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Abstract

In this work, we study hybrid projective combination synchronization scheme among identical
chaotic generalized Lotka-Volterra three species biological systems using active control design.
We consider here generalized Lotka-Volterra system containing two predators and one prey pop-
ulation existing in nature. An active control design is investigated which is essentially based on
Lyapunov stability theory. The considered technique derives the global asymptotic stability using
hybrid projective combination synchronization technique. In addition, the presented simulation
outcomes and graphical results illustrate the validation of our proposed scheme. Prominently, both
the analytical and computational results agree excellently. Comparisons versus others strategies
exhibiting our proposed technique in generalized Lotka-Volterra system achieved asymptotic sta-
bility in a lesser time.

Keywords: Chaotic system; Hybrid projective synchronization; Combination synchronization;
Generalized Lotka-Volterra model; Active control design; Lyapunov stability the-
ory; MATLAB
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1. Introduction

The interactions among several systems found in nature such as biological species, political par-
ties, businesses, countries and others systems include competition or cooperation (Goel et al.
(1971)). Examining the aforementioned interactions by employing mathematical modelling gives
us a mechanism to obtain profound understanding of such systems. Lotka (1926) and Vito Volterra
(Scudo (1971)) in 1920s introduced the vastly known biological models involving quadratic dif-
ferential equations to investigate numerous key aspects of population dynamics, for instance, par-
asitism or predation among two species. Lotka-Volterra (LV) model was described as a biological
notion, yet it has been applied to several diverse fields of research, which are, studying transaction
counts and interactions between cryptocurrencies (Gatabazi et al. (2019), Gatabazi et al. (2019)),
controlling congestion in wireless sensor networks (Antoniou et al. (2010)), and others. The LV
model has comprehensively contributed to the biological research describing inter species inter-
actions by giving a broad spectrum of varied parameters which modulate population dynamics
(Gavin et al. (2006), Tonnang et al. (2009), Tsai et al. (2016), Perhar et al. (2016), Reichenbach et
al. (2006), Silva-Dias and Lopez-Castillo (2018), Hening and Nguyen (2018), Xiong et al. (2019),
Nag (2020)) and others. Nevertheless, L-V model acquires few limitations, for example, interac-
tions in various species of similar ecosystem, interplaying with the natural habitat etc.

Specifically, generalized Lotka-Volterra (GLV) model including three species has become the most
significant in all existential population’s oscillatory interactions. In 1980, Arneodo et al. (1980)
have established that it may acquires chaotic, i.e., utterly complex pattern for a very specific choice
of parameters. Additionally, Samardzija and Greller (1988) in 1988 performed a comprehensive
analysis in GLV model exhibiting its chaotic behaviour. Chaos synchronization (CS) of chaotic
systems is prescribed as a procedure of adapting identical or non-identical chaotic systems in a
typical way that both depict the similar conduct owing to pairing to gain stability.

After pioneered work of Pecora and Carroll (1990) introduced in 1990, a wide spectrum of re-
searches have been conducted describing different kinds of chaos synchronization and control
(CSC) techniques such as complete (Singh et al. (2017)), anti (Li and Zhou (2007)), hybrid (Sud-
heer and Sabir (2009)), hybrid projective (Khan and Chaudhary (2020b), Khan and Chaudhary
(2020a)), function projective (Zhou and Zhu (2011)), lag (Li and Liao (2004)), phase (Ma et
al. (2017)), projective (Ding and Shen (2016)), combination synchronization (Khan and Chaud-
hary (2020a)), combination-combination (Khan and Chaudhary (2020b)), modified projective (L1
(2007)), combination difference (Khan and Chaudhary (2020c)), triple compound (Yadav et al.
(2019)), active (Delavari and Mohadeszadeh (2018)), adaptive (Khan and Chaudhary (2020a),
Khan and Bhat (2017a)), backstepping design (Rasappan and Vaidyanathan (2012)), feedback
(Chen and Han (2003)), sliding mode (Vaidyanathan and Sampath (2012); Jahanzaib et al. (2020)),
impulsive (Li and Zhang (2016)) to achieve stability in chaotic systems. CSC among chaotic
dynamical systems using active control design was first described by Bai and Lonngren (1997)
in 1997. More importantly, Mainieri and Rehacek (1999) in 1999 developed the idea of pro-
jective synchronization in chaotic systems. In addition, combination synchronization was intro-
duced firstly in 2011 by Runzi et al. (2011). Further, some significant researches (Wu (2013);
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Runzi and Yinglan (2012)) are established in this direction. Also, Dongmo et al. (2018) examined
in detail a novel strategy, mentioned as difference synchronization, in the year 2018. Moreover, in
2019 Yadav et al. (2019) studied difference synchronization of chaotic systems with exponential
terms. Also, a detailed analysis of chaos synchronization in chaotic systems has been described
in Liao and Tsai (2000), Yassen (2003), Li and Xu (2004), Li et al. (2012), and Wu et al. (2012).
In addition, an optimal control strategy for Lotka-Volterra model has been studied rigorously in
(El-Gohary and Yassen (2001)). Further, in Khan and Bhat (2017b), Khan and Tyagi (2017b), and
Khan and Tyagi (2017a), numerous control schemes are analyzed in detail in newly constructed
chaotic systems. Moreover, in Vaidyanathan (2016), and Vaidyanathan (2015), adaptive control
technique is discussed for synchronizing GLV biological system.

