {𝑥𝑛𝑘
} of {𝑥𝑛} 

such that {ℎ(𝑥𝑛𝑘
)} is increasing and 𝑙𝑖𝑚

𝑘→∞
ℎ(𝑥𝑛𝑘

) = 1, hence, for any 𝛽 < 1 and for large 𝑘 

 𝛽𝑥𝑛𝑘
+ (1 − 𝛽)𝑇𝑥𝑛𝑘

∉ 𝐾. (18) 

Let 

 

𝛽1,   𝛽2 ∈ (ℎ(𝑥),1),  𝛽1 ≠ 𝛽2,  𝛽1𝑥 + (1 − 𝛽1)𝑇𝑥 = 𝑧1 ∈ 𝐾 

and 

 

 𝛽2𝑥 + (1 − 𝛽2)𝑇𝑥 = 𝑧2 ∈ 𝐾, in particular if  𝛽 ∈ [𝛽1, 𝛽2] .  
 

Then,  we have                                   

 𝛽 ∈ (ℎ(𝑥),1) and 𝑧 = 𝛽𝑥 + (1 − 𝛽)𝑇𝑥 ∈ 𝐾. (19) 

Since 𝑥𝑛 → 𝑥 ∈ 𝐾 and  𝑇  is nonexpansive, hence, it is continuous and by Lemma 3.1(d) 

  𝛽𝑥𝑛𝑘
+ (1 − 𝛽)𝑇𝑥𝑛𝑘

→ 𝑧 = 𝛽𝑥 + (1 − 𝛽)𝑇𝑥 ∈ 𝐾. (20) 

Similarly, 𝑧1, 𝑧2 ∈ 𝜕𝐾. Since 𝛽 is arbitrary [𝑧1, 𝑧2] ⊂ 𝜕𝐾. Since 𝐾 is strictly convex 𝑧1 = 𝑧2,   

hence, 𝑥 = 𝑇𝑥. 

Therefore, 𝑥𝑛 → 𝑥 ∈ 𝐹(𝑇) in norm, which complete the proof of the theorem.                      

 

Theorem 3.5. 

Let 𝑇1, 𝑇2, . . . , 𝑇𝑁: 𝐾 → 𝐸 be a finite family of nonself, nonexpansive and inward mappings on 

a non-empty, closed and strictly convex subset 𝐾 of a real uniformly convex and 2-uniformly 

smooth Banach space  𝐾  with 𝐹 = ⋂ 𝐹(𝑇𝑘)𝑁
𝑘=1  is non-empty. Let 𝑇 = ∑ 𝜇𝑖𝑇𝑖

𝑁
𝑖=1 , where 𝜇𝑖 >

0, 𝑖 = 1,2, . . . , 𝑁,   ∑ 𝜇𝑖
𝑁
𝑖=1 = 1, ℎ(𝑥) = 𝑖𝑛𝑓{𝜆 ≥ 0: 𝜆𝑥 + (1 − 𝜆)𝑇𝑥 ∈ 𝐾}, and 𝛼 ∈ (0,1) be 

fixed. Then,  the sequence {𝑥𝑛} defined by 

  

 𝑥1 ∈ 𝐾,                                     

𝛼1 = max{𝛼, ℎ(𝑥1)} , 𝛼 > 0,

    𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝑥𝑛,

𝛼𝑛+1 = max{𝛼𝑛, ℎ(𝑥𝑛+1)},
 
 

 

 

is well-defined and if {𝛼𝑛} ⊂ [𝜀, 1 − 𝜀] ⊂ (0,1) for some 𝜀 ∈ (0,1), then the sequence {𝑥𝑛} 

converges weakly to some  𝑝 of 𝐹 = ⋂ 𝐹(𝑇𝑘)𝑁
𝑘=1   provided that 𝐸 satisfies Opial’s condition. 

Moreover, if  𝐾 is strictly convex and  ∑ (1 − 𝛼𝑛) < ∞∞
𝑛=1 ,  then the convergence is strong. 

 

Proof:  
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By Lemma 2.4, we have that the mapping 𝑇 = ∑ 𝜇𝑖𝑇𝑖
𝑁
𝑖=1  is nonexpansive, inward and nonself 

mapping and  𝐹(𝑇) = ⋂ 𝐹(𝑇𝑖𝑖=1 ) in 2-uniformily smooth and uniformly convex Banach space. 

Thus, by Lemma 2.4 together Theorem 3.4, we complete the proof.                                         

We lower the condition (S) as well as strictly convexity by imposing condition (𝐻) as given 

below. 

 

Definition 3.1. 

