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Abstract

This paper aims to prove that the set {g;;(x), L;j(z), 4,5 = 1,2} is a complete system of the SM (3)-
invariants of a nondegenerate surface in R, where {g;;(x)} and {L;;(z)}, 4,5 = 1,2 are the sets of
all coefficients of the first and second fundamental forms of a surface z in R?. A similar result was
obtained for the group M (3).
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1. Introduction

We first recall some preliminary information about differential geometry of curves and surfaces.
Let U be a connected open subset of R2. A C>°-mapping = : U — R? is called a surface in R3. It is
known that a curve in R is uniquely determined by two local invariant quantities, namely curvature
and torsion, as functions of arc length. Similarly, a surface in R? is uniquely determined by certain
local invariant quantities, the first and second fundamental forms. Let I = Edu? + 2Fdudv + Gdv?
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and II = Ldu® + 2Mdudv + Ndv? be the first and second fundamental forms of a surface z,
respectively. If E(u,v).G(u,v) — F?(u,v) # 0 for all (u,v) € U, then the surface z is said to be
regular. Let H*(2) be the set of all regular surfaces in R3. If L(u,v) # 0 and N(u,v) # 0 for all
(u,v) € U, then the surface z is said to be nondegenerate.

The groups M (3) and SM (3) are defined as M (3) = {F : R} — R3 | Fx =gx+b, g € O(3), b €
R3}, where O(3) is the group of all real orthogonal 3 x 3-matrices, and SM(3) = {Fz =gz +b €
M(3)| g € SO(3)}, where SO(3) = {g € O(3) | det(g) = 1}.

By Bonnet’s theorem (Aminov (2001), Milman and Parker (1977), Kose et al. (2011)), if x(u,v)
and y(u,v) are regular surfaces such that

E,(u,v) = Ey(u,v), Fp(u,v) = Fy(u,v), Gz (u,v) = Gy(u,v),

Ly(u,v) = Ly(u,v), My(u,v) = My(u,v), Np(u,v) = Ny(u,v), )

for all (u,v) € U, then there exists an F' € SM (3) such that y(u,v) = Fz(u,v) for all (u,v) € U.

Giirsoy and Incesu (2017) investigated the equivalence condition of compared two different control
point system under the linear similarity transformations LS(2) in R? according to the invariant
system of these control points. Aripov and Khadjiev (2007) found the complete system of global
differential and integral invariants of a curve in Euclidean geometry.

In our study, we give other complete systems of SM (3)-invariants of nondegenerate surfaces and
complete systems of M (3)-invariants of nondegenerate surfaces. There exists a complete system
of differential invariants of surface z(u, v) with four elements (see Alexeevskiy et al. (1990)). The
original contribution of our work is to find a general system of invariants and to adapt the studies
done for curves to surfaces.

Our paper is organized as follows. In Section 2, we give some elementary definitions and a propo-
sition, which are used later on. In Section 3, we give the definitions of G-invariant differential
field R and differential algebra of G-invariant differential polynomial functions Rz, A;lG, where
x(uy,uz) is a surface in R3 and G = SM(3) or G = M (3), and where the function Ay is defined as
follows:

Ag = d€t||< Yis 25 >H, 1,5 =1,2,3,

and

ox ox 0%z
=21 = -, =29 = — y — 29 = ——F.
Y1 1 oy Y2 2 O Y3 3 8u§

Also, we obtain the generating system of the differential field R and the differential algebra
Rz, A;lG. In Section 4, we obtain the complete system of G-invariant differential rational functions
of a nondegenerate surface for the groups G = SM (3) and G = M (3).

2. Coefficients of the second fundamental form

Let < z,y >= zy; + w2y2 + x3y3 be the inner product of two vectors in R3. Denote by
det Gr(ai,az2) the determinant of the Gram matrix ||< ag,q >”i,z=1 of the vectors a; € R3. Let
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{e1, e2,e3} be the standard orthonormal basis in R?; let {a;,as} be a set of vectors in R3. We con-
sider al = (an,agl,agl), ag = (alg,agg,a32) and e = {61,62,63} as column vectors. Set Pk =

det Haijugg{ﬁ 5/ ad Ay = (=1)!FP; for k = 1,2,3. Let [earas] := Arer + Asez + Azes € R,
For any vectors b, aj,as in R3, denote [bajas] := det|bajas|. It follows from the Lagrange identity

[eaiasg]

detGr(a1, az2)
unit vector and < [eajaz],a; >= 0 for all j = 1, 2. On the other hand, let the vectors a;, as € R3 be
[balag]

VdetGr(ar, az)

that if the vectors ay,as € R? are linearly independent, then the vector i = is a

linearly independent and b € R3. Thus, it is obtained that < 72, b >=

Proposition 2.1.

Let = be a regular surface in R3. Then the coefficients of the second fundamental form of = are

o[22 0x 027
N | Ou? Ouq ugy v
Or Ox Ox | -1
M= | S 2
_aulaim 8u1 8uJ 0 ( )
[ Ox Ox Oz ] -1
N=|—F——0:2,
_8u% ouq 8UQ:|
where 6, = detGr(y1,y2; 21, 22), and y; = 21 = 8—x, Yo = 29 = ﬁ
8U1 8u2
Proof:
It follows from Kreyszig (1991). n

3. Generating systems of some differential algebras of M (3)-invariant
and S M (3)-invariant differential rational functions of the
nondegenerate surfaces

Definition 3.1 (Kaplansky (1957)).

Let z(u) = x(u1,us) be a surface in R3. Let m;,my be non-negative integers, we set z(0:0) =

M1 +ma
(m1,m2) — 9 x

oulM oul
ber of partial derivatives of = with coefficients in R is called a differential polynomial of = and is
denoted by p {z}.

T,z . Any polynomial p(z, (19, (01 (11 g(mime)y of - and a finite num-

The set of all differential polynomials of x will be denoted by R {x}. It is a differential R-algebra
with respect to the derivations 8%1, 8%2. This differential R-algebra is also an integral domain. The
quotient field of it will be denoted by R < x >. Itis a differential field with respect to the derivations
8%1, 8%2. An element h of R < z > will be called a differential rational function of = and denoted
by h <z >.

Let + = x(u),y = y(u),...2 = z(u) be a finite number of surfaces in R® and f1, fo,..., fm €
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R < z,y,...,z >. A differential polynomial of z, vy, ...z, f1,..., fi, is similarly defined; it will be
denoted by p{z,vy,...,z, f1,..., fm}. The differential R-algebra of all differential polynomials of
T, Y, ... 2 f1,..., fm 1s denoted by R{z, vy, ...z, fi1,..., fm}. The differential field of all differential
rational functions of z,y, ...z, fi, fo,..., fm isdenoted by R < z,y,...z, f1,..., fm >.