Considering the aforementioned discussions and literature review, our immediate goal in this article
is to propose and study a hybrid projective combination synchronization (HPCS) among three
identical GLV systems via active control design (ACD). Basically, combination synchronization
scheme involve three chaotic systems (identical or non-identical) out of which two are taken as
master systems and one is selected as a slave system. We here consider GLV model (master as
well as slave system) since this system acquires numerous oscillatory characteristics relating to
populations, although the considered GLV model is non-realistic.

The paper is arranged as follows. Section 2 consists of some preliminaries containing few notations
and essential terminology which has been used in upcoming sections. Section 3 describes some el-
ementary structured features of GLV model for which HPCS is investigated. Section 4 outlines
comprehensively the synchronization theory using ACD approach. The active control functions
are appropriately designed for investigating HPCS strategy. Section 5 deals with the discussions
regarding numerical simulations performed in MATLAB environment and illustrations of the ex-
perimental results. In addition, a comparison study keeping previously published work in view has
been done. Conclusions and discussions are finally presented in Section 6.

2. Mathematical Preliminaries

In this section, to achieve combination synchronization (Runzi et al. (2011)), a methodology based
on master-slave framework has been presented which is required in coming up sections.

Two master systems and one slave system taken into consideration are written as:

Zm1 = f1(zmi) M1 + Fi(2m1), (D
Zm2 = fo(Zm2)v2 + Fo(2m2), (2)
Zs1 = [3(251)73 + F3(261) + Vi(2m1, Zm2, 2ms), 3)
where Zml = (Zmlla Zm12y - - - ;Zmln)T S Rn’ Zm2 = (Zm217 Zm22y - -+ Zan)T S Rn’ Zs1 =
(Zs115 25125 - « - zsln)T € R" are the state vectors of master and slave systems (1), (2) and (3) respec-
tively, Fy, Fy, Fy : R" — R™ are three nonlinear continuous functions, y1 = (Y11,712, - - - Yip, )~
is a p; x 1 unknown parameter vector of the first master system (1), 72 = (721,722, - - -, Yop, ) 18
a py X 1 unknown parameter vector of the second master system (2), y3 = (Y31, V325 - - - -5 73p3)T is
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a p3 X 1 unknown parameter vector of the slave system (3), f; : R* — R™P*, fo : R* — R"*P2,
f3: R — R™Ps V) . R" x R™ X R™ — R'™ are the controllers to be properly determined.

Definition 2.1.

If there exist three constant matrices Py, Py, P; € R" x R™ and P3 # 0 such that
lim [E@)]| = lim [[(Prza(t) + Prza(t) = Pyza ()] = 0,

then combination of two chaotic master systems (1) and (2) is said to perform combination syn-
chronization with one chaotic slave system (3) and ||.|| denotes vector norm.

Remark 2.1.

The constant matrices P;, P, and P; are called the scaling matrices. Moreover, P, P, and P; can
be extended as matrices of functions of state variables z,,1, 2,2 and z.

Remark 2.2.

The problem of combination synchronization would be converted into traditional chaos control
issue for P, = P, = 0.

Remark 2.3.
If P, = —1and P, = P, = —4I, then for § = 1 it will be reduced to combination complete
synchronization and for 6 = —1 it turns into combination anti-synchronization. Therefore, the

combination of anti-synchronization and complete synchronization makes hybrid projective syn-
chronization. Hence, the hybrid projective combination synchronization (HPCS) error takes the
form:

E= Zs1 — 6(2777,2 + Zml)a (4)
where § = diag(d1,02,...,0,).

Remark 2.4.

