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Abstract

In the last years, there has been increasing interest in obtaining the sufficient conditions for sta-
bility, instability, boundedness, ultimately boundedness, convergence, etc. For instance, in applied
sciences some practical problems concerning mechanics, engineering technique fields, economy,
control theory, physical sciences and so on are associated with third, fourth and higher order non-
linear differential equations. The problem of the boundedness and stability of solutions of vector
differential equations has been widely studied by many authors, who have provided many tech-
niques especially for delay differential equations. In this work a class of third order nonlinear
non-autonomous vector delay differential equations is considered by employing the direct tech-
nique of Lyapunov as basic tool, where a complete Lyapunov functional is constructed and used
to obtain sufficient conditions that guarantee existence of solutions that are periodic, uniformly
asymptotically stable, uniformly ultimately bounded and the behavior of solutions at infinity. In
addition to being for a more general equation, the obtained results here are new even when our
equation is specialized to the forms previously studied and include many recent results in the liter-
ature. Finally, an example is given to show the feasibility of our results.

Keywords: Stability; Lyapunov functional; Ultimate boundedness; Periodicity; third-order
delay vector differential equations
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200 L. D. Oudjedi and M. Remili

1. Introduction

In this paper, we are concerned with the uniform asymptotic stability of solutions of the equation[
P (X(t))X ′(t)

]′′
+A(t)(Q(X(t))X ′(t))′ +B(t)(R(X(t))X ′(t))

+C(t)F (X(t− r(t))) = 0, (1)

and the ultimate boundedness and the existence of periodic solutions of the equation[
P (X(t))X ′(t)

]′′
+A(t)(Q(X(t))X ′(t))′ +B(t)(R(X(t))X ′(t))

+C(t)F (X(t− r(t))) = H(t,X,X ′, X ′′), (2)

in which X ∈ Rn, F : Rn → Rn, H : R+ × R3n → Rn, P,Q and R : Rn → Rn×n, A,B

and C : R+ → Rn×n, are continuous differentiable functions with P is twice differentiable and
F (0) = 0, 0 ≤ r(t) ≤ γ, γ is a positive constant, and r′(t) ≤ β0, 0 < β0 < 1 and the dots indicate
differentiation with respect to t.

Numerous research activities are concerned with the stability and boundedness of solutions to
different functional differential equations, for some related contributions, we refer the reader to
Hale (1977) and Tunç (2006a, 2006b, 2006c, 2009, 2014a, 2014b, 2017).

Ezeilo and Tejumola (1966), Afuwape (1983), Meng (1993) studied the ultimately boundedness
and existence of periodic solutions of the nonlinear vector differential equation

X ′′′ +AX ′′ +BX ′ +H(X) = P (t,X,X ′, X ′′). (3)

Afterward, Feng (1995) established sufficient conditions under which the nonlinear vector differ-
ential equation

X ′′′ +A(t)X ′′ +B(t)X ′ +H(X) = P (t,X,X ′, X ′′), (4)

has at least unique periodic solution.

Moreover, Omeike (2007) established some sufficient conditions for the ultimate boundedness of
the equation (3).

Recently, Omeike (2015) investigated the asymptotic stability of solutions to the following nonlin-
ear third order scalar differential equation with delay for P ≡ 0

X ′′′ +AX ′′ +BX ′ +H(X(t− r(t))) = P (t). (5)

Equation (5) is a particular case to our preceding non-autonomous vector differential equation with
the deviating argument r if P (X) = Q(X) = R(X) = C(t) = I, A(t) = A and B(t) = B. On the
other hand, we can find the same result for the equation (2) without delay by putting r = 0, which
is generalization of (3) and (4).

In the case n = 1, these problems have been investigated [see Graef et al. (2015a, 2015b), Oudjedi
et al. (2014, 2017) and Remili et al. (2014a, 2014b, 2014c, 2016a, 2015, 2016b, 2016c, 2016d,
2016e, 2016f)] for a general scalar delay differential equation. Equation (2) have not been discussed
in the literature, yet. The basic reason may be the difficulty to find a suitable Lyapunov function
for differential systems of higher order.
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The object of the present paper is to provide results for n-dimensional equation (2) following the
arguments used in some of the papers mentioned above.

2. Preliminaries

The following notations (see Omeike (2015)) will be useful in subsequent sections. For x ∈ Rn, |x|
is the norm of x. For a given r > 0, t1 ∈ R,

C(t1) = {φ : [t1 − r, t1]→ Rn/φ is continuous}.

In particular, C = C(0) denotes the space of continuous functions mapping the interval [−r, 0]

into Rn and for φ ∈ C, φ = sup
−r≤θ≤0

|φ (0)| . CH will denote the set of φ such that φ ≤ H. For any

continuous function x(u) defined on −h ≤ u < A, where A > 0, and 0 ≤ t < A, the symbol xt will
denote the restriction of x(u) to the interval [t− r, t], that is, xt is an element of C defined by

xt(θ) = x(t+ θ),−r ≤ θ ≤ 0.