The finite family of mappings, {𝑇𝑖}𝑖=1
𝑁 , where 𝑇𝑖: 𝐾 ⟶ 2𝐸   with the intersection of sets of fixed 

points  ⋂ 𝐹(𝑇𝑘)𝑁
𝑘=1   is said to satisfy condition (𝐻) if there exists a non decreasing function 

𝑔: [0, ∞) → [0, ∞) satisfying the condition 𝑔(0) = 0 and 𝑔(𝑟) > 0  for 𝑟 ∈ (0, ∞) such that                            

 𝑑(𝑥𝑛, 𝑇𝑖𝑥𝑛) ≥ 𝑔(𝑑(𝑥𝑛, 𝐹)), for all 𝑥𝑛 ∈ 𝐾, (21) 

where           

 𝑑(𝑥, 𝐹) = 𝑖𝑛𝑓{‖𝑥 − 𝑓‖, 𝑓 ∈ 𝐹}.  

Theorem 3.6.  

In Theorem 3.2, if the finite family of mappings satisfying condition (𝐻) and  the sequence 
{𝛼𝑛} ⊂ [𝜀, 1 − 𝜀] ⊂ (0,1) for some 𝜀 ∈ (0,1), then the sequence {𝑥𝑛} converges strongly to 

some element  𝑝 of  𝐹 = ⋂ 𝐹(𝑇𝑘)𝑁
𝑘=1 . 

 

Proof:  

From the method proof of Theorem 3.2, we have  

 lim
𝑛→∞

‖𝑥𝑛 − 𝑇𝑙𝑥𝑛‖ = 0,           ∀𝑙 = 1,2, … , 𝑁.  

Furthermore, since the family of mappings satisfies condition (𝐻), there exists a non decreasing 

function 𝑔: [0, ∞) → [0, ∞) satisfying the condition 𝑔(0) = 0 and 𝑔(𝑟) > 0  for 𝑟 ∈ (0, ∞) 

such that      

 𝑑(𝑥𝑛, 𝑇𝑖𝑥𝑛) = ‖𝑥𝑛 − 𝑇𝑖𝑥𝑛‖ 

                                            ≥ 𝑔(𝑑(𝑥𝑛, 𝐹)),             𝐹 ≠ ∅. 

 

Thus,  liminf
𝑛⟶∞

𝑑(𝑥𝑛, 𝐹) = 0,  which together with  𝑑(𝑥𝑛+1, 𝐹) ≤ 𝑑(𝑥𝑛, 𝐹) gives             

                     lim
𝑛⟶∞

𝑑(𝑥𝑛, 𝐹) = 0, thus, for  𝑛 > 𝑚  and for all 𝑝 ∈ 𝐹, we have 

 ‖𝑥𝑛 − 𝑥𝑚‖‖≤‖𝑥𝑛 − 𝑝‖+‖𝑥𝑚 − 𝑝‖≤ 2‖𝑥𝑚 − 𝑝‖.  

Taking infimum over all  𝑝 ∈ 𝐹  we get                      

 ‖𝑥𝑛 − 𝑥𝑚‖ ≤ 2𝑑(𝑥𝑚, 𝐹) ⟶ 0, as 𝑚, 𝑛 ⟶ ∞,  

hence, the sequence {𝑥𝑛}  is Cauchy sequence, thus, it converges to some 𝑞 ∈ 𝐾.  

Moreover, we have  

 ‖𝑞 − 𝑇𝑖𝑞‖‖≤‖𝑥𝑛 − 𝑞‖+‖𝑥𝑛 − 𝑇𝑖𝑥𝑛‖ + ‖𝑇𝑖𝑥𝑛 − 𝑇𝑖𝑞‖ (22) 
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                           ≤ 2‖𝑥𝑛 − 𝑞‖ + ‖𝑥𝑛 − 𝑇𝑖𝑥𝑛‖ ⟶ 0  as 𝑛 ⟶ ∞. 
  

Since  𝑇𝑖𝑞 = 𝑞,  we have  𝑞 ∈ 𝐹  which completes the proof.                                                   

 

Example 1. 

 Let 𝐸 = 𝑙2(ℝ) and  𝑇𝑖: [0,1] ⟶ ℝ  be defined by 

  𝑇𝑖𝑥 = −
𝑥

𝑖
,          𝑖 = 1,2, … .  

Then,  each 𝑇𝑖  is nonexpansive, nonself and inward mapping satisfying condition (𝐻). 

In fact, 

                             

                                          𝑇𝑖𝑥 = −
𝑥

𝑖
                                         

                                             = 𝑥 +
𝑖+1

𝑖
(0 − 𝑥), 0 ∈ [0,1],      

𝑖+1

𝑖
≥ 1. 

 

Thus, 𝑇𝑖  is inward mapping. 