Clearly, the set Fz(u) is a surface in R? for any surface z(u) in R® and F € M (3).

Definition 3.2.

A differential rational function h < z,v,..., 2, f1,..., fm > Will be called G-invariant, where G is
a subgroup of M (3), if for all g € G we have

h<gxagy7"'7gzaf1<gxagy7"'7gz>7'”7fm<gx7gy7"‘7gz >>=
h<z,y, . ..,z2,fi<z,y,....2> ..., fm<T,Y,...,2>>.

The set of all G-invariant differential rational functions of the surfaces z, y, ..., z and the functions
fi, f2- .., fm Will be denoted by

G
R<z,y,....2, f1,-.., fm > .

It is a differential subfield of R < z,v,..., 2, f1,..., fm >. The set of all G-invariant differential
polynomial functions of z,y, ...,z and fi,..., f,, will be denoted by R{z,y,...,z, fi,..., fm}G. It
is a differential subalgebra of the differential algebra R{z, vy, ..., z, f1,..., fm} and the differential
fieldR < z,y,...,2, fi,..., fm >C.

Definition 3.3.

Let K be a differential subfield of R < z,y,...,z >. A subset S of K is a generating system of the
differential field K if the smallest differential subfield of it containing S is K.

Definition 3.4.

Let fi,..../fm € R < zy,...,2 > and K be a differential R-subalgebra of
R{z,y,...,2 f1,..., fm}. A subset S of K will be called a generating system of the differential
algebra K if the smallest differential subalgebra of it containing S is K.

Let R {z, A;l }G be the differential algebra of all G-invariant differential polynomial functions of

. o ox
a surface x and the function A;l, where A;l = det||< yi,z; >, 4,5 =1,2and y; = 21 = EI
ox 0%z . . . '
e N k.t Note that the functions < z(™172) z(P1:p2) > are M (3)-invariant.
u9 ud

Hence the functions A, and A;l are M (3)-invariant. In what follows, A := A;; we investigate
properties of the differential algebra R {z, A;! }G for d = 1; the other d being similar.
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Theorem 3.5.

The set of elements

Jxr Ox o 1 0’z 0%
<8ui’6uj> for 1<i<j<2; A7 <8u%’8u18ur> for r=1,2, 3)
is a generating system of the differential algebra R {z, A~* }M(3).

Proof:
LetR {8‘%’1, a%, A‘l} be the differential algebra of all differential polynomial functions of 8‘9—{;’1, 68—52,

G
A~!and R{ Or O ,A*I} be the differential algebra of all G-invariant differential polynomial

Auy * Auy
functions of §=, 9= A~L,
Lemma 3.6.
o3

R{z, a7 }MO R { gz 22 A-1}) @,
Proof:
It is similar to the proof of Lemma 1 in Khadjiev (2010). n
Lemma 3.7.
The set

{< gmeme) gPre2) > my +my > 1,p1 +p2 > 1,my, p; € NU {0}} “)
. . . . 0(3)
is a generating system of the differential algebra R {8‘9—;’31, 88—52} .
Proof:
It is similar to the proof of Lemma 3 in Khadjiev (2010). n
Lemma 3.8.
The set

{< gmimz) g (Prpe) S ALy 4mg > 1,p1 +p2 > 1,my, pi € NU {0}}

. . . . 0(3)
is a generating system of the differential algebra R {5%, 8‘9;; , A‘l} .

Proof:

: 0@) . . PR
Let f € R{%,%,A—l} . Then f can be written in the form f = W, where

h{aafl , g—qf?} eR {a%v %’2} and m € NU {0}. Let g € O(3). Since f is O(3)-invariant, we have
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{8@:)78@1)} o } P P
‘X‘(lgx el = )8“2 . Since A(z) is M (3)-invariant, we have h { éif), 3(“52”) } =h { o 3%}
. 0(3) o
forall g € O(3) thatis h € R {(%"1, 5952 } . Now Lemma 3.7 implies Lemma 3.8. n

Let Vi= {< 22,02 > for 1<i<j<2 (5% 528) for 1 <7 <2f and R{V} be the dif-

‘ 0(3) .

ferential R-subalgebra of R { 2z g A } generated by V. Denote by R {V,A~!} the dif-
8’LL ’ 8u2

A~ According to Lemmas 3.6 and 3.8, for a proof of our theorem, it is enough to prove that

< glmima) g(ep2) e R {V, Afl} for all m;, p; € NU {0} such that m; +ms > 1 and p; + p2 > 1.

) 0(3) .
ferential R-subalgebra of R{ Ov Oz N-— 1} generated by elements of V' and the function

Let Vp = {< %,W >[1<i<jy <2}, and R{V,} be the differential R-subalgebra of

O(3) . .
R { = A } generated by elements of V;. Since 1, C V, it follows that R {1} ¢ R{V}.

Lemma 3.9.

2

We have < 5 au ,au >e R{Vp} foralli,j,l € {1,2}.

Proof:
For all 4,j € {1,2}, we have ai < 385’ , gff =2< 832gu ,% >. This equality implies that <
8553% B € R{VO} for all 4, j such that 1 <4, j < 2. Using the fact that < afgu oe € R{V}

Jor Oz 0%z Oz ox 0%z 696 ox
and the equality -2 i < duoow < o ow > T < Gun vwon > W obtain < Gt B, €

R{Vy} forall é,j such that 1 <i,j <2. Assumethatz;é],z;él j ;él We have

0 or Ox ?x Oz or 0%z
ou; S 0w ow T dwdwy dw S dwy dugu
0 or Ox ?x Oz or 0%z
8ui < 87%787’11,[ - =< 8ui6uj’87ul > < 87%’8%81” - (5)
0 or Ox Pz Ox or 0%z
O “ 0w 0wy~ S dwow’ 0w, S du’ dwjom
Put ;2 < %’% >= b, g < S S >= by, g < G, HE >= by,
< 855% he = w1, < 83 Fuda gff >= wg, < 85 IR gf >= ws. Then the system Equation (4)

takes the following form,
wi + wg = b1, wy + w3 = by, wo+ w3y = bs.