The following results will be basic to the proofs of Theorems.

Lemma 2.1 (Afuwape (1983), Afuwape (2004), Ezeilio (1966), Tiryaki (1999)).

Let D be a real symmetric positive definite n× n matrix, then for any X in Rn, we have

δd ‖ X ‖2≤ 〈DX,X〉 ≤ ∆d ‖ X ‖2,

where δd, ∆d are the least and the greatest eigenvalues of D, respectively.

Lemma 2.2 (Afuwape (1983), Afuwape (2004), Ezeilio (1966), Tiryaki (1999)).

Let Q,D be any two real n× n commuting matrices, then

(i) The eigenvalues λi (QD) (i = 1, 2..., n) of the product matrix QD are all real and satisfy

min
1≤j,k≤n

λj (Q)λk (D) ≤ λi (QD) ≤ max
1≤j,k≤n

λj (Q)λk (D) .

(ii) The eigenvalues λi (Q+D) (i = 1, 2..., n) of the sum of matrices Q and D are all real and
satisfy

{
min

1≤j≤n
λj (Q) + min

1≤k≤n
λk (D)

}
≤ λi (Q+D) ≤

{
max
1≤j≤n

λj (Q) + max
1≤k≤n

λk (D)

}
.

Lemma 2.3 (Ezeilio (1966), Mahmoud and Tunç (2016), Tiryaki (1999)).

Let H(X) be a continuous vector function with H(0) = 0.

1)
d

dt

(∫ 1

0
〈H (σX) , X〉 dσ

)
=
〈
H (X) , X ′

〉
.

2)

∫ 1

0
〈C(t)H(σX), X〉dσ =

∫ 1

0

∫ 1

0
σ[〈C(t)JH(στX)X,X〉]dσdτ.

3
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202 L. D. Oudjedi and M. Remili

Lemma 2.4 (Ezeilio (1966), Mahmoud and Tunç (2016), Tiryaki (1999)).

Let H(X) be a continuous vector function with H(0) = 0.

1) 〈H(X), H(X)〉 = 2

∫ 1

0

∫ 1

0
σ〈JH(σX)JH(στX)X,X〉dσdτ.

2) 〈C(t)H(X), X〉 =

∫ 1

0
〈JH(σX)C(t)X,X〉dσ.

Lemma 2.5.

Let H(X) be a continuous vector function and that H(0) = 0. Then,

δh ‖ X ‖2≤
∫ 1

0
〈H (σX) , X〉 dσ ≤ ∆h ‖ X ‖2,

where δh, ∆h are the least and the greatest eigenvalues of Jh(X) (Jacobian matrix of H), respec-
tively.

Definition 2.6.

We definite the spectral radius ρ (A) of a matrix A by

ρ (A) = max {λ/ λ is eigenvalue of A} .

Lemma 2.7.

For any A ∈ Rn×n, we have the norm ‖A‖ =
√
ρ (ATA) if A is symmetric then,

‖A‖ = ρ (A) .

We shall note all the equivalents norms by the same notation ‖X‖ for X ∈ Rn and ‖A‖ for a matrix
A ∈ Rn×n.

3. Stability

Consider the functional differential equation

x′ = f(t, xt), xt(θ) = x(t+ θ) , −r ≤ θ ≤ 0, t ≥ 0, (6)

where f : I × CH → Rn is a continuous mapping, f(t, 0) = 0,

f(t, 0) = 0, CH := {φ ∈ (C[−r, 0], Rn) : ‖φ‖ ≤ H},

and for H1 < H, there exists L(H1) > 0, with |f(t, φ)| < L(H1) when ‖φ‖ < H1.

Definition 3.1 (Burton (2005)).

An element ψ ∈ C is in the ω − limit set of φ, say Ω(φ), if x(t, 0, φ) is defined on [0,+∞) and
there is a sequence {tn}, tn → ∞, as n → ∞, with ‖xtn(φ) − ψ‖ → 0 as n → ∞ where xtn(φ) =

x(tn + θ, 0, φ) for −r ≤ θ ≤ 0.
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Definition 3.2 (Burton (2005)).

A set Q ⊂ CH is an invariant set if for any φ ∈ Q, the solution of (6), x(t, 0, φ), is defined on [0,∞)

and xt(φ) ∈ Q for t ∈ [0,∞).

Definition 3.3 (Burton (1985)).

If φ ∈ CH is such that the solution xt(φ) of (6) with x0(φ) = φ is defined on [0,∞) and ‖xt(φ)‖ ≤
H1 < H for t ∈ [0,∞), then Ω(φ) is a non-empty, compact, invariant set and

dist(xt(φ),Ω(φ))→ 0 as t→∞.

Definition 3.4 (Burton (1985)).

