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Abstract

The Burr XII distribution is one of the most important distributions in Survival analysis. In this
article, we introduce the new wider Burr XII-G family of distributions. A special model in the
new family called Burr XII-exponential distribution that has constant, decreasing and unimodal
hazard rate functions is investigated. We discuss the estimation of this distribution parameters by
maximum likelihood, three modifications of maximum likelihood and Bayes methods. In Bayes
method, we use the uniform, triangular and Burr XII-uniform priors for posterior analysis and
obtain Bayes estimations under two different loss functions. We obtain two approximations of the
Bayes estimations, the first one is by importance sampling and the second is based on Lindley’s
approximation. Monte Carlo simulated data are used to evaluate these methods. Finally, we fit this
distribution to a set of real data set by estimation procedures.

Keywords: Burr XII distribution; exponential distribution; Maximum likelihood; Bayesian
Analysis; Importance Sampling; Lindley’s Approximation; Simulation; Survival
Analysis

MSC 2010 No.: 62F10; 65C05; 60K 10

1. Introduction

Survival analysis is one of the topices of statistics that has application in various fields including
computer sciences, insurance, economics, medicine, engineering, epidemiology and agricultural.
Survival analysis is a set of statistical methods for data analysis in which desired variable is lifetime
or time of failure.
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A widely used family of distributions in lifetime data analysis is Burr distributions family. The first
purpose of this article is to define new family of distributions to describe and fit the data sets with
non-monotonic hazard rates, such as the bath-tub, unimodal and modified unimodal (unimodal
followed by increasing) hazard rates. For this purpose, we first define a family of continuous distri-
butions, namely, Burr XII-G distributions. Many of probability distributions that are modifications
or generalizations of important lifetime distributions (Weibull, logistic, normal, gamma, etc.) have
been introduced in order to achieve this purpose in recent years. But unfortunatly, weakness many
of them was increasing the number of parameters and following that their estimation and also com-
plicated forms of survival and hazard rate functions. Several classes to generate new distributions
by adding one or more parameters have been proposed in statistical literatures. Some well-known
generators are beta-G by Eugene et al. (2002), Kumaraswamy-G (Kw-G) by Cordeiro and De Cas-
tro (2011), transformer (T-X) by Alzaghal et al. (2013), Weibull-G by Bourguignon et al. (2014)
and Logistic-X by Tahir et al. (2016).

The motivation to define Burr XII-G family is to describe and fit the data sets with non-monotonic
hazard rate functions by distributions with less parameters. In this family of distributions, this
purpose is almost achieved. for example, if G is uniform distribution, obtained distribution is dis-
tribution with two parameters and with increasing and unimodal hazard rate functions and if G
is exponential distribution, derived distribution has three parameters and constant, decreasing and
unimodal hazard rate functions. If also G is gamma distribution, obtained distribution has three
parameters and increasing, bath-tub and modified unimodal hazard rate functions.

In this article, a special model in the new family called Burr XII-exponential distribution is inves-
tigated.

In survival analysis, after definition a sufficiently flexible distribution, finding a suitable method
for estimation its parameters is a major challenge for statisticians.

The main objective of this article is to develop competitive methods of parameter estimation for
Burr XII-exponential distribution parameters and to compare them with each other. We use five
methods for estimation. the first four methods are based on unconstrained and constrained max-
imum likelihood and the last method is based on Bayesian analysis with different loss functions
and prior distributions.

The reminder of the article is organized as follows: in Section 2, Burr XII-G distributions family
and Burr XII-exponential distribution are defined and some properties of Burr XII-exponential dis-
tribution such that hazard rate function, entropy, skewness and kurtosis are investigated. Parameter
estimation of Burr XII-exponential distribution by maximum likelihood, modifications of maxi-
mum likelihood and Bayes methods are discussed in Section 3. In Section 4, a simulation study is
provided to compare methods with each other and in Section 5, we fit this distribution to a set of
real data and show the fits given by estimation procedures. Section 6 provides conclusions.

2. Burr XII-exponential Distribution

Consider a continuous distribution G’ with probability density function (pdf) ¢ and support (a,b),
a <b,a,b € [—o00,+0o0], and the Burr XII cumulative distribution function (cdf) B(t) = 1—(1+t°)"P
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(for t > 0) with positive parameters ¢ and p. Based on pdf of Burr XII distribution, by replacing =

with fg’&), we define the cdf of the Burr XII-G family of distributions by:
G(x;€)
1-G(x;8)

Cptc_l (1 + tc)_p_ldt

F(x;c,p,€)=/

where G(z;€) is a baseline cdf, which depends on a parameter vector ¢. The family pdf reduces to

i C = epalx: (G(z; f))c_l M c\ —p—1
f(z;¢,p,6) = cpg( ’5)(1 — G ) (1 + <1 - G(x;§)> > _ 2

Using Newton’s generalized Binomial theorem, pdf of Burr XII-G distribution reduces to

f@iep.§) = > wikhe(jpryrr(7:8),

4,k=0
where
Wy = (1) I'(j +tpt DI(c(j +1) +.k +1) 7
JUEIT (e(j + 1) + DE(p)T(c(j + 1) + k)
and

ha(w;€) = ag(; )G (;€).
Note, h, 1s pdf of exponentiated-G distribution with power parameter a > 0.