Definition 2.1 exhibits that combination of master and corresponding slave systems may be ex-
panded to more such chaotic systems. In addition, the chosen master systems as well as slave
system of combination synchronization scheme may be identical or non-identical.

3. Generalized Lotka-Volterra System: Existence of Chaos and a Brief
Elucidation

In this section, we describe in brief the chaotic system, widely known as Generalized Lotka-
Volterra (GLV) three species biological system, to be selected for HPCS technique using active
control design (ACD).

https://digitalcommons.pvamu.edu/aam/vol15/iss2/25
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We now represent the GLV system as:

2’1 =21 — 2129 + ng% - byZ%Zg,
Zg = —22+ 2122, %)

23 = —b223 + byZ%Z’g,

where (21, 22, 23)T € R3 is the state vector and by, by and bs are positive parameters. Also, in (5),
z1 represents the prey population and z5, 23 denotes the predator populations. The parameter data
associated with GLV system (5) which display chaotic behavior is listed as b; = 2.9851, b, = 3
and b3 = 2. Also, Figure 1(a-d) display the phase plots of (5). Moreover, the detailed theoretical
study and numerical simulation results for (5) can be found in Samardzija and Greller (1988).
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Figure 1. Phase plots for chaotic GLV system in (a) 21 — 22 plane, (b) z2 — z3 plane, (c) z1 — z3 plane,
(d) z1 — 22 — 23 space

The following section presents the HPCS scheme to control chaos generated by (5) using ACD
approach.
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4. Synchronization Theory via Active Control Design

In this section, for illustration purpose, we consider three identical GLV systems to investigate the
proposed HPCS scheme via ACD. Lyapunov stability theory (LST) based active control design
(ACD) is employed and required stability criterion is derived.

Therefore, we consider two master systems (GLV) and one slave system (GLV) with required

controllers as:

( . o . b 2 . b 2

Zmll = Zmll — Zml11%mi12 T 032,11 1%2m117m13;

Zm12 = —Zm12 t Zm112m12, (6)
: 2

( Zm13 = —b2zm1z + 125,11 2m13,

{ . o 2 2

Zm21 = Zm21 — Zm21Zm22 + 032501 — 0125,01 Zm23,

§ Zm22 = —Zm22 + Zm212m22, (7N

: 2
[ Zm23 = —b22ma3 + 125,91 Zma3,

( . 2 2
Zs31 = Zs31 — Zs31%s32 T 532531 - blzs312533 + Vi,

Zs30 = —Zs32 + 25312532 + Vi2. (8)

c 2
( Zs33 = —bo2e3g + D1253; 2533 + Vi3,

where V;1,V12 and Vi3 are active controllers to be determined in such a manner that HPCS between
three identical GLV chaotic systems will be attained.

Define now the error functions as
B = 21 — 01(Zm21 + Zm11),
By = 22 — 02(Zm22 + Zm12), )
E13 = 2533 — 03(2m23 + Zm13).

The immediate goal in this work is to design controllers Vy;, (i = 1,2,3) ensuring that error
functions defined in (9) satisfy

lim Ey(t) =0 for (i =1,2,3).

t—o00

The resulting error dynamics turns into:

T 2 2 2
Ei1 = B — Zs312s32 + b3255 — b12531 2533 — 01(—2m21 2mo2 + 032501

2 2 2
=127 91 Zm23 + Zm112mi2 — b3z + 012511 2m1s) + Vi,

. 10
Eio = —F12 + 2312532 — 02(—2Zm112mi12 + Zm212ma2) + Via, (10
Bz = —byEiz + bi2Z 2533 — 03(0122191 2m23 — b12211 2m13) + Via.
Let us now define the active controllers as:
Vit = —E1 + 25312533 — b3z + bi221 2633 + 01(—2ma12ma2 + b322,01
—b12291 Zm23 + Zm112m12 — b3z211 + b122,112m13 — K1 Enn, a1

Vieg = Eia — 2s312532 + 52(—Zm112m12 + Zm212m22) — Ky b,

_ 2 2 2
Vig = baFhs — 5125312533 + 53(b12m212m23 - b1zm112m13) — K3kis,

https://digitalcommons.pvamu.edu/aam/vol15/iss2/25
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where K7, K5 and K3 are positive gain constants.

On substituting the active controllers (11) into error dynamics (10), we get

En = —K B,
FE1y = —K3yF, (12)
Ei3 = —K3E3.
The Lyapunov function is described as
1
V(E()) = 5B + Efy + Ery). (13)

We find that Lyapunov function V' (E(t)) is positive definite.