Let V (t, φ) : I × CH → R be a continuous functional satisfying a local Lipschitz condition.
V (t, 0) = 0, and such that:

(i) W1(|φ(0)|) ≤ V (t, φ) ≤W2(|φ(0)|) +W3(‖φ‖2) where ‖φ‖2 = (
∫ t
t−r ‖φ(s)‖2ds)

1

2 ,

(ii) V̇(6)(t, φ) ≤ −W4(|φ(0)|),

whereWi (i = 1, 2, 3, 4) are wedges, then the zero solution of (6) is uniformly asymptotically stable.

4. Assumptions and main results

We shall state here some assumptions which will be used on the functions that appeared in
equation (1), and suppose that there are constants δa, δb, δc, δa′ , δb′ , δc′ , δp, δf , δq, δr,∆a, ∆b,∆c,
∆a′ ,∆b′ , ∆c′ ,∆p,∆q, ∆r and ∆f , such that the matrices A,B,C, P , Q,R and JF (X) (Jacobian ma-
trix of F (X)) are symmetric and positive definite, and furthermore the eigenvalues λi(A), λi(B),
λi(C), λi(A

′), λi(B′), λi(C ′), λi(P ), λi(Q), λi(R) and λi(JF (X))(i = 1, 2, ..., n) ofA,B,C,A′, B′, C ′,
P,Q,R and JF (X), respectively satisfy,

0 < δp ≤ λi (P ) ≤ ∆p, 0 < δq ≤ λi (Q) ≤ ∆q, 0 < δr ≤ λi (R) ≤ ∆r,

0 < δa ≤ λi (A) ≤ ∆a, 0 < δc ≤ λi (C) ≤ ∆c, 0 < δb ≤ λi (B) ≤ ∆b,

δa′ ≤ λi
(
A′
)
≤ ∆a′ , δc′ ≤ λi

(
C ′
)
≤ ∆c′ ≤ 0, δb′ ≤ λi

(
B′
)
≤ ∆b′ ≤ 0,

0 < δf ≤ λi (JF (X)) ≤ ∆f .

Note that for any matrix M symmetric invertible, we have

∆M−1 = δ−1M , and δM−1 = ∆−1M .

For the sake of brevity, we define

A1 =
1

2
(1 + ∆p−1) + δaδq∆

2
p−1 +

1

δfδc

∥∥(B(t)R(X)− δbδrI)P−1(X)
∥∥2 ,

A2 =
1

2
(1 + ∆p−1) +

1

δfδc

∥∥(A(t)Q(X)− δaδqI)P−1(X)
∥∥2 ,

Γ(t) = B(t)R(X)P−1(X), ρ(t) = t− r(t),

5
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204 L. D. Oudjedi and M. Remili

and

θ1(t) =
d

dt
P−1(X(t)) = −P−1

(
X(t)

)[ d
dt
P
(
X(t)

)]
P−1

(
X(t)

)
,

θ2(t) =
[ d
dt
Q
(
X(t)

)]
P−1

(
X(t)

)
+Q(X(t))θ1(t),

θ3(t) =
[ d
dt
R
(
X(t)

)]
P−1

(
X(t)

)
+R(X(t))θ1(t),

µ(t) =

∫ t

0
(‖θ1(s)‖+ ‖θ2(s)‖+ ‖θ3(s)‖)ds.

Consider the equivalent system to (1) :

X ′ = P−1(X)Y,

Y ′ = Z, (7)
Z ′ = −A(t)θ2(t)Y −A(t)Q(X)P−1(X)Z − Γ(t)Y

− C(t)F (X) + C(t)

∫ t

ρ(t)
JF (X(s))P−1 (X(s))Y (s)ds.

The following result is introduced.

Theorem 4.1.

Suppose that ∆c ≤ δb, ∆b′ ≤ δc′ and the assumptions

(i)
∆p∆f

δr
< α < δaδq,

(ii)
1

2
(α+ δaδq)∆a′∆q∆p−1 − δb(α∆−1p δr −∆f ) < −ε < 0,

(iii) β < min

{
δbδr, δp−1δb(δaδqδrδp−1 −∆f )A−11 ,

1

2
(δaδq − α)A−12

}
,

(iv)
∫ +∞

0

∥∥∥∥ dds(P (X(s)) +Q(X(s)) +R(X(s))
)∥∥∥∥ ds < +∞,

are satisfied, then the zero solution of (7) is uniformly asymptotically stable, if

γ < min

{
δfδc

∆f∆cδ
−1
p
, 2εδp−1(1− β0)A−13 ,

(δaδq − α)δp−1

2∆f∆cδ
−1
p

}
,

where

A3 = ∆f∆cδ
−1
p (2 + δ−1p (α+ δaδq)(2− β0) + β).

