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Abstract 
 

In this paper, utilizing convex functions, we first establish new refinements of Hermite-

Hadamard-Fejer type inequalities via Riemann-Liouville fractional integral operators. A 

generalized refinements of Hermite-Hadamard-Fejer type inequalities for fractional integral 

operators with exponential kernel is also obtained. The results given in this paper would provide 

extensions of those presented in earlier studies. 

 

Keywords: Hermite-Hadamard-Fejér inequality; Fractional integral operators; Convex  
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1. Introduction 
 

The Hermite-Hadamard inequality, which is the first fundamental result for convex mappings 

with a natural geometrical interpretation and many applications, has drawn attention much 

interest in elementary mathematics. 

 

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are 

considerable significant in the literature (see, e.g., Pecaric et al. (1992, p137), Dragomir and 

Pearce (2000) These inequalities state that if RIf :  is a convex function on the interval I  

of real numbers and Iba ,  with ba  , then  
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Both inequalities hold in the reversed direction if f  is concave. Fejér (1906) obtained the 

following inequality which is the weighted generalization of Hermite-Hadamard inequality (1): 

Let   Rbaf ,:  be convex function. Then the inequality 

 

   
( ) ( ) ( ) ( )

2 2

b b b

a a a

f a f ba b
f g x f x g x dx g x dx

 
  

 
    

 

holds, where   Rbag ,:  is nonnegative, integrable and symmetric to .2/)( ba    

 

A number of mathematicians have devoted their efforts to generalise, refine, counterpart and 

extend these two inqualities for different classes of functions, (see, for example, Azpeitia (1994)-

Farissi (2010), Hwang et al. (2014)-İşcan (2015), Kirane and Torebek (2017), Latif (2012), Noor 

et al. (2016), Sarikaya and Yıldırım (2016)-Yang and Hong (1997)) and the references cited 

therein. 

 

2. Preliminaries 
 

In the following we will give some necessary definitions and mathematical preliminaries of 

fractional calculus theory which are used further in this paper. More details, one can consult 

(Gorenflo and Mainardi (1997), Kilbas et al. (2006), Miller and Ross (1993), Podlubni (1999)). 

 

2.1. Riemann-Liouville fractional integral operators 

 

Definition 1.1. 

 

Let ].,[1 baLf   The Riemann-Liouville integrals fJ a




 and  fJb




  of order 0  with 0a   

are defined by 
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respectively. Here, )(  is the Gamma function and ).()()( 00 xfxfIxfI ba  
 

 

It is remarkable that Sarikaya et al. (2013) first give the following interesting integral inequalities 

of Hermite-Hadamard type involving Riemann-Liouville fractional integrals. 
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Theorem 1. 

Let   Rbaf ,:  be a positive function with ba 0  and  .,1 baLf   If f  is a convex 

function on ],[ ba , then the following inequalities for fractional integrals hold: 

 

                                
 

   ( 1)
( ) ( ) ,

2 22
a b

f a f ba b
f I f b I f a

b a

 




 

   
      

  
                       (2) 

with  .0   

 

Hermite-Hadamard-Fejér inequality for Riemann-Liouville fractional integral operators was 

given by İşcan (2015), as follows: 

 

Theorem 2. 

 

Let    Rbaf ,:   be convex function with with ba   and  baLf , . If   Rbag ,:  is 

nonnegative, integrable and symmetric with respect to 
2

ba  i.e. )()( xgxbag  , then the 

following inequalities hold 

 

( )( ) ( )( ) ( )( ) ( )( )
2

( ) ( )
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a b a b

a b
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The following Lemma will be frequently used to prove our results. 

 

Lemma 1.1.  (Xiang (2015), Yang and Tseng (1999))  

 

Let   Rbaf ,:  be a convex function and  h   be defined by 

 

































22222

1
)(

tba
f

tba
fth . 

 

Then, h  is convex, increasing on  ab ,0  and for all  ,,0 abt    

 

( ) ( )
( ) .

2 2

a b f a f b
f h t

  
  

 
 

 

Xiang (2015) obtained following important inequalities for the Riemann-Liouville fractional 

integrals utilizing the Lemma 1.1: 
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Theorem 3. 

 

Let   Rbaf ,:  be a positive function with ba   and  baLf ,1 . If f  is a convex function 

on  ba, , then WH  is convex and monotonically increasing on  1,0  and 
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with 0  where 
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Theorem 4. 