We also see that  𝑥 − 𝑇𝑖𝑥 =
𝑖+1

𝑖
  and  𝑑(𝑥, 𝐹)) = 𝑥 hold. Thus, by taking  𝑔(𝑡) = 𝑡, ∀𝑡 ∈

[0, ∞), we have   

  ‖𝑥 − 𝑇𝑖𝑥‖ =
𝑖+1

𝑖
𝑥 

                      ≥ 𝑑(𝑥, 𝐹) 

              = 𝑥. 

 

Thus, {𝑇𝑖} is the family of nonself, nonexpansive and inward mappings satisfying condition 

(𝐻).  

 

Theorem 3.7.  

Let  𝑇1, 𝑇2, . . . 𝑇𝑁: 𝐾 → 𝐸 be a finite family of nonself, k-strictly pseudocontractive and inward 

mappings on a non-empty, closed and strictly convex subset 𝐾 of a real uniformly convex and 

2-uniformly smooth Banach space 𝐸 with Frechet differentiable norm and smoothness 

constant  𝑐 > 0,  𝐹 = ⋂ 𝐹(𝑇𝑘)𝑁
𝑘=1  non-empty,  let for each  𝑖, 𝑇𝑖𝛼 = 𝛼𝐼 + (1 − 𝛼)𝑇𝑖, where 𝛼 ∈

(0,1) ⋂(0, 𝜇], 𝑇𝛼𝑛 = 𝑇𝛼𝑛(𝑀𝑜𝑑 𝑁) + 1 and ℎ(𝑥) = 𝑖𝑛𝑓{𝜆 ≥ 0: 𝜆𝑥 + (1 − 𝜆)𝑇𝛼𝑛𝑥 ∈ 𝐾}.  
Then,  the sequence {𝑥𝑛} defined by 

 

 𝑥1 ∈ 𝐾                                              

𝛼1 = max{𝛼, ℎ(𝑥1)} , 𝛼 > 0,        

𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝛼𝑛𝑥𝑛,

𝛼𝑛+1 = max{𝛼𝑛, ℎ(𝑥𝑛+1)},           
 
 

 

is well-defined and if {𝛼𝑛} ⊂ [𝜀, 1 − 𝜀] ⊂ (0,1) for some 𝜀 ∈ (0,1), then {𝑥𝑛} converges 

weakly to some element 𝑝  of  𝐹 = ⋂ 𝐹(𝑇𝑘)𝑁
𝑘=1  provided that 𝐸 satisfies opial’s condition. 

Moreover, if 𝐸  strictly convex and  ∑ (1 − 𝛼𝑛) < ∞∞
𝑛=1 ,  then the convergence is strong. 

 

Proof: 

The proof is immediate from Lemma 2.5 and method of proof of Theorem 3.2.                      
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4. Conclusion 

 

Let 𝑇1, 𝑇2, . . . 𝑇𝑁: 𝐾 → 𝐸  be a finite family of nonself, nonexpansive and inward  mappings on a  

nonempty, closed and convex subset 𝐾 of a real uniformly convex Banach space 𝐸  with 

 𝐹 = ⋂ 𝐹(𝑇𝑘)𝑁
𝑘=1  is nonempty. Let 𝑇𝑘 = 𝑇𝑘(𝑀𝑜𝑑 𝑁) + 1, 𝑥1 ∈ 𝐾, for each 𝑘 ∈ {1,2, . . . , 𝑁},  

let ℎ𝑘: 𝐾 ⟶ ℝ be defined by ℎ𝑘(𝑥) = 𝑖𝑛𝑓{𝜆 ≥ 0: 𝜆𝑥 + (1 − 𝜆)𝑇𝑘𝑥 ∈ 𝐾}. Then the sequence 

{𝑥𝑛} given by  

 𝑥1 ∈ 𝐾,                                             

𝛼1 = max{𝛼, ℎ1(𝑥1)} , 𝛼 > 0,      

𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝑛𝑥𝑛,   

𝛼𝑛+1 = max{𝛼𝑛, ℎ𝑛+1(𝑥𝑛+1)},    
 
 

 

is well-defined and if {𝛼𝑛} ⊂ [𝜀, 1 − 𝜀] ⊂ (0,1) for some 𝜀 ∈ (0,1), then the sequence {𝑥𝑛} 

converges weakly to some element 𝑝  of 𝐹 = ⋂ 𝐹(𝑇𝑘)𝑁
𝑘=1  provided 𝐸 satisfies Opial’s 

condition. Moreover, if ∑ (1 − 𝛼𝑛) < ∞∞
𝑛=1  and (F,K) satisfies S-condition, then the sequence 

{𝑥𝑛} converges strongly to some element 𝑝 of 𝐹 = ⋂ 𝐹(𝑇𝑘)𝑁
𝑘=1 . We also prove strong 

convergence result with the assumption of condition (𝐻) in lowering strictly convexity and 

condition (𝑆). The results are extended to more general class of strictly pseudocontractive 

mappings with possible restrictions on the  Banach spaces. 
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