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Abstract

In this study, optimal dynamic response control of a forced Mindlin-type beam is studied. The
beam under consideration, which consists of central host layer and two piezoelectric patch actu-
ators bonded on perfectly to both sides of the beam. It is assumed that the beam is subject to the
forcing function, initially at rest and undeformed. Hence, a forced Mindlin-type beam is consid-
ered for active vibration control. For this aim, well-posedness and controllability of the system
are presented. Performance index functional to be minimized by using minimum level of control
voltage consists of a weighted quadratic functions of displacement and velocity of the beam and
also includes a quadratic functional of the control function as a penalty term. In order to obtain
the optimal control function, an adjoint variable satisfying the adjoint equation corresponding to
state equation is defined. A maximum principle is introduced and optimal control function is ob-
tained by means of maximum principle. It is not sensible to use the Linear Quadratic Regulator and
Linear Quadratic Gaussian methods to solve the control problem in this paper since the equation
under consideration also includes Heaviside function and its spatial derivatives due to existence
of piezoelectric patch actuators. Therefore, maximum principle is employed in the present paper
Also, by using maximum principle, control problem is reduced to solving a system of partial dif-
ferential equations including state, adjoint variables, which are linked by initial, boundary and
terminal conditions. The solution of this system is obtained by using MATLAB. Numerical results
are presented in tables and graphical forms to demonstrate the effectiveness and capability of the
introduced control algorithm.

Keywords: Well-posedness; Micro-structure; Optimality; Control; Vibration
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1. Introduction

When the dimensions of a structure become comparable to the size of its material micro-structure,
size and micro-structural effects are observed (Polyzos and Fotiadis, 2012). Ignoring the micro-
structural effects in a structure leads to underestimation of the structural behavior and lack of
accurate results. By becoming aware of this, in 1964 and 1965 Mindlin, who followed the studies
of Hencky (1947), Uflyand (1948) and Timoshenko and Goodier (1934), proposed an enhanced
general elastic theory to describe linear elastic behavior of isotropic materials with microstruc-
tural effects in Mindlin (1964) and Mindlin (1965), respectively, and also he named these as first
and second gradient elastic theories of Mindlin. He succeeded by considering the potential energy
density as a quadratic form not only of strains but also of gradient of strains and the kinetic en-
ergy density as a quadratic form of both velocities and gradient of velocities Polyzos and Fotiadis
(2012). Since then, many works dealing with strain gradient elastic theories, derived either from
lattice models or homogenization approaches, have appeared in the literature Polyzos and Fotiadis
(2012). They are elegant but they are not ability to reproduce entirely the equation of motion as
well as the classical and nonclassical boundary conditions appearing in Mindlin theory. In Polyzos
and Fotiadis (2012), an equation of motion in one dimension confirming the first and second strain
gradient elastic theories of Mindlin are derived. For more information and details about the state-
ments above and Mindlin theory see (Cheung and Zhou (2003), Endo (2015), Gbadeyan and Dada
(2006), Mindlin (1964), Mindlin (1965), Polyzos and Fotiadis (2012)). On the other hand, for well
modeled structures, vibration control is very important since it increases the lifespan of the struc-
tures. Therefore, control of undesirable vibrations is active research area and it has gained much
attention by including smart material technology to structures. Piezoelectric actuators among the
smart materials are more preferred due to their large band-with, their mechanical simplicity and
ability to produce force acting against vibrations in the structures. In using a piezoelectric material
as an actuator, converse piezoelectric effect activated by an electric field, is employed for inducing
mechanical stresses or strains which, in turn, are transformed into control forces or moments by
a suitable structural arrangement Hurlebaus and Gaul (2006). The references, Banks et al. (1996)
and Preumont (2002), can provide the general overview about the piezoelectric actuators and smart
materials.