Hence the Burr XII-G pdf can be expressed as an infinite linear combination of exponentiated-G
pdfs and so some mathematical properties of the Burr XII-G model can be obtained directly from
those properties of exponentiated-G distribution. For example, s moment and moment generating
function for Burr XII-G distribution are, respectively, as

oo
nis) = B(X®) = ) wirB(Z]y), (3)
J,k=0
and
oo
Mx(t) = Z w;kE(eP+),
4, k=0

where Z; ;, has exponentiated-G distribution with power parameter ¢(j + 1) + k.

According to Equation 1, the Burr XII-G family of distributions can be simulated by simulation of
Burr XII distribution, 7', and then using X = G~! (%)

The quantile function, Q(u), 0 < u < 1, for the Burr XII-G family of distributions can be computed
by using the formula

Bﬂ@)

Qu) = G (1 + B~ 1(u)
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In this article, we investigate a special model of this family that obtains by setting exponential

distribution as baseline cdf G. If G is cdf of exponential distribution, then g(z;6) = 0e=% (6, z > 0)

and G(x;0) = 1 — e~%*. Therefore the Burr XII-exponential has cdf given by
F(x;c7p79):1_(1+(60$_1)C)_p ) :E>07 Cvpa0>0a

where ¢ and p are shape parameters and 6 is scale parameter. The corresponding pdf is
f(x;e,p,0) = cphe®® (P — 1)1 (1 + (e — 1)) Pt | 2>0.

If ¢ = 1, then the Burr XII-exponential distribution reduces to exponential distribution with param-
eter pf. Hence Burr XII-exponential distribution is a generalization of exponential distribution.

Figure 1 illustrates shapes of the probability density and hazard rate functions for the Burr XII-
exponential distribution.
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Figure 1. Shapes of probability density and hazard rate functions of the Burr XII-exponential distribution for different
values of shape parameters c

As shown in Figure 1, this model is flexible enough to accommodate constant (¢ = 1), decreasing
(¢ < 1) and unimodal (¢ > 1) hazard rate functions.

According to Equation 3, the moments of Burr XII-exponential distribution is as
p(s) = B(X?)

= (e +1) + k) 00
- Z Wy, k 93 8ps

Ble(G+1) +k,p+1—c(i+1)=k) |[p—cii+1)+ -
4,k=0

Skewness and kurtosis of a parametric distribution are often measured by S = @ and K = “{Eff),
respectively. For the Burr XII-exponential distribution, skewness and kurtosis can be approximated
by approximations of (3) and p(4) or alternative measures for skewness and kurtosis, based on
quantile functions. The measures of skewness and kurtosis defined, respectively, by Galton (1883)

and Moors (1988) as follow are based on quantie functions.

_ Q) —2Q() +QF) )
QY -Q3F)
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_ Q@) -Q@)+Q}) 5)
QR -QF)
To investigate the effect of the shape parameters c and p on the Burr XII-exponential pdf, Equations
4 and 5 are used to obtain Galton’s skewness and Moors’ kurtosis. Figure 2 displays the Galton’s

skewness and Moors’ kurtosis for the Burr XII-exponential distribution.

0 0 0 0
Figupre 2. Galton’s skewnéss and Moors’ kurtosis for the Burr XlI-exponential distribution

One of the applications of this distribution is in the field of insurance. In the area of agricultural
insurance, efficient implementation of crop revenue insurance contracts requires accurate measures
of risk for both crop prices and yields. Empirical evidence shows that crop prices tend to be pos-
itively skewed with fat tails but in premium rate calculations assume crop prices follow a normal
or log-normal distribution. According to Figure 2 the Burr XII-exponential distribution is positive
skewed and has fatter tail than normal distribution so it seems logical that the Burr XII-exponential
distribution provide a better overall fit for the crop prices when compared to the normal distribution
and the log-normal distribution.

3. Methods of estimation

In this section, we discuss maximum likelihood, three modifications of maximum likelihood and
Bayes methods for estimation of parameters of Burr XII-exponential distribution.

3.1. Maximum Likelihood Estimator (MLE)
Using Equation 2, the log likelihood function for the Burr XII-exponential distributed independent
observations x1, x9, ..., x, can be written as
l(xla L2y ey Ty Cy Py '9)
= nlog(cpd) + Z Ox; + (c—1) Zlog(eezi -1)—(p+1) Zlog(l + (P2 —1)°). (6)
i=1 i=1 i=1

The MLEs can be obtained by maximization of log likelihood function with respect to the param-
eters ¢, p and 6, using optimization methods such as quasi-Newton method.
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at an initial point.

x = fminunc(fun,xo, options) minimizes with the optimization options specified in options. In
MLE method, fun is negative of likelihood function.