Proof:

Let a continuously differentiable Lyapunov functional U defined by

U(t,Xt, Yt, Zt) = e−
µ(t)

υ V (t,Xt, Yt, Zt) = e−
µ(t)

υ V, (8)

6
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where

V = (α+ δaδq)

∫ 1

0
< C(t)F (σX), X > dσ + 2 < C(t)F (X), Y > + < Γ(t)Y, Y >

+
1

2
(α+ δaδq) < A(t)Q(X)P−2(X)Y, Y > +(α+ δaδq) < P−1(X)Y,Z >

+ < Z,Z > +βδaδq < X,P−1(X)Y > +β < X,Z > +
1

2
βδbδr < X,X >

+
1

2
β < Y, Y > +ω0

∫ 0

−r(t)

∫ t

t+s
〈Y (τ) , Y (τ)〉 dτds.

ω0, υ are some positive constants which will be specified later in the proof. Since

ω0

∫ 0

−r(t)

∫ t

t+s
〈Y (τ) , Y (τ)〉 dτds

is non-negative, and by Lemma 2.3, we have

V ≥ (α+ δaδq)

∫ 1

0

∫ 1

0
σ < C(t)JF (τσX)X,X > dτdσ −

∥∥∥C(t)Γ−
1

2 (t)F (X)
∥∥∥2

+
∥∥∥Γ

1

2 (t)Y + C(t)Γ−
1

2 (t)F (X)
∥∥∥2 +

1

2

∥∥Z + αP−1(X)Y
∥∥2

+
1

2
<

(
(α+ δaδq)A(t)Q(X)− (α2 + δ2aδ

2
q )I

)
P−2(X)Y, Y >

+
1

2
β‖Y ‖2 +

1

2
β(δbδr − β)‖X‖2 +

1

2
‖βX + δaδqP

−1(X)Y + Z‖2,

since ∥∥∥Γ
1

2 (t)Y + C(t)Γ−
1

2 (t)F (X)
∥∥∥2 ≥ 0,

and by Lemma 2.4, we have

V ≥
∫ 1

0

∫ 1

0
σ

〈[
(α+ δaδq)C(t)− 2C2(t)Γ−1(t)JF (σX)

]
JF (τσX)X,X

〉
dτdσ

+
1

2

〈(
(α+ δaδq)A(t)Q(X)− (α2 + δ2aδ

2
q )I

)
P−2(X)Y, Y

〉
+

1

2

∥∥Z + αP−1(X)Y
∥∥2 +

1

2
‖βX + δaδqP

−1(X)Y + Z‖2

+
1

2
β‖Y ‖2 +

1

2
β(δbδr − β)‖X‖2,

under our hypothesis, we get

V ≥ 1

2

[
δcδf

(
(α+ δaδq)− 2∆p∆r−1∆f

)
+ β(δbδr − β)

]
‖X‖2

+
1

2

∥∥Z + αP−1(X)Y
∥∥2 +

1

2

[
α(δaδq − α)δp−2 + β

]
‖Y ‖2

+
1

2
‖βX + δaδqP

−1(X)Y + Z‖2,

from conditions (i) and (iii) of Theorem 4.1. We can find a constant k such that

V ≥ k
(
‖X‖2 + ‖Y ‖2 + ‖Z‖2

)
. (9)

7
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By (iv), we obtain

µ(t) ≤ ∆2
p−1(1 + ∆r + ∆q)

∫ t

0

∥∥∥∥ ddsP (X(s)
)∥∥∥∥ ds

+ ∆p−1

∫ t

0
(

∥∥∥∥ ddsR(X(s)
)∥∥∥∥+

∥∥∥∥ ddsQ(X(s)
)∥∥∥∥)ds

≤ N <∞. (10)

This may be combined with (9) to obtain

U ≥ K
(
‖ X ‖2 + ‖ Y ‖2 + ‖ Z ‖2

)
, (11)

where K = k exp

(
−N
υ

)
.

The derivative of V along the trajectories of the system (7) is given by

d

dt
V = − <

[
(α+ δaδq)P

−1(X)B(t)R(X)− 2C(t)JF (X)

− 1

2
(α+ δaδq)A

′(t)Q(X)P−1(X)

]
P−1(X)Y, Y >

− <
(

2A(t)Q(X)− (α+ δaδq)I

)
P−1(X)Z,Z >

− β
[
< X,Γ(t)Y > −δbδr < X,P−1(X)Y >

]
+ βδaδq < P−1(X)Y, P−1(X)Y > +β < (I + P−1(x))Y,Z >

− β < X,

(
A(t)Q(X)− δaδqI

)
P−1(X)Z > −β < X,C(t)F (X) >

− ω0

(
1− r′ (t)

) ∫ t

ρ(t)
〈Y (τ) , Y (τ)〉 dτ + ω0r (t) 〈Y, Y 〉+ ψ1 + ψ2 + ψ3,

where

ψ1 = (α+ δaδq)

∫ 1

0
< C ′(t)F (σX), X > dσ + 2 < C ′(t)F (X), Y >

+ < B′(t)R(X)P−1(X)Y, Y >,

ψ2 = (α+ δaδq) < θ1(t)Y, Z > +
(α+ δaδq)

2
< A(t)Q(X)P−1(X)θ1(t)Y, Y >

+ < B(t)θ3(t)Y, Y > −(α+ δaδq)

2
< A(t)θ2(t)P

−1(X)Y, Y >

+ δaδqβ < X, θ1(t)Y > −2 < A(t)θ2(t)Y,Z > −β < X,A(t)θ2(t)Y >,

and

ψ3 =

∫ t

ρ(t)

〈
C(t)JF (X(s))P−1(X(s))Y (s) , 2Z (t)

+ (α+ δaδq)P
−1(X(t))Y (t) + βX (t)

〉
ds.