As the system of equations for wi, wsy, ws, this system has the unique solution (wy, wa, ws), where
=2(b1+by—b3) ER{Vo},wa = 3(b1 +b3—bo) € R{Vp}, w3 = 5(bo+ b3 —b1) e R{Vp}. m

Lemma 3.10.
AeR{V}
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Proof:
By the definition of A, we have A = det ||< ;, z; >||?j:1. The definition of V' implies that <
Yi, 2 >=< %’8% >c Viforalll <i4,7 <2and < y3,23 >= < %,g%‘% >c V. Fori = 3 and
any 1 < j <2orj=3andany 1 <i < 2, we have < y;,2; >=< g%’%,% > or < g%g,% >,
respectively. By Lemma 3.9, < 22 92 ~c R{V} forall 1 <i < 2. Hence A € R{V}. -
20 Ou;

Let det Gr(y1, .., Yms 21, - - s 2m) i= det || < s, 25 > [|[_;, where
YLy Y2y -y Y 21, 22 - - - Zm € R3.
Lemma 3.11 (Weyl (1946)).
For all vectors y1, %2, y3, Y4, 21, 22, 23, 24 in R3, we have det Gr(yy,...,ya;21,...,24) = det|| <
Yis 25 > H?,j:l = 0.
Lemma 3.12.
Let m1,my € NU{0} and p1,p2 € NU {0} such that

0? 0?

mi+ma>1, pr4pr>1, <azlmme) —:g >, < gPup2), —2 >€ R{V,A_l} ,
ouy ouy

and for any 7 such that 1 < ¢ < 2 we have

ox
’ 8u,
Then < z(mim2) z(up2) S R {V, A_l}.

< $(m1’m2) > < .%'(pl’p2), aa—;f > R{V,A_l} .

Proof:
Applying Lemma 3.11 to vectors

Ox Ox 0%z
= Z1 = -, = 29 = - = 29 = 5 =T
n 1 oy Y2 2 I Y3 3 ol Y4

(ml,mg) — x(Pth)

) %4

we obtain the equality det A = 0, where A = ||< v, z; >||fj:1. Denote by D,); the cofactor of the

element < y4, z; > of the matrix A, where j = 1,2, 3,4. The equality det A = 0 implies that
<Wa,21 > Dyp + -+ < ya, 23 > Dyz+ < ya, 24 > Dyy = 0. (6)
Since A = Dyj4 # 0, Equation (6) implies that
< gy 2 >=< gmema) g Prpa) 5 (7)

- (< Ya,21 > Dyjp + -+ <y, 23 > D4|3) A1

By the assumptions of our lemma, < y4, z3 >=< z("1m2), g%”g > R{V,A7!} and < yu, 2; >=<
wlmome) D2 e R{V,A™'} for all i such that 1 < i < 2. We prove that Dy, € R{V,A~'} for all
ssuch that 1 < s < 3. We have

D4‘s - (_1)4+Sd€tGr(y17 Y2,Y3, 21y« 3Rs—19Rs+1y+-++» 2:4)'

Published by Digital Commons @PVAMU,



Submission to Applications and Applied Mathematics: An International Journal (AAM)

42 Y. Sagiroglu et al.

By the definition of V, we have < y3,23 > R{V} and < y;,2; > R{V} for all 4, j such that
1 < 4,5 < 2. According to Lemma 3.9, we obtain < y3,z; > R{V} and < y;,23 > R{V} for
all 4,7 such that 1 < 4,5 < 2. By the assumptions of our lemma, < y;,z4 >=< %ﬁ,ﬂph?ﬂ >e
R{V,A™!'} for all i such that 1 < i < 2 and < y3,24 >=< g%?,x(phm >e R{V,A~'}. Hence
Dy, € R{V,A™1} for all s such that 1 < s < 3 and Equation (7) implies that < y4,24 >€
R{V,A7t}. u

Lemma 3.13.

85)12% ,&hau >e R{V,A!} forall i, j such that 1 <4,j < 2.

Proof:

By Lemma 3.9, < affgui, gTZ >e R{V} for all 4,5 such that 1 < ¢,5 < 2. By the definition

of V, < 81?3“ ,2273” >e V for all 7 such that 1 < 7 < 2. Hence, using Lemma 3.12, we obtain

< &:au ’8u18u >e R{V,A"'} forall i, j such that 1 <+,j < 2. -

Lemma 3.14.

< 832§u ,au >€R{VA l}forallz jsuchthat1 <i,j5 <2.

Proof:

For all 4, j such that 1 < 7, j < 2, we have the following equality

9 < 78233 Oox >=< 78396 Ox >4+ < O O > (8)
8u1 8u18ui’ 8Uj - 8u%8ui7 au]‘ 8u18ui’ 8u18u]‘ '

By Lemma 3.9, < 524 2% >c R{V}. By Lemma 3.13, < 524, 504 >e R{V, A~} for all

i,j such that 1 < 4,57 < 2. Hence Equation (8) implies that < 8525””,% >e R{V,A'} for all

such i, j. =

Lemma 3.15.

< 8u2’8u8u >e R{V,A"'} forall i, such that 1 <4i,j < 2.

Proof:

For all 7, j such that 1 <, <2, we have

i<a2—xa—x>:<7a3x %>+<&7B2m > 9)
Ou; — Ou?’ du, ou2ou;’ du; ou?’ Ou;0u;
By Lemma 3.9, we have < 22, B, € R {V}. By Lemma 3.14, it is obtained that < 88252 ’Bu >e
R {V,A~1} for all 4,j such that 1 < 4,j < 2. Hence Equation (9) implies that < guif, 65 G >€
R{V,A™ 1} forall 1 <i,j <2. =

https://digitalcommons.pvamu.edu/aam
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Lemma 3.16.

For all 7 such that 1 < ¢ < 2, we have < 8u2’ auzdu >ec R{V}.

Proof:

: 0%z 9%z : 3] 9’z 0%z _ Pz %z : :

Since < e o €V, the equality 5~ < out ot = 2 < ot grom implies that
< 8u§,3u28u >e R{V}foralll<i<2. -

Lemma 3.17.

< glmme) B2 e R{V,A71}, < glmims), gzﬁ >e R{V, A1} for all my,my € NU {0} such that

m1 +mg > 1.

Proof:

We use induction on 7 = my +my. Let r = 1. Then < z(m1m2), 82 ¢ v c R{V'} by the definition

of V, and < z(m1m2), g% > R{V} by Lemma 3.9. Hence our lemma holds for » = 1.