Particulary, in this paper, dynamic response control of a forced Mindlin-type beam is considered.
In order to achieve the control of the system, well-posedness and controllability of the system are
presented. The performance index functional reflects the dynamic response of the beam and it is
chosen a sum of the quadratic functional of the displacement and velocity of the beam. Also, a
quadratic functional of the control voltage, which is to be applied the piezoelectric actuator, is
added to performance index functional as a penalty term. Optimal control function is obtained
by deriving a maximum principle (e.g. Kucuk et al. (2015); Yildirim et al. (2017); Rastegar et
al. (2013); Kucuk et al. (2014); Yildirim et al. (2016)). The solution of the problem is obtained
by means of MATLAB. In order to show the effectiveness and capability of the piezoelectric
dynamic response control of the beam, two examples are illustrated. The original contribution
of the paper to literature is that in order to obtain the active dynamic response control of a forced
Mindlin-type beam, maximum principle is firstly employed in this paper. This paper is organized as
follows. In the next section mathematical formulation of the vibrating beam is given and existence
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24 K. Yildirim

and uniqueness of solution to the system under consideration is presented. In Section 3, optimal
control problem is defined and adjoint system corresponding to the beam system is introduced and
also maximum principle is derived. In the last section, for showing the correctness and validity of
the proposed control algorithm, numerical results are presented.

2. Mathematical Formulation of the Control Problem

Let us consider a three layer beam, which consists of central host layer and two piezoelectric patch
actuators bonded on perfectly to both sides of the beam. It is assumed that the beam is subject to
the forcing function, initially at rest and undeformed. Then, the beam model, which confirming
the first and second strain gradient elastic theories of Mindlin, is given by following Polyzos and
Fotiadis (2012),

wxx −
13`2

12
wxxxx +

`4

72
wxxxxxx −

1

c2
wtt +

1

c2

`2

3

ρ′

ρ
wttxx = F(x, t) + CH, (1)

where x is space variable, t is time variable, (x, t) ∈ Ω = [0, `]× [0, tf ], ` is the length of the beam,
tf is the fixed terminal time, w(x, t) is the displacement at L2(Ω), c2 = E

ρ , E is Youngs modulus, ρ
is line density, ρ′ ≡ ρ is the density of the micro-structural cells, F(x, t) = f1(x)f2(t) is the forcing
function (external excitation) with f1(x) showing up the distribution of the external excitation over
the beam, CH = Cv(t)(H

′′(x − x1) − H ′′(x − x2)), in which Cv(t) is the control voltage function
to be applied the piezoelectric patch actuators, H(x) is Heaviside function, (x1, x2) is the location
of piezoelectric actuators bonded on the both sides of the beam. Equation (1) is subject to the
following boundary conditions,

w(x, t) = wxx(x, t) = wxxxx(x, t) = 0 at x = 0 and x = `, (2)

and initial conditions,

w(x, t) = w0(x), wt(x, t) = w1(x) at t = 0. (3)

Before dealing with the control of the system, let us show in the next section that the system defined
by Equations (1)-(3) has a unique solution and also the system is controllable.

2.1. Well-posedness and Controllability of the System

Let us assume that the following assumptions are valid for the system defined by Equations (1)-(3),

w0(x) ∈ H1(0, `), w1(x) ∈ L2(0, `), w,
∂nw

∂xn
∈ L2(Ω), n = 1, 2, ..., 6, (4a)

∂jw

∂xn∂tm
∈ L2(0, `), j = n+m, n = 0, 1, 2, m = 0, 1, 2, (4b)

Cv(t) ∈ Cad = {Cv(t) | Cv(t) ∈ L2(0, tf ), | Cv(t) |<∞}, (4c)

in which H1(0, `) = {w0(x) ∈ L2(0, `) : ∂w0

∂x ∈ L2(0, `)} and L2(Ω) is the Hilbert space of real-
valued square-integrable functions on the domain Ω in the Lebesque sense with usual inner product
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and norm defined by

< ρ, % >Ω=

∫∫
Ω

ρ%dΩ, ‖ ρ ‖2=< ρ, ρ > .

Then, with Equation (4), the system defined by Equations (1)-(3) satisfies the Cauchy-Kovalevsky
theorem and the system has a solution (Zachmaonoglou and Thoe, 1986). By the following lemma,
let us achieve the uniqueness of the solution.