8
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We claim that ψ1 < 0, indeed

ψ1 ≤ (α+ δaδq)

∫ 1

0
< C ′F (σX), X > dσ −

∥∥∥C ′ 12Y − C ′ 12F (X)
∥∥∥2

+ ∆c′

(
‖ F (X) ‖2 + ‖ Y ‖2

)
+ ∆b′δrδp−1 ‖ Y ‖2

≤ (α+ δaδq)

∫ 1

0
< C ′F (σX), X > dσ

= (α+ δaδq)

∫ 1

0

∫ 1

0
σ < C ′JF (τσX)X,X > dσdτ

≤ (α+ δaδq)

2
∆c′δf ‖ X ‖2< 0.

By the identity 2 |〈U, V 〉| ≤ ‖U‖2 + ‖V ‖2, we obtain the following estimates

ψ2 ≤
[(

(α+ δaδq)

2
(1 +

∆a∆q

δp
) +

β

2
δaδq

)
‖θ1(t)‖

+ ∆a

(
1 +

α+ δaδq
2δp

+
β

2

)
‖θ2(t)‖+ ∆b ‖θ3(t)‖

]
V

k

≤ k1
k

[
‖θ1(t)‖+ ‖θ2(t)‖+ ‖θ3(t)‖

]
V,

and

ψ3 ≤
∫ t

t−r(t)

(
‖2Z(t)‖+ (α+ δaδq)

∥∥P−1(X(t))Y (t)
∥∥

+β ‖X(t)‖
)∥∥C(t)JF (X(s))P−1 (X(s))Y (s)

∥∥ ds
≤ 1

2
∆f∆cδ

−1
p

∫ t

ρ(t)

[
2 ‖Z(t)‖2 + (α+ δaδq)δ

−1
p ‖Y (t)‖2

+β ‖X(t)‖2 + (2 + (α+ δaδq)δ
−1
p + β) ‖Y (s)‖2

]
ds

≤ 1

2
∆f∆cδ

−1
p

[
γ
(

2 ‖Z‖2 + (α+ δaδq)δ
−1
p ‖Y ‖

2 + β ‖X‖2
)

+(2 + (α+ δaδq)δ
−1
p + β)

∫ t

ρ(t)
‖Y (s)‖2 ds

]
,

where

k1 = max

{
(α+ δaδq)

2
(1 +

∆a∆q

δp
) +

β

2
δaδq,∆a(1 +

α+ δaδq
2δp

+
β

2
),∆b

}
.
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From (i) and (ii) of Theorem 4.1 and Lemma 2.4, we obtain
d

dt
V ≤ k1

k

[
‖θ1(t)‖+ ‖θ2(t)‖+ ‖θ3(t)‖

]
V − β

2

(
δfδc −∆f∆cδ

−1
p γ

)
‖X‖2

−
[
εδp−1 −

(
ω0 +

1

2
(α+ δaδq)∆f∆cδ

−2
p

)
γ

]
‖Y ‖2

− 1

2

[
(δaδq − α)δp−1 − 2∆f∆cδ

−1
p γ

]
‖Z‖2

−
[
δbδp−1(δaδqδrδp−1 −∆f )− βA1

]
‖Y ‖2 −

[
δp−1

2
(δaδq − α)− βA2

]
‖Z‖2

− β

4δfδc

[
δfδc ‖X‖+ 2

∥∥(B(t)R(X)− δbδrI)P−1(X)Y
∥∥]2

− β

4δfδc

[
δfδc ‖X‖+ 2

∥∥(A(t)Q(X)− δaδqI)P−1(X)Z
∥∥]2

−
[
ω0 (1− β0)−

1

2
∆f∆cδ

−1
p (2 + (α+ δaδq)δ

−1
p + β)

] ∫ t

ρ(t)
‖Y (s)‖2 ds.

Choosing

ω0 =
∆f∆cδ

−1
p (2 + (α+ δaδq)δ

−1
p + β)

2(1− β0)
,

and by (iii) we get
d

dt
V ≤ k1

k

[
‖θ1(t)‖+ ‖θ2(t)‖+ ‖θ3(t)‖

]
V − β

2

(
δfδc −∆f∆cδ

−1
p γ

)
‖X‖2

−

[
εδp−1 − 1

2
∆f∆cδ

−1
p γ

(
2 + (α+ δaδq)δ

−1
p + β

1− β0
+ (α+ δaδq)δ

−1
p

)]
‖Y ‖2

− 1

2

[
(δaδq − α)δp−1 − 2∆f∆cδ

−1
p γ

]
‖Z‖2 .