Assume that < z(mom) 22 e R{V, A7, < almome) 84 >e R{V,A~'} for all i such that
1 <i < 2andmi,me € NU{0} such that m; +my = r. Let us prove these properties hold for r + 1.
By the inductive hypothesis, we have

(m1,m my) Oz -1 (m1,mo2) O -1

< glmomaemn) == e R{V,A™'} and <z'™™) —Z >eR{V,A7"} (10
8ui aul

for all i such that 1 < i < 2 and m;,mye € N U {0} such that m; + mg = By Lemma 3.9,

<72 au , o=z >€ R{V} forall i,j,1 € {1,2}, and by Lemma 3.15, < auz,au au >e R{V,A™!}

forall 4, j such that 1 <i,5 <2. Hence applying Lemma 3.12 to differential polynomials z(™:2)

and 835” , we see that < g(mm2) 0 e a - >c R{V,A™!} forall,j suchthat 1 <4,j < 2. We have

< x(m17m2) ﬁ >—=< M % >4 < x(m17m2) 8233 >
5'11,@‘ ’ 8'&]' - 8UZ ’ 8Uj ’ 8uzau]

Since < z(mm2) 22 > R{V,A"!} and < z(mim2) & au >e R{V,A!}, this equality implies
that < 220072 02 ¢ R {, A=1} for all 4, j such that 1 < i, 5 < 2.

ou;
By (10) and Lemma 3. 14 < &%Cu o € R{V,A~!} for all 4, j such that 1 < 4,5 < 2 and by
Lemma 3.16, < auﬁ, 8u2 5 >€ R{V} for all i such that 1 < i < 2. Hence, applying Lemma 3.12

to z("1™m2) and %g we see that < x(m1.m2) 88275 >€ R{V,A!}. Since < z(mms) g"’é >€
R{V,A"1} and < lmma) 0 goar >€ R{V,A™1}, the equality

) 92z dx(mrm2) 92y, P
- (mime) 2% (ma, mz)
0w =T e TS T e T ST a2on

implies that < M &z >e R{V,A"'}. Thus we have < M,% > R{V,A"!} and

) Ou? ou;

< %, 32 >c R{V A~} forall 4, j such that 1 <, j < 2. The Lemma is proved. -
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Lemma 3.18.

< gmima) g(P1p2) > e R{V, A~} forall my, mo, p1, p» € NU{0} such that mi+ms > 1, p1+ps > 1,
and R {V,A~1} =R {z, A-1}®

Proof:

By Lemma 3 17 and Lemma 3.12, it is obtained that < z(™m2) 2@1r2) e R{V,A7!} C

R{z, A" 1} ) for all mi,ma,p1,p2 € N U {0} such that m; + ms > 1 and p; + p2 > 1. By
Lemma 3.8, the system of all elements < z(™1™2) (P1.r2) > where ml,mQ,pl,pQ € Nu {0},
my 4+ mg > 1 and p1 + po > 1 is a generating system of R {z, A~ 1} ®) as an R-algebra. Hence

R{V,A7'} =R {z, A~ 1} : -
The proof of Theorem 3.5 is completed. n
Theorem 3.19.

The set of elements

Oor Ox P 0%z
<1< < _— =
D 8 - >, where 1 <i<j<2; < 8u%’ G0, >, wherer =1,2, (11)

is a generating system of the differential field R < z >M (),

Proof:

Let R < 687‘”, 22 > be the differential field of all differential rational functions of 2%, 22 and

R < 22, 22 G be the differential field of all G-invariant differential rational functlons of Oz = Or

Ouy’ Ous *

Lemma 3.20.

R<z>MB_R <« 833 Bz ~0(3).

’LL1 ’ UQ

Proof:

It is similar to the proof of Lemma 1 in Khadjiev (2010). n

Lemma 3.21.

Let f € R < 2,22 >00) Then there exist O(3)-invariant differential polynomials fi, f, such

that f = f1/ fo.

Proof:

It is similar to the proof of Proposition 1 in Dieudonné and Carrell (1971). n
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Lemma 3.22.
The set
{< $(m17m2)7x(p11p2) >| mi+me>1, pr+p2>1, m;,p, e NU {0}}
is a generating system of the differential field R < &f , au >O0(n+1),
Proof:

It is similar to the proof of Lemma 3 in Khadjiev (2010). =

Let V be the system (11). By Lemma 3.10, A e R{V} CR <V >. Hence

or Ox
R{V, A"V CR CR 0B

{v,.a™'} <V>CR< —— T Dug
Lemmas 3.18 and 322 imply R < V >=R < 22 2 500) 5o R < V >=R < z >M). The
proof of Theorem 3.19 is completed. n
For any set of vectors {aj,as,a3} in R3, where a; = (alj,an,agj)T is a column vector, let
[a1asa3] = det ||alj||” .- For any surface z(u) in R®, consider [z(mi1:mi2)g(maimas) g (maims2)] and
set 0 = d, := det Gr(y1,y2; 21, 22), where y; = 21 = %,yg =29 = 88—52
Theorem 3.23.
The set of elements

836 O ->forl <i< <2<82x e >

< Bu;’ O i 0u2’ Duiduy 12

51oA—L ai ﬁ ﬁ
’ " Our Oug  Ou]’
is a generating system of the differential algebra R {z,5~!, A~ }SM(S)
Pemypna 3.24.
—1 A—11SMB) _ Ox Oz 1 S0(3)
We have R {z,6~ !, A~1} —R{aul»awé LA } )
Proof:
It is similar to the proof of Lemma 1 in Khadjiev (2010). n
Lemma 3.25.
The set of elements
5_1,A_1, [x(m117m12)x(m217m22)x(m317m32) < x(pl,pz),x(ql,qa) >, (13)

where m;; +mio > 1, pr + p2 > 1, 1 + g2 > 1, is a generating system of the differential algebra

R o a )

Published by Digital Commons @PVAMU, 11



Submission to Applications and Applied Mathematics: An International Journal (AAM)

46 Y. Sagiroglu et al.

Proof:

1]59) be the R-algebra of all SO(3)-invariant polynomials of all
1. By the First Main Theorem for SO(3) (see [Weyl (1946)], p.45),

Let R[z(™™2) my 4+ my
x(mim2) where my + mo
the system

>
>

|:x(m11,mm)x(mm7m22)x(m31,m32)} 7< x(l’l;m)’m(%yfh) >7

where m;; + mio > 1,p1 +p2 > 1,q1 + ¢2 > 1, is a generating system of R[:c(mlvm?), mi + mg >

1159, This implies, as in Lemma 3.8, that the system Equation (13) is a generating system of
—1 A-115M(3)

R {a;, A } . ™

Denote by Z the set of elements
Oor Ox Pr 0%z oz Or 0%x
— for 1<i<j<2i< S5, ——— > |———2]|.
< Ou;” Ou, > forlstsysas ou?’ du1dus [(‘3u1 Ous au%]
Then the system (12) has the form {Z,6~', A~'}. Let R{Z} be the differential subalgebra of
S0(3
R{%, %,5‘1,A_1} © generated by the system Z. Denote by R{Z,6~1, A~} the differ-

ential R-subalgebra of the differential algebra R < 22 02 >50() generated by the system
{Z,671, A7}

Lemma 3.26.

e R{Z}.