 

 Let   Rbaf ,:  be a positive function with ba   and  baLf ,1 . If f  is a convex function 

on  ba, , then WP  is convex and monotonically increasing on  1,0  and 
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with 0  where 
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2.2.  Fractional integral operators with exponential kernel 

 

Recently, Kirane and Torebek (2017) have introduce a new class of fractional integrals: 

 

Definition 2. 

 

 Let  .,1 baLf   The fractional integrals  
aI   and 

bI  of order  1,0  are defined by 
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respectively. 

 

For  1 , then 

1 1
lim ( )( ) ( )  and lim ( )( ) ( ) .

x x

a b
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f x f t dt f x f t dt 

 
 

 
  I I  

 

The authors also proved the following Hermite-Hadamard and Hermite-Hadamard-Fejér 

inequalities for fractional integral operators with exponential kernel: 

 

Theorem 5. 

 

 Let   Rbaf ,:  be a positive function with ba   and  baLf ,1 . If f  is a convex function 

on  ba, , then the following inequalities for fractional integrals hold with exponential kernel: 

 

 

1 ( ) ( )
( )( ) ( )( ) ,

2 2 1 exp 2
a b

a b f a f b
f f b f a
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where  .1 abA  


  

  

Theorem 6. 

 

 Let   Rbaf ,:  be convex and integrable function with ba  . If   Rbag ,:  is 

nonnegative, integrable and symmetric with respect to 
2

ba  i.e. )()( xgxbag  , then the 

following inequalities hold 

 

( )( ) ( )( ) ( )( ) ( )( )
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I I I I
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In this sutudy, we establish some Hermite-Hadamard-Fejér type inequalities via fractional 

integrals summarised in the above. 

 

 

5

Ertu?ral et al.: On Refinements of Hermite-Hadamard-Fejér Type Inequalities

Published by Digital Commons @PVAMU, 2018



 
 
AAM: Intern. J., Vol. 13, Issue 1 (June 2018) 431 

 

 

 

3. Refinements of Hermite-Hadamard-Fejér Type Inequalities for Riemann-                

Liouville Fractional Integral Operators 
 

In this section, we will present refirements of Hermite-Hadamard-Fejér type inequalities via 

Riemann-Liouville fractional integral operators . 

 

Theorem 7. 

 

Let   Rbaf ,:  be convex function with ba   and  .,baLf   If   Rbag ,:  is 

nonnegative,integrable and symmetric to ,2/)( ba   then 
gA  is convex and monotonically 

increasing on  1,0 , then the following inequalities for Riemann-Liouville fractional integrals 

hold 
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with ,0  where 
gA  is defined by 
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Proof : 

 

Firstly, ,1t  ,2t   ,1,0  then 
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Since f  is convex, we have 
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Hence, we have  
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then we get 
gA  is convex on  .1,0  Then, by elementary calculus and symmetricity of g , we 

have 
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From Lemma 1.1, we have     
22222

1)( utbautba ffuh    is increasing on  .,0 ab  Since 

    1

22

1

22

 
 uabuab  is nonnegative, then )(tAg

 is increasing on  .1,0  Thus, using the facts 

that 

 

     (0)
2

g a b

a b
A f I g b I g a 

 

        
 

and  

 

 
     

     

1 11
(1)

2

,
2

b

g
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a b

a b
A f b x x a g x dx

a b
f I g b I g a 

 



 

            

        


 

 

we obtain the desired result. 

 

Remark 1. 

 

If we take ,1)( tg    bat ,  in Theorem 7, then the inequalities (5) reduce to the inequalities 

(3). 

 

Remark 2. 

 

Under assumptions of Theorem 7 with 1 , then the mapping 

 

( ) (1 ) ( )
2

b

a

a b
P t f tx t g x dx

 
   

 
  

 

is convex and monotonically increasing on  1,0  and we have the following refirement of 

Hermite-Hadamard-Fejér inequality 

 

( ) ( ) ( ) ( ) ,
2

b b

a a

a b
f g x dx P t f x g x dx

 
  

 
   

 

which was given by Yang and Tseng (1999). 

 

Theorem 8. 