Using (8), (9), (10) and taking υ =
k

k1
we see at once that

d

dt
U = e−

k1µ(t)

k

(
d

dt
V − k1(||θ1(t)||+ ||θ2(t)||+ ||θ3(t)||)

k
V

)
≤ e−

k1N

k

[
− β

2

(
δfδc −∆f∆cδ

−1
p γ

)
‖X‖2

−

{
εδp−1 − 1

2
∆f∆cδ

−1
p γ

(
2 + (α+ δaδq)δ

−1
p + β

1− β0
+ (α+ δaδq)δ

−1
p

)}
‖Y ‖2

−
{

1

2

(
(δaδq − α)δp−1 − 2∆f∆cδ

−1
p γ

)}
‖Z‖2

]
.

To conclude, if we choose γ so that

γ < min

{
δfδc

∆f∆cδ
−1
p
, 2εδp−1(1− β0)A−13 ,

(δaδq − α)δp−1

2∆f∆cδ
−1
p

}
,

we will have the desired inequality
d

dt
U(t,Xt, Yt, Zt) ≤ −ξ

(
‖X‖2 + ‖Y ‖2 + ‖Z‖2

)
. (12)

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 13 [2018], Iss. 1, Art. 14

https://digitalcommons.pvamu.edu/aam/vol13/iss1/14



AAM: Intern. J., Vol. 13, Issue 1 (June 2018) 209

This shows that the zero solution of system (7) is uniformly asymptotically stable. �

Example 4.2.

As a special case of the equation (1)

(P (X(t))X ′(t))′′ +A(t)(Q(X(t))X ′(t))′ +B(t)R(X(t))X ′(t) + C(t)F (X(ρ(t))) = 0,

where

X(t) =

(
x (t)

y (t)

)
,

and

F
(
X(ρ(t))

)
=

(
1
4 arctanx(ρ(t)) + 1

4x(ρ(t))

0.16y(ρ(t))

)
, JF (X) =

(
1

4(1+x2) + 1
4 0

0 0.16

)
,

P (X(t)) =

(
sin(x(t))
1+x2(t) + 2 0

0 cos(y(t))
1+y2(t) + 2

)
, A(t) =

(
esin t

4 + 10
4 0

0 cos t
2 + 2

)
,

Q(X(t)) =

(
esin(x(t))

1+x2(t) + 2 0

0 9 cos(y(t))
10+y2(t) + 41

10

)
, B(t) =

(
e−t

2
+3

2 0

0 sin t
2 + 1

)
,

R(X(t)) =

(
10e−x

2(t)

2+x2(t) + 75 0

0 100 sin(y(t))
4+y2(t) + 50

)
, C(t) =

(
e−2t + 5 0

0 e−t + 5

)
.

Clearly, P (X) , Q (X) , R (X) , A,B,C and JF (X) are diagonal matrices, hence they are symmet-
ric and commute pairwise. Then, by an easy calculation, we obtain eigenvalues of the matrices
P,Q,R, A, B, C and JF (X) as follows:

δp = 1 ≤ λ1 (P (X(t))) = sinx
1+x2 + 2, λ2 (P (X(t))) = cosx

1+x2 + 2 ≤ 3 = ∆p,

δq = 2 ≤ λ1 (Q(X(t))) = esin x

1+x2 + 2, λ2 (Q(X(t))) = 9 cos y
10+y2 + 41

10 ≤ 5 = ∆q,

δr = 25 ≤ λ1 (R(X(t))) = 100 sin y
4+y2 + 50, λ2 (R(X(t))) = 10e−x

2

2+x2 + 75 ≤ 80 = ∆r,

δa = 1.5 ≤ λ1 (A(t)) = 1
2 cos t+ 2, λ2 (A(t)) = esin t

4 + 10
4 ≤ 3.1795 = ∆a,

δb = 0.5 ≤ λ1 (B(t)) = sin t
2 + 1, λ2 (B(t)) = e−t

2

2 + 3
2 ≤ 2 = ∆b,

δc = 5 ≤ λ1 (C(t)) = e−2t + 5, λ2 (C(t)) = e−3t + 5 ≤ 6 = ∆c,

δf = 0.16 = λ1 (JF (X)) , λ2 (JF (X)) = 1
4(1+x2) + 1

4 ≤
1
2 = ∆f .

A simple computation gives

11
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λ1
(
A′(t)

)
= −1

2
sin t, λ2

(
A′(t)

)
=

cos t

4
esin t,

λ1
(
B′(t)

)
= −cos t

2
, λ2

(
B′
)

= −te−t2 ,

λ1
(
C ′(t)

)
= −2e−2t, λ2

(
C ′(t)

)
= −e−t.