Proof:

Since < y;, z; >=< %, % >ec Z forall1 <i,j <2, weseethato € R{Z}. =

Lemma 3.27 (Weyl (1946)).
The equality

[1y2y3][212223) = det || < yi, 25 > H?,j:l

holds for all vectors 1, ya, y3, 21, 22, 23 in R3.

Lemma 3.28.
A eR{Z}.
Proof:
Applying Lemma 3.27 to vectors y; = z; = a%’ Yo = 29 = a%’ Y3 = 23 = giu?i?, we obtain
or Or 9*z]’ 3
[8u1 duy  Ou? etll<iz >z (14)
Since [% a% gjﬂ € Z,wehave A e R{Z}. =

https://digitalcommons.pvamu.edu/aam
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By Lemmas 3.24 and 3.25, to prove Theorem 3.23 it suffices to prove that
< x(phpz),x(lh,%) >, |:m.(m117m12)x(m21,mzz)x(mm,mSz)} R {Z’ 5—1, A—l} ,

for all m;j, p;, ¢ € NU {0} such that m;; +mi2 > 1,p1 +p2 > 1,1 + g2 > 1.

Lemma 3.29.

< g%“’g, g%g >eR{Z,6'}andV C R{Z,6 '}, where V is the system used in the proof of Theorem
3.5.

Proof:

Denote by Ds;, where j = 1,2,3, the cofactor of the element < y3,z; > of the matrix

< i, 25 > H?j:l in Equation (14). Then Equation (14) implies the equality
A =<uys,z1 > D31+ < ys,22 > D3jp+ < y3,22 > D3jp+ < y3,23 > Dyj3. (15)
Since § = D33 # 0, Equation (15) implies that

x 0%z

92 0uZ >=Af - < Y3, 21 > Dg‘lé_l— < y3,z9 > D3|25_1. (16)
1 1

< Y3,23 >=<
Since Vo C Z, by Lemma 3.9, < y3,2; >=< 5%, %2 > R{Vp} C R{Z} forall j = 1,...2. We
prove that Dy, € R{Z} for all s = 1,2. Since
D3|y = (=1)3T5 det Gr(y1, Y2; 21,5 - -+ 5 Zs1s Zst1s -+ -5 23)5

the elements of Dy have the forms < y;,z; >, where i,j < 2, and < y;, 23 > for k£ < 2. By the
definition of Z, < y;,2; > Z C R{Z} for all i,j < 2. By Lemma 3.9, for all £ < 2 we have <
Yy 23 >=< a%, g%g >e R{Vy} C R{Z}. Hence Equation (16) implies that < y3, 23 >¢ R{Z,6'}.
Since V.C ZU {< y3,23 >}, weobtain V C R{Z,6'}. -

Lemma 3.30.

We have < z(®P1r2) g(rir2) >e R{Z,671, A=t} for all p;,r; € NU {0} such that p; + p» > 1 and
ri+mre > 1.

Proof:

By Lemma 3.29, V C R{Z,6'}. R{V,A™'} C R{Z 67!, A~'} is obtained. Hence, by Lemma
3.18, < aPp2) glmr) se R{Z, 671, A7t} for all p;,r; € N U {0} such that p; + p, > 1 and
ri+re > 1 u

Lemma 3.31.
[x(mu,mu)x(mzl,m22)$(m31,m32)] eR {Z, (571, Afl} for all mij € NuU {O} such that m;; +m;2 > 1 and
i=1,2,3.

Proof:

Applying Lemma 3.27 to vectors y = £&,yp = 2, ,y3 = g%;
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21 = x(mu,mm)’ 29 = x(m217m22)’ 23 = x(m317m32), we Obtain

[y1y2ys][212023] = det || < i,z > |17 ,2) (17)

By Equation (14), A = [y12y3]*. Using this equality and Equation (17), we obtain

[212023] = A yryays] det || <y, 2 > |2 (13)

By Lemma 3.30, < y;,2; >€ R{Z,6 'A~!} forall 1 < i,j < 3. Equation (18) implies, since
[yiyays] € Z C R{Z, 671 A1}, that [212023] € R{Z,6 A1}, -

Let us finish the proof of our theorem. By Lemma 3.30, < z(P1P2) z(mr2) > R{Z 671, A1}
for all p;,7; € N U {0} such that py + po > 1 and r; + 7o > 1. By Lemma 3.31,
[z (manmiz) g(marmaz) g (manmsz)] e R {7,671, A=} for all my; € NU {0} such that ms + mp > 1,
where i = 1,2, 3. Hence Lemmas 3.24 and 3.25 imply that R { Z,6 1, A™1} =R {z(u), A‘l}SM(?’).
The proof of Theorem 3.23 is completed. n

Theorem 3.32.

The set of elements

0r Ox 0’x  0%*x oxr 0z 0%z
— == > for1<i<j<2; s | == == 1
< 6ui’ 6uj > forisrsyss < 8u%’ Oouq0us l:aul Ougy 8u%] ( 9)
is a generating system of the differential field R < z(u) >M®),
Proof:
Use the following lemmas.
Lemma 3.33.
R <z >MO=R < Jz Iz 500)
Proof:
It is similar to the proof of Lemma 1 in Khadjiev (2010). n
Lemma 3.34.
Let f € R < 2%, 02 >50() Then there exist SO(3)-invariant differential polynomials f1, f> such
that f = f1/ fo.
Proof:
It is similar to the proof of Proposition 1 in Dieudonné and Carrell (1971) n
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Lemma 3.35.
The set of all elements

[x(mu7m12)x(m217m22)x(m317m32)} < m(lh,pz)’ 2(1,42) >, (20)

where m;; +mp > 1,p1 +p2 > 1,1 + g2 > 1, is a generating system of the differential field

dz Oz - SO(3)
R < Bu17 aU,g >

Proof:

Let B := R[z(™2) | my +my > 1]596), By the First Main Theorem for SO(3) (see Weyl (1946)),
the system Equation (20) is a generating system of B. Lemma 3.34 implies that Equation (20) is a
generating system of R < 22, 02 >500), -

uy ? Ougy

Let Z be the system Equation (19). By Lemmas 3.26 and 3.28, §,A € R{Z} C R < Z >. Hence
R{Z,6 A1} CR < Z>CR < 22 02 55006) Lemmas 3.30, 3.31 and 3.35 imply that

Ouy? Ousy
R<Z>=R<H, 92 506) Using Lemma 3.33, we get R < Z >=R < 2 >, The proof
of Theorem 3.32 is now completed. n
Theorem 3.36.