Lemma 2.1.

The system defined by Equations(1)-(3) has a unique solution.

Proof:

Let us assume that w1 and w2 are two solutions to the system under the same conditions. Then the
difference u = w1 − w2 satisfies the following homogeneous initial conditions,

u(x, t) = 0, ut(x, t) = 0 at t = 0, (5)

and boundary conditions,

u(x, t) = uxx(x, t) = uxxxx(x, t) = 0 at x = 0 and x = `, (6)

and equation of motion as follows,

uxx −
13`2

12
uxxxx +

`4

72
uxxxxxx −

1

c2
utt +

1

c2

`2

3

ρ′

ρ
uttxx = 0. (7)

Let us show that u is identically equal to zero. Then, introduce the following energy integral,

E(t) =
1

2

`∫
0

{
∂2

∂x2
(u2)− 13

12
`2
∂4

∂x4
(u2) +

`4

72

∂6

∂x6
(u2)− 1

c2
(u2
t ) +

1

c2

`2

3

ρ′

ρ

∂2

∂x2
(u2
t )

}
dx, (8)

and show that E(t) is independent of t. Differentiating E(t) with respect to t, it is easy to see
following equality,

dE(t)

dt
=

`∫
0

{
∂2

∂x2
(uut)−

13

12
`2
∂4

∂x4
(uut) +

`4

72

∂6

∂x6
(uut)−

1

c2
(ututt) +

1

c2

`2

3

ρ′

ρ

∂2

∂x2
(ututt)

}
dx. (9)

Integrating by parts and using homogeneous boundary conditions shown by Equation (6), Equation
(9) becomes

dE(t)

dt
=

`∫
0

{
uxx −

13`2

12
uxxxx +

`4

72
uxxxxxx −

1

c2
utt +

1

c2

`2

3

ρ′

ρ
uttxx

}
utdx. (10)

Because of the right-hand side of Equation (7), we obtain

dE(t)

dt
= 0, that is, E(t) = constant.
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Taking the initial conditions given by Equation (5) into consideration, it follows that

E(0) =
1

2

`∫
0

{
∂2

∂x2
(u2)− 13

12
`2
∂4

∂x4
(u2) +

`4

72

∂6

∂x6
(u2)− 1

c2
(u2
t ) +

1

c2

`2

3

ρ′

ρ

∂2

∂x2
(u2
t )

}∣∣∣∣
t=0

dx = 0.

Then it is concluded that u(x, t) is identically zero and u = w1 − w2 = 0 ⇒ w1 = w2. Namely, the
system defined by Equations (1)-(3) has a unique solution. �

Also, in order to show the Equations (1)-(3) have a unique solution, the equation under consid-
eration can be reduced to ordinary differential equation by means of Galerkin expansion and by
considering second order Picard-Lindelof existence-uniqueness theorem, well-posedness of Equa-
tions (1)-(3) can be shown. Note that the existence and uniqueness of the solution to Equations
(1)-(3) is shown by the previous lemma. By considering Lemma 2.1, it is concluded that in order
to preserve the uniqueness of the solution to the system w(x, t), corresponding control voltage Cv(t)
function must be unique. Then, it is said that the system under consideration has a unique solution
w(x, t) and a unique control function Cv(t). In this case, system defined by Equations (1)-(3) is
named as observable. Hilbert Uniqueness method showed that observable is equal to the control-
lable (Guliyev and Jabbarova (2010), Pedersen (1999)). Namely, the system under consideration is
controllable.