A trivial verification shows that P,Q and R are nonsingular matrices and we have

d

dt
P (X(t)) =

( cos(x(t))
1+x2(t) −

2x(t) sin(x(t))

(1+x2(t))2

)
x′(t) 0

0
(
− sin(y(t))
1+y2(t) −

2y(t) cos(y(t))

(1+y2(t))2

)
y′(t)

 ,

d

dt
Q(X(t)) =

(
( cos(x(t))e

sin(x(t))

1+x2(t) − 2x(t)esin(x(t))

(1+x2(t))2 )x′(t) 0

0 (−9 sin(y(t))10+y2(t) −
18y(t) cos(y(t))
(10+y2(t))2 )y′(t)

)
,

and

d

dt
R(X(t)) =

 −20x(t)e−x2(t)(3+x2(t))
(2+x2(t))2 x′(t) 0

0 (100 cos(y(t))4+y2(t) − 200y(t) sin(y(t))
(4+y2(t))2 )y′(t)

 .

For t ∈ [0,+∞) a straightforward calculation give

∫ t

0
‖ d
ds
P (X(s))‖ds =

∫ t

0

∣∣∣∣( cos(x(s))

1 + x2(s)
− 2x(s) sin(x(s))

(1 + x2(s))2
)x′(s)

∣∣∣∣ ds
+

∫ t

0

∣∣∣∣(− sin(y(s))

1 + y2(s)
− 2y(s) cos y(s)

(1 + y2(s))2
)y′(s)

∣∣∣∣ ds
≤
∫ ω2(t)

ω1(t)

∣∣∣∣( cosu

1 + u2
− 2u sinu

(1 + u2)2
)du

∣∣∣∣
+

∫ ϕ2(t)

ϕ1(t)

∣∣∣∣(− sin v

1 + v2
− 2v cos v

(1 + v2)2
)dv

∣∣∣∣
<

∫ +∞

−∞

1 + u2 + 2 |u|
(1 + u2)2

du+

∫ +∞

−∞

1 + u2 + 2 |u|
(1 + u2)2

du

= 2π,
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∫ t

0
‖ d
ds

(Q(X(s)))‖ds =

∫ t

0

∣∣∣∣(cos(x(s))esin(x(s))

1 + x2(s)
− 2x(s)esin(x(s))

(1 + x2(s))2
)x′(s)

∣∣∣∣ ds
+

∫ t

0

∣∣∣∣(−9 sin(y(s))

10 + y2(s)
− 18y(s) cos(y(s))

(10 + y2(s))2
)y′(s)

∣∣∣∣ ds
≤
∫ ω2(t)

ω1(t)

∣∣∣∣(cosuesinu

1 + u2
− 2uesinu

(1 + u2)2
)du

∣∣∣∣
+

∫ ϕ2(t)

ϕ1(t)

∣∣∣∣(−9 sin v

10 + v2
− 18v cos v

(10 + v2)2
)dv

∣∣∣∣
<

∫ +∞

−∞
(

e

1 + u2
+

2e |u|
(1 + u2)2

)du

+

∫ +∞

−∞
(

9

10 + v2
+

18 |v|
(10 + v2)2

)dv

= (e+
9√
10

)π,

and ∫ t

0
‖ d
ds

(R(X(s)))‖ds =

∫ t

0

∣∣∣∣∣−20x(s)e−x
2(s)(3 + x2(s))

(2 + x2(s))2
x′(s)

∣∣∣∣∣ ds
+

∫ t

0

∣∣∣∣(100 cos(y(s))

4 + y2(s)
− 200y(s) sin(y(s))

(4 + y2(s))2
)y′(s)

∣∣∣∣ ds
≤
∫ ω2(t)

ω1(t)

∣∣∣∣∣(−20ue−u
2

(3 + u2)

(2 + u2)2
)du

∣∣∣∣∣
+

∫ ϕ2(t)

ϕ1(t)

∣∣∣∣(100 cos v

4 + v2
− 200v sin v

(4 + v2)2
)dv

∣∣∣∣
<

∫ +∞

−∞

60 |u|
(2 + u2)2

du+

∫ +∞

−∞

(
100

4 + v2
+

200 |v|
(4 + v2)2

)
dv

= 50π,

where

ω1(t) = min{x(0), x(t)}, ω2(t) = max{x(0), x(t)},

and

ϕ1(t) = min{y(0), y(t)}, ϕ2(t) = max{y(0), y(t)}.

By taking α = 2.5 it follows easily that

0.06 =
∆p∆f

δr
< α < δaδq = 3,

and
1

2
(α+ δaδq)∆a′∆q∆p−1 − δb(α∆−1p δr −∆f ) = −1.65 < 0.