The set (where i,j,s =1,2,1 <i<j <2)

Oz 8.1“ 1 1 0?x  Ox Ox
< o aul a - 5 A s {aulaus amﬁw} (21)
is a generating system of the differential algebra R {z,6~*, A™* }S M(3)
Proof:
Let

R Oz Oz -, 0%cx Oz Ox
o 8u,~’ 8Uj aulaus 8u1 8u
Denote by R {W} the differential R-subalgebra of R < 85 , au >0() generated by elements of TV

and by R {W, 67!, A~} the differential R-subalgebra of R < $%, 92 >©() generated by functions
5~ AL and elements of W.

]]zg,s-l21§i§j§2}.

Consider the set Vp = {< a—ff, aT >1<i<j< 2} from the proof of Theorem 3.5. Since V, ¢ W
and § € R{Vp}, we have § € R{Vo} CR{W}andR{Vp,0 '} cR{W,6" 1 A"t}

By Lemma 3.9, < 5~ g’u ,8u x > R{Vp} foralli,j,l € {1,2}. Hence

%x Oz

< m, aT”av >e R{W} foralli,j,le{1,2}. (22)

Lemma 3.37.

<du§’8u6u >e R{W,6~1, A~} foralli =1,2.
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Proof:

; _ 2 a _ Oz _ _ 9 _ o
Applymg Lemma 3.27 to vectors y; = Fu Y2 = Guss U3 = a1 = Bt 22 = Buor ¥3 = Fu g
we obtain

[y1y2ys][212023] = det || < wi, 25 > |12, (23)

For j = 1,2,3, let Ds|; be the cofactor of the element < ys3,2; > of the matrix ||< y;, 2; >H§’j.
Equation (23) implies that

[Y192y3][212223] =< y3,21 > D3;1+ < y3, 22 > D3jp+ < y3, 23 > Day3.

This equality implies the equality
< ys,23 > D33 = [y192ys][212223] — < y3,21 > D3j1— < ys, 22 > Dy). (24)
Since Dyj3 = ¢, Equation (24) implies that
< yz, 23 >= 0" ([y1y2ys] [212223] — < y3,21 > Dap— < y3, 22) Daj). (25)

Since [y1y2y3] eR {W} and [212223] eR {W}, we obtain [ylygyg] [2’12’223] eR {W} By Lemma 39,
O%x Oz

< g,z >=< §E, 9 >e R{Vp} forall i = 1,2. Hence < y3,2 >=< giu?, Jr > R{W} for all
i=1,2.
We prove that Dy, € R {W,6*, A~} forall s = 1,2. Since

D3|s :( )(3+S) detGT(ylayQaZh . 52571728+17~--7Z3)7

elements of Dy have the forms < y;, z; >, where i,j < 2, and < y;, 23 >, where k£ < 2. By the
definition of W, < y;,2; >¢ W Cc R{W} forall 7, j < 2. By Lemma 3.9,

ox 0%x
ouy,’ 8u18u,
for all £ < 2. Hence Equation (25) implies that < y3,z3 >€ R{W,5~}, A~1}. -

< Yk, 23 >=< —— >e R{W} Cc R{W},

Lemma 3.37 implies that Z c R{W, 6, A=}, where Z is the system (19). By Theorem 3 23

R{Z,6 A} = R{z, 071, A 1}5M“ Hence R {W,6~1, A1} = R{z,671, A1} The
proof of Theorem 3.36 is completed. n
Theorem 3.38.

The set of elements

ox Ox

< — o’ a (26)

2
- >, where 1 <i < j <2 [ax Ox 8;13}

6u1 Ouj 87u1 87’112
is a generating system of the dlfferential field R < 2 >5M®),
Proof:

. 2
Let W be the system Equation (26). Since A = [g—é%a‘%} , we have A € R{W}. Hence A~ €

R < W >.Since § € R{W}, we obtainthat 6! € R < W >. SoR{W, 671, A1} CR < W >.
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Lemma 3.37 implies that
ZCR{W, LA CR<W >CR< g >5ME)

In the proof of Theorem 3.32, it is proved that R < Z >= R < z >“M®), Hence, using the equality
R< Z>=R<z>%M0G) weobtainR < W >=R < z >M®)_ Theorem 3.38 is proved. -

Proposition 3.39.

Letd € {1,2} and = : U — R? be a d-nondegenerate surface. Then z is a regular surface and
dz(u) > 0forallu € U.

Proof:

Let 2 be a d-nondegenerate surface. Then Lgg(z(u)) # 0 for all w € U. This implies that

[a1(z)az(x)as(x)] # 0, where {a;(z) | i = 1,2, 3} is the set of column vectors, a;(z) = 8% for1 <

i <2andas(z) = i‘fg. Hence the vectors a;(z), az(z), as(x) are linearly independent for all u € U.

Then a;(z),as(x) are also linearly independent. This implies that det ||< a;(z), a;(z) >||ij:1 =

dz(u) # 0 for all w € U. In this case, it is known that §,(u) > 0. =

Let {g;j(z), Lij(z) | i,j = 1,2} be the set of all coefficients of the first and second fundamental
forms of a surface z(u) in R3. Assume that x(u) is a d-nondegenerate surface in R3. Then Ay # 0
for all u € U. Hence the function A ! exists. By Proposition 3.39, &, (u) > 0. Hence the function
5x(u)*§ exists.

Theorem 3.40.

Let d € {1,2} and * : U — R3 be a d-nondegenerate surface in R3. Then the set
{gm’(.’lﬁ),A;l,a_%,Ldr(fﬁ) li,7,r=1,2; i < j} is a generating system of the differential algebra

R{Qij(ﬂf),A;l,(s_%,Lij(x) | 4,7 =1,2;1 < j}-

Proof:
Ford =1, let

1

Wi o= {gy(a), Lup(e) [ ijr =12 i <5} and R{m, a5},

be the differential R-subalgebra of R {gij(x), AL 5‘%,Lij(x) li,7=1,2;i < j} generated by ele-

ments of the system W, and functions A=, 62,

Using Equation (2), we obtain {63125%%%2} = 5_%L1j(m) for all ; = 1,2. Hence we have
[afguj a ng] c R{Wl,A*I,é‘é} for all j = 1,2. This implies W C R{Wl,Afl,(s—%}, where
W is the system Equation (26). Hence {W,A!,§~'} CR {Wl, A1 53 } By Theorem 3.36

[agg”uj %5%] e{w,A7L 571} CR {Wl,A‘l,(S_%} for all i, j = 1,2. Equation (2) implies that
L = 52 [azizguj 8851 8%] € R{Wl,Afl,cS_%} for all 4,5 = 1,2. Hence R{Wl,Afl,é_%} =
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R {gij(x), AL 5‘5, Lij(z) | 4,7 =1,2;9 < j}. The proof of Theorem 3.40 is completed. =

4. Complete systems of G-invariants of surfaces

Let G be any subgroup of M (3).