Then, the derivative of Lyapunov function V' (E(t)) may be expressed as:
V(E(t)) = 1By + BBy + EisEys. (14)

Theorem 4.1.

The chaotic systems (6)-(8) are globally and asymptotically hybrid projective combination syn-
chronized in each initial states by the active controllers (11).

Proof:

Certainly, Lyapunov function V (E(t)) that is described in (13) is positive definite function in R3.

Using (12) in (14), we obtain
V(E(t>> = _KlEfl - K2E122 - KSE%?,
<0,
which displays that V' (E(t)) is negative definite.

Thus, by using LST, we find that discussed HPCS synchronization error E(t) — 0 asymptotically
with ¢ — oo for each initial values £(0) € R* which completes the proof. n

5. Numerical Simulations and Discussions

In this section, we conduct few simulation experiments to illustrate the effectivity and feasibility
of proposed HPCS scheme using ACD. For achieving this, we utilize the typical 4th-order Runge-
Kutta methodology for solving systems of ordinary differential equations. For the parameters b; =
2.9851, b = 3 and b3 = 2, the system (5) displayed chaotic behaviour without the presence
of controllers. Initial values of master systems (6)-(7) and corresponding slave system (8) are
(ZmH(O) = 275, Zmlg(O) = 231, Zml?)(O) = 114), (ZmQI(O) = 12, Zm22(0> = ]_2, ngg(O) = 12)
and (2,31(0) = 2.9, 2432(0) = 12.8, z433(0) = 20.3), respectively.

We achieve hybrid projective combination synchronization between two master (6)-(7) and cor-
responding one slave systems (8) by taking a scaling matrix ¢ with §; = 8,0, = —4,63 = 3.
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Figure 2. Complete synchronized trajectories for GLV system (a) between 2531 (t) and 2,21 (t) — 2m11 (¢), (b) between

zs32(t) and zpm22(t) — 2m12(t), (¢) between z33(t) and zpm23(t) — 2m13(¢), (d) synchronization errors

Here, the control gains have been taken as K; = 10 for ¢ = 1, 2, 3. Further, simulation results are
depicted in Figure 4(a-c) which exhibit the HPCS synchronized state trajectories of master (6)-(7)
and slave system (8). In addition, synchronization errors (E1q, E12, E13) = (213.3,—74.8,50.9)
approaching zero as ¢ tending to infinity have been displayed in Figure 4(d). Hence, the proposed
HPCS scheme among master and slave systems is justified computationally. Furthermore, Fig-
ure 2 and Figure 3 exhibit the particular cases, namely, combination complete synchronization and
combination anti-synchronization respectively of HPCS scheme in GLV systems.
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Figure 4. HPCS trajectories for GLV system (a) between zs31(¢) and zm;m21(t) — 2m11(¢), (b) between zg32(¢) and
zm22(t) — zm12(t), (c) between z533(t) and zpm23(t) — 2m13(t), (d) synchronization errors

5.1. Comparative study for the proposed HPCS technique and the related published
work

Hybrid synchronization of two chaotic systems is achieved using adaptive control design in
Vaidyanathan (2016) when performed on same GLV systems. It is recorded that synchronization
errors converge to zero at ¢ = 0.8 (approx), whereas in this study, HPCS scheme is achieved using
ACD, in which it is noted that the synchronization errors converge to zero at t = (0.5 (approx) as
displayed in Figure 5. This clearly depicts that our proposed HPCS scheme via ACD has more
preference over earlier published literature.
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Figure 5. HPCS synchronization error plot

6. Conclusion and Future work

In this paper, the proposed HPCS technique among identical chaotic 3D GLV biological systems
using active control design is investigated. By describing proper active controllers based on LST,
the discussed HPCS scheme is achieved. The specific cases of anti-synchronization, complete
synchronization, and chaos control problem are further discussed. Simulation outcomes through
MATLAB environment indicate that the proposed active controllers are effective in controlling the
chaotic behaviour of the GLV system to desired set points which shows the effectiveness of the
proposed HPCS technique. Significantly, the analytical approach and the numerical outcomes both
agree excellently. Even though our discussed technique is simple yet it has numerous applications
in encryption, control theory and secure communication. While investigating it is noted that the
time taken by synchronized errors in converging to zero as time tending to infinity is less in com-
paring with other related published work. The proposed active controller designing can be explored
to the GLV model interrupted by system uncertainties and external disturbances as a future work.
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