3. Problem Definition and Maximum Principle

3.1. Problem Definition

The aim of the control problem defined here is to determine the control voltage function optimally
to suppress the undesirable vibrations in the beam. The dynamic response of the beam is modeled
as a performance index functional including quadratic functional of the displacement and velocity
at a predetermined terminal time tf and also consisting of the control voltage function accumulating
in the control process [0, tf ] as a penalty term. The performance index functional of the beam is
defined as follows,

J (Cv) = µ1

`∫
0

w2(x, tf )dx+ µ2

`∫
0

w2
t (x, tf )dx+ µ3

tf∫
0

C2
v (t)dt, (11)

where µi ≥ 0 for i = 1, 2 such that µ1 + µ2 6= 0; µ3 ≥ 0 are weighting constants. The first two
terms on left-hand side of Equation (11) are the contribution of the modified energy of the beam,
and the last term represents the control effort that accumulates over [0, tf ]. Speaking clearly, the
objective of the optimal control problem is to find the optimal control voltage function Cv(t) which
minimizes the performance index functional at a predetermined terminal time with a minimum
expenditure of the control voltage. The set of admissible control functions is defined as follows,

Cad = {Cv(t) | Cv(t) ∈ L2(0, tf ), | Cv(t) |<∞},

and control of the beam can be stated as follows,

J (C◦v ) = min
Cv∈Cad

J (Cv), (12)
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subject to Equations (1)-(3). In the next section, a necessary condition to be satisfied by the optimal
control function is derived by means of maximum principle in terms of Hamiltonian functional.
In Barnes (1971), it is presented that under some convexity assumption, which are satisfied by
Equation (11), on performance index function, maximum principle is also sufficient condition for
the optimal control function. In order to introduce the maximum principle, it is required to define
the adjoint system corresponding to state system given by Equations (1)-(3). Let us define adjoint
system as follows,

vxx −
13`2

12
vxxxx +

`4

72
vxxxxxx −

1

c2
vtt +

1

c2

`2

3

ρ′

ρ
vttxx = 0, (13)

with boundary conditions

v(x, t) = vxx(x, t) = vxxxx(x, t) = 0 at x = 0 and x = `, (14)

and terminal conditions
1

c2

`2

3

ρ′

ρ
vtxx(x, t)− 1

c2
vt(x, t) = 2µ1w(x, t) at t = tf , (15a)

v(x, t) = −2µ2wt(x, t) at t = tf . (15b)

3.2. Maximum principle

For the optimal control function C◦v (t) ∈ Cad, the corresponding optimal state function w◦(x, t) =

w(x, t;C◦v ) satisfies Equations (1)-(3) and the adjoint variable v◦(x, y, t) = v(x, y, t;V ◦e ) satisfies
Equations (13)-(15), respectively.

Theorem 3.1.

If

H[x1, x2, t; v
◦, C◦v ] = max

Cv∈Cad

H[x1, x2, t; v, Cv], (16)

in which the Hamiltonian is defined by the equation

H[x1, x2, y1, y2, t; v, Ve] = [vx(x2, t)− vx(x1, t)]Cv(t)− µ3C
2
v (t), (17)

then,

J [C◦v ] = min
Cv∈Cad

J [Cv], Cv ∈ Cad. (18)

Proof:

Let w,w◦ be two displacement functions corresponding to control function Cv(t) and C◦v (t), re-
spectively. Also, define the difference between them as follows,

∆w = w − w◦, ∆Cv(t) = Cv(t)− C◦v (t). (19)

Let us define the operator Φ

Φ(∆w) = ∆wxx −
13`2

12
∆wxxxx +

`4

72
∆wxxxxxx −

1

c2
∆wtt +

1

c2

`2

3

ρ′

ρ
∆wttxx, (20)
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and its adjoint operator Φ∗ as follows,

Φ∗(v) = vxx −
13`2

12
vxxxx +

`4

72
vxxxxxx −

1

c2
vtt +

1

c2

`2

3

ρ′

ρ
vttxx. (21)

Operator Φ is subject to the following boundary conditions,

∆w(x, t) = ∆wxx(x, t) = ∆wxxxx(x, t) = 0 at x = 0 and x = `, (22)

and initial conditions,

∆w(x, t) = 0, ∆wt(x, t) = 0 at t = 0. (23)

Also, operator Φ∗ is subject to the Equations (14)-(15). Then, by using the definitions of Φ and Φ∗

next relation can be obtained,∫∫
Ω

{
vΦ(∆w)−∆wΦ∗(v)