Definition 4.1.

Two surfaces z,y : U — R3 in R? will be called G-equivalent if there exists F € G such that

y(u) = Fx(u) for all w € U. In this case, it will be denoted by x £ Y.

In this section, A(x) := ||a1(x)az(x)as(z)| 1s the matrix with column vectors a;(x) = %i for all ¢
such that 1 <i <2, and a3(z) = g%? Denote [a1(x)as(z)az(x)] := det A(x).

Any 1-nondegenerate surface in R? will be briefly called a nondegenerate surface. Let = be a non-
degenerate surface in R3. Since x is a nondegenerate surface, we have A, = [a;(x)as(x)as(x)]* # 0
for all u € U. Hence [a1(x)az(x)as(z)] # 0 for all w € U and A(z)~! is well-defined.

Theorem 4.2.

Let z,y : U — R3 be nondegenerate surfaces in R3.

(1). Let x M®) y. Then for all 4, j, s such that 1 < i, j,s < 2 and for all u € U, we have
Or Ox dy Oy 0?xr 0%z 0%y 0%

< >=< >, < 5,77 >=< 7> > .
du;’ Ouj Ou;” Quj ~ 7 " Ou?’ Quidus Ou?’ OuiOus

(27)

(2). Conversely, assume that equalities Equation (27) hold. Then = M) y. Moreover, the unique

g € O(3) and the unique b € R3 exist such that y(u) = gz(u) + b for all w € U. Explicitly:
9=AyA(x) " and b=y — A(y)A(z)'z.

Proof:

(1). Assume that x M)

equalities Equation (27) hold.

y. The functions < 22, 92 > and < &2 0z

ou; ? Ou; Ou?’ Juidus

> are M (3)-invariant, SO

(2). Assume that equalities Equation (27) hold. Equation (27) and Lemma 3.10 imply that A, (u) =
Ay(u) for all u € U. Since xz, y are nondegenerate surfaces, it follows that A, (u) # 0 and A, (u) #
0 for all w € U. Hence A,(u)™! = Ay(u)~! for all u € U. Let V be the system used in the
proof of Theorem 3.5 and f {z} € R {V,A~'}. Then Theorem 3.5, Equation (27) and the equality
Ay(u)™! = Ay(u)~t imply that

flz(uw)} = f{y(w)} forallu e U. (28)
For any s such that 1 < s < 2, we set ag‘éf) = ’ 8‘5;‘5””) a?)i(f ) B%Z(j )|, Consider the matrix

_10A(x
A(z)~1 8155) =
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Lemma 4.3.

pj;(x) e R{V,A"} forall i, j,s such that 1 <i,j <3,1 < s <2.

Proof:

The equality A(z)! Bg‘u(f) pfj(x)H implies that A(x) pfj(:r)H = agf)_ Since z is a nondegener-

ate surface, we have A, (u) = (det A(x)(u))? # 0 for all u € U. Since det A(z)(u) # 0, the system
A(z)

pi; {z} H = agf) of linear equations has the following solution,

i) = [n@) 020203 (0) . as(o) [ Daa(a)aa]

where 7, j, s such that 1 <,j < 3 and 1 < s < 2. This equality implies that

o) = [1(0)- 010 D a1 0) o) (@l @9)

for all 7,5, s such that 1 <4,7 <3 and 1 < s < 2. Using Lemma 3.27 and Theorem 3.5, we obtain

[al(x) . ai_l(x)af;f) a1 (@) .. .ag(x))} a1 (2)ag(w)as(z)] € R {V, A1}

Since A™' € R{V,A™'}, it follows that Equation (29) implies that p;(x) € R{V,A~'} for all
i,j,ssuchthat1 <7, j<3and1<s<2. -

Lemma 4.4.

Al (u)) "1 2AE) — A(y(w)) 1244 ) for all s such that 1 < s < 2and u € U,

Proof:

Using Equations (27), (28) and Lemma 4.3, we obtain p;;(z(u)) = pj;(y(u)) forall u € U and 4, j, s

such that 1 < 4,57 < 3and 1 < s < 2. Hence the equality A(x)—lagf) = pfj(x)H implies that
A (u)) =1 2AE) = Ay ()1 244 ) for all s such that 1 < s < 2and u € U, n

Now we complete the proof of our theorem. We have the following equality

HAWAE)) _0AW) 1,y 0A)

Oug  Oug Oug
020 g1 - A 20 A

—t) (40 2 - @ ) ey

for all s such that 1 < s < 2 and u € U. Using this equality and the equality in Lemma 4.4, we see
that %ﬁy)ﬂ) = 0 for all s such that 1 < s < 2. Since U is a connected open subset of R?, using
this equality for all s such that 1 < s < 2, we see that A(y(u))A(z(u))~! does not depend on u € U.
Put g = A(y)A(z)~!. Because det A, (u) # 0 and det A,(u) # 0 for all uw € U, we have det g # 0
and A(y) = gA(z) forall u € U.
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Let us prove that g € O(3). The equality A(z)"A(z) = ||< a;(x),a;(x) >||?7j:1, Lemma 3.17 and
Equation (28) imply that A(z)" A(x) = A(y)" A(y). This and the equality A(y) = gA(z) imply that
g'g = I, where I is the unit matrix. Hence g € O(3).

The equality A, (u) = gA,(u) implies that %™ = g% for all s such that 1 < s < 2and u € U.

These equalities imply existence of a vector b € R? such that y(u) = gz(u) + b forall u € U.

Let y(u) = Dz(u) + ¢ for certain ¢ € R? and D € O(3) and all u € U. Then %’—gj) = D‘%—fﬁ‘,) for
all i = 1,2 and v € U. Using these equalities, we see that A(y(u)) = DA(x(u)) for all w € U.
Hence D = A(y)A(z)~! = g. The uniqueness of g is proved. The equalities y(u) = Dxz(u) + c and
D = A(y)A(z)~! imply that ¢ = y — A(y)A(z) "'z = b. Proof of Theorem 4.2 is completed. -

Theorem 4.2 means that the system Equation (11) is a complete system of M (2)-invariants on the
set of all nondegenerate surfaces in R3.