We take r (t) = exp
(
−t2
)
, then, 0 ≤ r(t) ≤ γ, (γ > 0) , and r′ (t) = −2t exp

(
−t2
)
≤ β0

for 0 < β0 < 1. Thus, all the conditions of Theorem 4.1 are satisfied.
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5. Boundedness and the existence of periodic solutions

First, consider a system of delay differential equations

x′ = F (t, xt) , xt(θ) = x(t+ θ) , − r ≤ θ ≤ 0 , t ≥ 0, (13)

where F : R× CH −→ Rn is a continuous mapping and takes bounded set into bounded sets.
The following lemma is a well-known result obtained by Burton (1985).

Lemma 5.1 (Burton (1985)).

Let V (t, φ) : R× CH −→ R be a continuous and local Lipschitz in φ. If

(i) W (|x (t)|) ≤ V (t, xt) ≤W1 (|x (t)|) +W2

(∫ t
t−r(t)W3 (|x (s)|) ds

)
,

(ii)V ′(13) ≤W3 (|x (s)|) +M for some M > 0, where W (r) ,Wi (i = 1, 2, 3) are wedges,
then the solutions of (13) are uniformly bounded and uniformly ultimately bounded for bound B.

If (13) is a periodic system with period T , we have the following result.

Lemma 5.2 (Li Senlin and Wen Lizhi (1987)).

Suppose that, for α > 0, there exists L(α) > 0 such that |f(t, xt)| ≤ L(α), for t ∈ [−T, 0] and
‖xt‖ ≤ α, and suppose that the solutions of (13) are bounded and ultimately bounded for bound B,
then, there exists a periodic solution of (13) of period T .

To study the boundedness and the existence of periodic solutions of (2), we would need to write
(2) in the form

X ′ = P−1(X)Y,

Y ′ = Z, (14)
Z ′ = −A(t)θ2(t)Y −A(t)Q(X)P−1(X)Z −B(t)R(X)P−1(X)Y − C(t)F (X)

+ C(t)

∫ t

ρ(t)
JF (X(s))P−1 (X(s))Y (s)ds+H

(
t,X, P−1(X)Y, θ1(t)Y + P−1(X)Z

)
.

Thus, our main theorem in this section is stated with respect to (14) as follows.

Theorem 5.3.

One assumes that all the assumptions of Theorem 4.1 and the assumption

‖H(t,X, Y, Z)‖ ≤ h1(t) + h2(t)(‖X‖+ ‖Y ‖+ ‖Z‖) (15)

hold, where h1(t) and h2(t) are continuous functions and there exist H0, ε > 0 such that

h1(t) ≤ H0 h2(t) ≤ ε.

Then all solutions of system (14) are uniformly bounded and uniformly ultimately bounded.
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Proof:

Along any solution (X(t), Y (t), Z(t)) of (14), we have

d

dt
U(14) =

d

dt
U(7)+ < βX + (α+ δaδq)P

−1(X)Y + 2Z,H(t,X, P−1(X)Y,X ′′) > .

From (12), we obtain

d

dt
U(14) ≤ −ξ

(
‖X‖2 + ‖Y ‖2 + ‖Z‖2

)
+ κ1(‖X‖+ ‖Y ‖+ ‖Z‖)‖H(t,X, P−1(X)Y,X ′′)‖,

where κ1 = max{β, (α+ δaδq)δ
−1
p , 2}.

Choosing ε < 3−1κ−11 ξ , then, there exists κ2 = ξ − 3κ1ε > 0.

In view of (15) we have

d

dt
U(14) ≤ −

κ2
2

(‖X‖2 + ‖Y ‖2 + ‖Z‖2) +
3

2
κ21H

2
0κ
−1
2 , (16)

since

κ2
2

{(
‖X‖ − κ1H0κ

−1
2

)2

+

(
‖Y ‖ − κ1H0κ

−1
2

)2

+

(
‖Z‖ − κ1H0κ

−1
2

)2
}
≥ 0,

for all X,Y and Z. From estimate (16), hypothesis (ii) of Lemma 5.1 is satisfied. Also from esti-
mates (11) and by the fact that W (t, φ) ≤ W2(‖φ‖) + W3(

∫ t
ρ(t)W4(φ(s))ds), is easily verified, then

condition (i) of Lemma 5.1 follows. This completes the proof of the theorem. �

The following theorem being a consequence of Theorem 5.3 and Lemma 5.2.

Theorem 5.4.

If hypotheses of Theorem 5.3 be satisfied and A,B,C,H are periodic functions of period T , then
there exists a periodic solution of system (14) with the period T .

Proof:

It only remains to verify using the assumptions of Theorem 5.3 that the conditions of Lemma 5.2
follow easily. �

6. Conclusion

Lyapunov’s method has proved to be a popular and useful technique in the study of the stability
and boundedness of solutions of higher order non-linear differential equations. In this paper we
investigate the asymptotic stability of the zero solution and ultimate boundedness of solutions for
certain third order non-linear non-autonomous vector differential equations with delay. Sufficient
conditions were obtained for the existence of at least one periodic solution of the equation.
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