}
dΩ =

∫∫
Ω

{
v∆Cv(t)[H

′′
(x− x1)−H ′′

(x− x2)]

}
dΩ. (24)

After applying six times integration by parts to left-side of Equation (24) and using boundary
conditions Equation (22) and Equation (14) and terminal conditions Equation (15), one obtains∫∫

Ω

{
vΦ(∆w)−∆wΦ∗(v)

}
dΩ = −2

`∫
0

{
µ1w(x, tf∆w(x, tf ) + µ2wt(x, tf )∆wt(x, tf )

}
dx. (25)

For the right hand-side of Equation (24), remember the dirac-delta function, which has the follow-
ing properties,

H ′′(x− θ) = δ′(x− θ),
`∫

0

δ′(x− θ)ϕ(x)dx = −ϕ′(θ), θ ∈ (0, `). (26)

By means of Equation (26), the right-hand side of Equation (24) is found as follows,

∫∫
Ω

v∆Cv(t)[δ
′(x− x1)− δ′(x− x2)]dΩ =

tf∫
0

∆Cv(t)[vx(x2, t)− vx(x1, t)]dt. (27)

Here, give attention to the deflection of the performance index functional, which is given by

∆J [Cv] = J [Cv]− J [C◦v ]

=

`∫
0

{
µ1[w2(x, tf )− w◦2(x, tf )] + µ2[w2

t (x, tf )− w◦2t (x, tf )]

}
dx+

tf∫
0

µ3[C2
v − C◦

2

v ]dt.

(28)

Expanding w2(x, tf ) and w2
t (x, tf ) into Taylor series about w◦2(x, tf ) and w◦

2

t (x, tf ), respectively,
leads to the following relation,

w2(x, tf )− w◦2(x, tf ) = 2w◦(x, tf )∆w◦(x, tf ) + γ1, (29a)

w2
t (x, tf )− w◦2t (x, tf ) = 2w◦t (x, tf )∆w◦t (x, tf ) + γ2, (29b)
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where

γ1 = 2(∆w)2 + higher order terms > 0,

γ2 = 2(∆wt)
2 + higher order terms > 0.

Substituting Equation (29) into Equation (28) yields

∆J [Cv] =

`∫
0

{
µ1[2w◦(x, tf )∆w(x, tf ) + γ1] + µ2[2w◦t (x, tf )∆wt(x, tf ) + γ2]

}
dS +

tf∫
0

µ3[C2
v − C◦

2

v ]dt.

From Equation (25) and because of µ1γ1 + µ2γ2 > 0, one observes

∆J [Cv] ≥
tf∫

0

{
∆Cv(t)[vx(x1, t)− vx(x2, t)] + µ3(C2

v (t)− C◦2v (t))

}
dt ≥ 0.

Then,

Cv(t)[vx(x1, t)− vx(x2, t)] + µ3C
2
v (t) ≥ C◦v (t)[v◦x(x1, t)− v◦x(x2, t)] + µ3C

◦2
v (t).

Namely,

H[x1, x2, t; v
◦, C◦v ] = max

Cv∈Cad

H[x1, x2, t; v, Cv],

and

J [C◦v ] = min
Cv∈Cad

J [Cv], Cv ∈ Cad. (30)

By taking the first variation of H, control function Cv(t) is obtained optimally as follows,

Cv(t) =
vx(x2, t)− vx(x1, t)

2µ3
. (31)

�

4. Numerical results

In this section, theoretical results obtained in previous chapters are presented in table and graphical
forms. The solution of the system of partial differential equation including Equations (1)-(3) and
Equations (13)-(15) is found by means of MATLAB. In the simulations, terminal time is considered
as tf = 5. Also, weighting factors are considered as µ1 = µ2 = 1 and µ3 = 10−3 for the controlled
case. The length of the beam is ` = 1m and the values of the displacement and velocity of the beam
are calculated at the midpoint of the beam x = 0.5m. Young’s modulus of the beam E is taken into
account as 2 × 107 and line density of the beam ρ is considered as 6 × 104. The response of the
beam is examined in two cases. In case A, the beam is subject to the following initial conditions
and external excitation,

w(x, 0) =
√

2 sin(πx), wt(x, 0) =
√

2 sin(πx), F(x, t) = (1− x) exp(t/2).