 

 Let   Rbaf ,:  be convex function with ba   and  .,baLf   If   Rbag ,:  is 

nonnegative,integrable and symmetric to ,2/)( ba   then 
gB  is convex and monotonically 

increasing on  1,0 , Then, the following inequalities for Riemann-Liouville fractional integral 
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Proof : 

 

We note that if f  is convex and v  is linear, then the composition vf   is convex. Moreover, we 

note that a positive constant multiple of a convex function and sum of two convex functions are 

convex. Therefore, 

 
1 1

1 1

1 1 2
( )

2 2 2 2 2

1 1 2
( )

2 2 2 2 2

t t b a x x a a x
a x g

t t b x x b a x b
b x g

 

 

 

 

               
                    

               
                     

 

 

is convex. Hence, we get that )(tBg
 is convex. Next, by elementary calculus and symmetricity of 

g , we have  

 
1 1

1 1

0

1 1 1 2
( ) ( )

2 ( ) 2 2 2 2 2

1 1 1 2
( )

2 ( ) 2 2 2 2 2

1 1

2 ( ) 2

b

g

a

b

a

b a

t t b a x x a a x
B t f a x g dx

t t b x x b a x b
f b x g dx

t
f a

 

 







 

 



               
                      

               
                      


 

 






1 1

1 1

0

2 2 2

2 2 2

1 1 2 2 2
.

2 ( ) 2 2 2 2

b a

b a u u a u
u g du

t b a u u b u
f b u g du

 

 



 

 

           
                  

             
                      



 

9

Ertu?ral et al.: On Refinements of Hermite-Hadamard-Fejér Type Inequalities

Published by Digital Commons @PVAMU, 2018



 
 
AAM: Intern. J., Vol. 13, Issue 1 (June 2018) 435 

 

 

 

 

As g  is symmetric to ,2/)( ba    

 

0

1 1

1 1 1
( )

2 ( ) 2 2

2 2 2
.

2 2 2

b a

g

t t
B t f a u f b u

b a u u a u
g du

 





 

         
          

        

        
       
       


 

 

It follows that from Lemma 1.1 that     
22222

1)( tbatba ffth    and utabtk )1()(   are 

increasing on  b,0  and  ,1,0  respectively. Thus,      ubfuaftkh tt

2

1

2

1))((    is 

increasing on  .1,0  Since     1

2

1

2
22  

 uuab  and g  are nonnegative and , then we deduce that 

gB  is monotonically increasing on  1,0 . Then,  

 

   

1 1

1 1

2
1 1

2

1 2
(0)

2 ( ) 2 2 2 2

1 2

2 ( ) 2 2 2 2

1
( ) ( )

( )

1

( )

b

g

a

b

a

a b

a

b

a b

x a b a x x a a x
B f g dx

x b x b a b x x b
f g dx

f u g u b u u a du

 

 

 









 

 



 



            
                   

            
                   

    
 










    
1 1

( ) ( )

( ) ( )
a b

f u g u b u u a du

J fg b J fg a 

 

 

    
 

 

 

 

and 

                     

1 1

1 1

( ) 2
(1)

2 ( ) 2 2 2

( ) 2

2 ( ) 2 2 2

b

g

a

b

a

f a b a x x a a x
B f g dx

f a x b a b x x b
f g dx

 

 





 

 

         
       

        

         
       

        





 

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 13 [2018], Iss. 1, Art. 27

https://digitalcommons.pvamu.edu/aam/vol13/iss1/27



 
 
436  Fatma Ertuğral et al. 

  

   

   

2
1 1

1 1

2

( )
( )

( )

( )
( )

( )

( ) ( ) ( ) ( )
( ) ( )

2 2

( ) ( )
( ) ( ) .

2

a b

a

b

a b

a b a b

a b

f a
b u u a g u du

f b
b u u a g u du

J g b J g a J g b J g a
f a f b

f a f b
J g b J g a

   

 

 

 





   

 



 

 



    
 

    
 

    
    

   


   




 

 

Thus, we obtain the required result. 

 

Remark 3. 

 

If we take ,1)( tg    bat ,   in Theorem 8, then the inequalities (6) reduce to the inequalities 

(4). 

 

Remark 4. 

 

Under assumptions of Theorem 8 with  1 , then the mapping 

 

1 1 1 1 1 1
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2 2 2 2 2 2 2 2

b b

a a

t t a x t t x b
Q t f a x g dx f b x g dx

                
             

          
   

 

is convex and monotonically increasing on  1,0  and we have the following refinement of 

Hermite-Hadamard-Fejér inequality 
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( ) ( ) ( ) ( ) ,

2

b b
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f a f b
f x g x dx Q t g x dx


    

 

which was proves by Yang and Tseng (1999). 