Theorem 4.5.
Let 2,y : U — R? be nondegenerate surfaces in R3. The following are true

(1). Let x {8 y. Then for all 7, j such that 1 < i,5 <2 and any u € U, we have
8ui’ (9Uj N 8u2 ’ 8Uj ’ 811,% ’ 8U18UQ - 8u% ’ 8U18UQ
8u1 QUQ 811,% N 8u1 8U2 8u% .

(30)

(2). Conversely, assume that equalities Equation (30) hold. Then z 5ME) y. Moreover, the unique

g € SO(3) and the unique b € R3 exist such that y = gx + b. Explicitly, we have g = A(y)A(z)~!
and b=y — A(y)A(x) '

Proof:

SM(3) : Oz 2z dr 0%z
(1). Assume that z ~ y. The functions < 57 ’8u >, < 8u2, au au > and Oul Bu;  oul| are

SM (3)-invariant, so equalities Equation (30) hold.

(2). Assume that equalities Equation (30) hold. Let Z be the system Equation (19), R{Z} be the
differential R-subalgebra in Theorem 3.23. Let § = §, := det Gr(vi,ve; 21, 22) Where v = z; =
gfl vy = z9 = 5’—52. By Lemma 3.26 and Lemma 3.28, §,,A, € R{Z}. Hence Equation (30)
1mp11es that 6, = é,, A, = A, for all w € U. Since z(u), y(u) are nondegenerate surfaces, we have

Ag(u) # 0and Ay(u) # 0 for all w € U. By Proposition 3.39, 6, (u) > 0 and 6, (u) > 0 forall uw € U.

The equalities 4, = 6, and A, = A, for all u € U and Proposition 3.39 imply that 5, = o, L and
Ayt =A  forallu e U. Let f{z} e R{Z,67',A""}, where R{Z,6~!, A~} is the differential
algebra used in the proof of Theorem 3.23. Then equalities 6, = 4, land Al = =A, ! and Equation
(30) imply f(z) = f(y) for all w € U. Using Lemma 3.29, Equatlon (30) and the equahty f(z) =

f(y), we obtain equalities Equation (27). Hence by Theorem 4.2 there exist the unique g € O(3)
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and b € R? such that y(u) = gz(u) + b for all u € U. This equality and Equation (30) imply that
[ or Oxr 0%z oy Oy 0%

Ju Ou aug]:de“g) [(‘3u Buy D2

, 72
Since Az(u) = {88;1 8852 g—é} # 0 for all u € U, we see that det(g) = 1. By Theorem 4.2,

g=A(y)A(z)"' and b = y — A(y)A(xz) " a. The proof of Theorem 4.5 is completed. n

Theorem 4.5 means that the system Equation (19) is a complete system of S (2)-invariants on the
set of all nondegenerate surfaces in R3.

Theorem 4.6.
Letd € {1,2} and z,y : U — R3 be d-nondegenerate surfaces in R3.

SM
(1). Assume that x 1) y. Then for all 4, j, s such that 1 < 4,4,s < 2, where 1 < j, and all w € U,

we have
95 () = gi; (y), Las(7) = Lgs(y)- (31)

(2). Conversely, assume that equalities Equation (31) hold. Then = e y. Moreover, the unique

g € SO(3) and b € R? exist such that y = gz + b. Here g = A(y)A(z) L and b = y — A(y)A(z) 2.

Proof:

(1). Assume that L) y. The functions g;;(z) and Lgs(x), are SM(3)-invariant forall 1 <4, j,s <

2. So equalities (31) hold.

(2). Assume that equalities (31) hold. We prove the theorem for the case d = 1. The case d = 2 is
similar. Let 1V, be the set and R {IW; } be the differential R-algebra defined in the proof of Theorem

3.40. Let § = J, be the function used in the proof of Theorem 3.23. Since § = det ||g;; | j—1> We

have 6 € R {W;}. Using Equation (2), we obtain A = §(L11)%. Hence A € R {W;}. Since z(u), y(u)
are nondegenerate surfaces, we have A, (u) # 0 and A, (u) # 0 for all w € U. By Proposition 3.39,
0z (u) > 0 and &, (u) > 0.

LetR {Wl, 5z, A‘l} be the differential algebra used in the proof of Theorem 3.40. By Theorem
340, L;; € R {Wl,é_é, Afl} for all 4, j = 1,2. Using Equation (2), we obtain [8225% 8551 6%} =
§7:iLy € R{Wl,éfé,A_l} for all i,5 = 1,...n. This implies W C R{Wl,éfé,A_l}), where

W is the set defined in the proof of Theorem 3.36. Hence R {W,6~!,A~'} C R {Wl, 5‘§,A*1}.
Lemma 3.37 implies that Z c R{W,6~!,A~'}, where Z is the system Equation (19). Hence
R{Z} C R{Wl,a—%,Afl}.

The equalities 6, = 0, and A, = A, for all u € U imply that 6;' = 6! and A;' = A for
allu € U. Let f{z} e R{Z} C R{Wl,é_é,A‘l}. Then equalities 6, ' = 4., A;' = A1, and
Equation (31) imply that

fa(w)}y = f{y(w)}, (32)
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for all w € U. Since R{Z} C R {Wl, 5‘§,A—1}), Equation (32) implies Equation (30). Then, by

Theorem 4.5, « SM3) y. Moreover, by Theorem 4.5, the unique g € SO(3) and b € R? exist such

that y = gz + b, namely g = A(y)A(x)~! and b = y — A(y)A(x)'z. Proof of Theorem 4.6 is
completed. m

5. Conclusion

The algebra of Euclidean differential invariants for a nondegenerate surface is generated by the
mean curvature through invariant differentiation. There are some applications on it. For example,
equivalence and signatures of submanifolds, characterization of moduli spaces, invariant differen-
tial equations, invariant variational problems etc. Also, the method of moving frame gives the local
solution of this problem (Olver (2009)).

In this paper, we give another complete systems of SM (3)-invariants of nondegenerate surfaces and
complete systems of M (3)-invariants of nondegenerate surfaces. There exists a complete system of
differential invariants of surface z(u, v) with four elements (see Alexeevskiy et al. (1990)). We give
the definitions of G-invariant differential field R“ and differential algebra of G-invariant differential
polynomial functions Rz, A;lG, where = is a surface in R3 and G = SM(3) or G = M(3). In here,
the function A, is defined as follows:

Ad = d€t||< Yiy Zj >H, ’L',j = 1,2,3,

and

ox ox 0%x
=2 = —,Yp=29= —,Y3 = 23 = —5.
9 ! ouq 2 2 Ouo ya 3 8955

Also, we obtain generating system of the differential field R and the differential algebra Rz, AglG.
We obtain the complete system of G-invariant differential rational functions of a nondegenerate
surface for the groups G = SM(3) and G = M (3).
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