Displacement of the beam for the case A is plotted in the Figure 1 and it is easily concluded that
vibrations are effectively damped out due to applied control algorithm by using minimum level of
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control voltage. Also, controlled and uncontrolled velocities of the beam corresponding to case A
are simulated in Figure 2 and same observation is valid. In case B, the beam is assumed that it is
induced by following initial conditions and external excitation,

w(x, 0) = 0, wt(x, 0) = 0, F(x, t) = (1− x) exp(−t).

Midpoint displacement and velocity of the beam are presented in Figures 3 and 4 and the differ-
ences between the un/controlled displacement and un/controlled velocity show the robustness of
the control. Now, focus on the bandwith of the Figures 1 and 2 and Figures 3 and 4. As it is shown,
the bandwidth of the displacement and velocity corresponding to case A and B is not same. The
reason of this is that in case A, the beam is induced by means of bigger initial conditions and
external excitation than case B. Let us introduce two functionals defining the dynamic response of
the beam

J (w) =

1∫
0

w2(x, tf )dx+

1∫
0

w2
t (x, tf )dx, (32)

and used control accumulates over (0, tf ),

J (Cv) =

tf∫
0

C2
v (t)dt. (33)

Note that Equation (32) is corresponding to the Equation (11) in case of µ1 = µ2 = 1 and µ3 = 0.

In Table 1, the dynamic response of the beam and spent control amount are presented for both case
A and case B by using different values of the weighting factor µ3. For these cases, it is concluded
from table1 that as the penalty µ3 on the control function decreases, the dynamic response of the
beam decreases corresponding to an increase in the control voltage applied to the piezoelectric
patch actuators. Also, the total amount of the applied control for the case A and B is different than
each other since in case B, the beam is subjected to smaller conditions than case A. Observing both
figures and table, it is concluded that undesirable vibrations in the beam are suppressed effectively
by introduced control algorithm.

Table 1. The values of J (w) and J (Cv) for different values of µ3 in case A and B.

µ3 Ja(w) Ja(Cv)

103 415 8 e-3
102 304 6 e-1
101 52 10
100 1.3 35

10−1 2.2 e-2 83
10−2 2.5 e-4 98
10−3 2.5 e-6 100

µ3 Jb(w) Jb(Cv)

103 2.8 e-5 5.0 e-10
102 2.0 e-5 4.0 e-8
101 3.0 e-6 7.0 e-7
100 9.0 e-8 2.1 e-5

10−1 1.0 e-9 5.0 e-5
10−2 1.5 e-11 5.7 e-5
10−3 1.5 e-13 6.0 e-5
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Figure 1. Controlled and uncontrolled displacements at x = 0.5m for case A.
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Figure 2. Controlled and uncontrolled velocities at x = 0.5m for case A.

5. Conclusion

In this paper, optimal control of a beam is studied by means of Maximum principle. The per-
formance index functional is chosen a sum of the quadratic functional of the displacement and
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Figure 3. Controlled and uncontrolled displacements at x = 0.5m for case B.
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Figure 4. Controlled and uncontrolled velocities at x = 0.5m for case B.
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velocity of the beam and performance index functional also includes a quadratic functional of the
control as a penalty term. In order to obtain control function analytically, an adjoint variable satis-
fying the adjoint equation corresponding to state equation is introduced. Introducing the maximum
principle, optimal control problem is transformed to the solving a system of partial differential
equations including state and adjoint variables, which are linked by terminal-boundary and initial
conditions. The solution of this system is obtained by MATLAB. In order to show the effectiveness
of the control, two cases are examined and results are presented in tables and graphical forms.
By observing results, it is concluded that control for suppressing the undesirable vibrations in the
beam is very effective and it can be extended to other beam models in different conditions.
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