 

4. Refinements of Hermite-Hadamard-Fejér Type Inequalities for Fractional   

Integral Operators with Exponential Kernel 
 

Throughout this section, we denote  ,1 abA  


   axa  


 1  and  xbb  


 1  for 

 .1,0  

 

In this section, we will give two theorems for Hermite-Hadamard-Fejér type inequalities via 

fractional integral operators with exponential kernel. 
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Theorem 9. 

 

Let   Rbaf ,:  be a positive function with ba  ,  baLf ,1  and let   Rbag ,:   be a 

nonnegative, integrable and symmetric to .2/)( ba   If f  is a convex function on  ,,ba  then 
gC  

is convex and monotonically increasing on  1,0  and we have the following inequalities for 

fractional integral operators with exponential kernel: 

 

( )( ) ( )( ) (0) ( ) (1)
2

( )( ) ( )( ) ,

a b g g g

a b

a b
f g b g a C C t C

fg b fg a

 

 

 

 

 
       

 

   

I I

I I

 

 

where  

 

   
1

( ) (1 ) exp exp ( ) .
2

b

g b a

a

a b
C t f tx t g x dx 



 
         

 
  

 

Proof : 

 

Convexity of 
gC  can be proven similar to in Theorem 7. Then, using the change of variables and 

symmetricity of the function g , we have  

 

                            

   

   

   

2

2

1
( ) (1 ) exp exp ( )

2

1
(1 ) exp exp ( )

2

1
(1 ) exp exp ( )

2

b

g b a

a

a b

b a

a

b

b a

a b

a b
C t f tx t g x dx

a b
f tx t g x dx

a b
f tx t g x dx

 


 


 






 
         

 

 
         

 

 
         

 







 

         

0

0

1

2 2 2 2 2

1 1
exp exp

2 2 2 2

1

2 2 2 2 2

1 1
exp exp

2 2 2 2

b a

b a

a b ut b a u
f g

b a u b a u
du

a b ut u b a
f g

b a u b a u



 

 



 

 





    
     

   

           
            

       

    
     

   

           
            

      





du


 

12

Applications and Applied Mathematics: An International Journal (AAM), Vol. 13 [2018], Iss. 1, Art. 27

https://digitalcommons.pvamu.edu/aam/vol13/iss1/27



 
 
438  Fatma Ertuğral et al. 

  

 

0

1

2 2 2 2 2 2 2

1 1
exp exp .

2 2 2 2

b a
a b ut a b ut u b a

f f g

b a u b a u
du



 

 


         

          
      

           
            

       


 

 

Since       
22

1
22

1 expexp uabuab  




  and the function g  are nonnegative, then )(tCg

 is 

increasing on  .1,0  Therefore, with the identities 
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we obtain the desired result. 

 

 

Corollary 1. 

 

If we choose 1)( tg ,  bat ,   in Theorem 9, then 1C  is convex and monotonically increasing 

on  1,0  and we have the following refirement of Hermite-Hadamard inequality for the fractional 

integral operators with exponential kernel 
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Remark 5. 

 

Under assumptions of Theorem 9 with 1 , then the Theorem 9 reduces to Remark 2. 

 

Theorem 10. 

 

Let   Rbaf ,:  be a positive function with ba  ,  baLf ,1   and let   Rbag ,:  be a 

nonnegative, integrable and symmetric to .2/)( ba   If f  is a convex function on  ,,ba  then 

gD  is convex and monotonically increasing on  1,0  and we have the following inequalities for 

fractional integral operators with exponential kernel: 
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Proof : 

 

Convexity of 
gC  can be proven similar to in Theorem 8. Then, using the change of variables and 

symmetricity of g , we get 
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Considering that      
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    and the mapping g  are nonnegative, we find 

that 
gD  is monotonically increasing on  1,0 . On the other hand, using change of variables we 

have  
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and since g  is symmetric with respect to 
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Hence, the proof is completed. 

 

Corollary 2. 

 

If we choose 1)( tg ,  bat ,  in Theorem 10, then 1D  is convex and monotonically increasing 

on  1,0  and we have the following refirement of Hermite-Hadamard inequality for the fractional 

integral operators with exponential kernel 
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Remark 6. 

 

Under assumptions of Theorem 10 with 1 , then the Theorem 10 reduces to Remark 4. 

 

5. Concluding Remarks 
 

In this study, we consider the refinements of Hermite-Hadamard-Fejér type inequalities 
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involving Riemann-Liouville fractional integral operators and fractional integral operators with 

exponential kernel. The results presented in this study would provide generalizations of those 

given in earlier works. 
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