A important problem in fminunc algorithm is to choose initial point. We choose initial point for
using MLE method as follows:

The Burr XII-exponential distribution with parameters ¢ = 1, p and 6 is exponential distribution
with parameter p6. Hence, (1,1, 1) is chosen as the initial point because 1 is MLE estimation for

) 'z

parameter A\ of exponential distribution.

In MMLE 1, MMLE 2 and MMLE 3 methods, maximum of likelihood function 6 with a con-
straint should be found. The ’Optimization toolbox’ of Matlab (Gilat, 2004) contains an algorithm
fmincon for constrained nonlinear optimization.

fmincon finds the minimum of a problem specified by

min, f(x) such that ¢ Az <b )
Aeqr = beq
b<z<ub

where b and beq are vectors, A and Aeq are matrices, ¢(z) and ceq(z) are functions that return
vectors, and f(x) is a function that returns a scalar. f(z), ¢(x) and ceq(x) can be nonlinear functions.
x, b and ub can be passed as vectors or matrices.

x = fmincon(fun,xg, A, b, Aeq, beq, Ib, ub, nonlcon, options) subjects the minimization to the non-
linear inequalities c¢(z) or equalities ceq(z) defined in nonlcon. fmincon optimizes such that
¢(z) <0 and ceq(x) = 0.

In MMLE 1, MMLE 2 and MMLE 3 methods, fun is negative of likelihood function, ceq(z) is
equations 7, 8, and 9 respectively, /b is zero and since there aren't linear inequalities and equalities
and upper bound for z, hence set A = b = Aeg = beq = ub = [|. Also, similar MLE method (1,1, 1)
is chosen as the initial point.

In Baysian method, Bayes with Entropy loss function and uniform, triangular and Burr XII-uniform
priors, respectively, are denoted by BELFU, BELFT, BELFBU and also Bayes with Precautionary
loss function and uniform, triangular and Burr XII-uniform priors, respectively, are denoted by
BPLFU, BPLFT, BPLFBU.

Lindley’s approximation of Bayes estimation with Entropy loss function and uniform and Burr
XII-uniform priors, respectively, are denoted by LBELFU and LBELFBU and also Bayes with
Precautionary loss function and uniform and Burr XII-uniform priors, respectively, are denoted by
LBPLFU and LBPLFBU.

The performance of the MLE, MMLEs and Bayes methods was evaluated by using the following

https://digitalcommons.pvamu.edu/aam/vol13/iss1/4
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performance indices:
e Standard bias: BIAS:%.

e Root mean square error: RMSE:E((%“?Z)O'E), where 7 is an estimate of x (parameter), and

o E(#) =137 #;, where n is the number of the Monte Carlo samples (n = 1000 in this study).
The number of samples of 1000 may arguably not be large enough to produce the true values of
BIAS and RMSE, but will suffice to compare the performance of estimation methods.

4.3. BIAS in parameter estimation

The bias of parameters estimated by the methods is summarized in Tables 1, 2 and 3. Of all meth-
ods, in the first two cases, MMLE 2 and in the third case, MLE produced the least bias in ¢ pa-
rameter estimate. In p parameter estimate, MMLE 3, MMLE 1 and MLE produced the least bias
in cases 1, 2 and 3, respectively. In three cases, MLE produced the least bias in the 6 parameter.

In comparison between approximations of Bayes estimations, in cases 2 and 3, LBELFBU and in
case 1, LBPLFU produced the least bias in ¢ parameter estimate. In p parameter estimate, in cases
2 and 3, LBPLFBU and in case 1, LBELFU produced the least bias. In ¢ parameter estimate, in
cases 2 and 3, LBPLFU and in case 1, LBPLFBU produced the least bias.

4.4. RMSE in parameter estimation

The values of RMSE of parameters estimated by the methods are given in Tables 4, 5 and 6. Of
all methods, in cases 1 and 3, MLE and in the case 2, MMLE 2 produced the least RMSE in
¢ parameter estimate. In p parameter estimate, in cases 1 and 3, MLE and in case 2 MMLE 1
produced the least RMSE. In three cases, MLE produced the least RMSE in the 6 parameter.

In comparison between approximations of Bayes estimations, in cases 1 and 2, LBELFBU and
in case 3, LBELFU produced the least RMSE in ¢ parameter estimate. In p parameter estimate,
in cases 2 and 3, LBPLFBU and in case 1, LBELFBU produced the least RMSE. In 6 parameter
estimate, in cases 1 and 3, LBELFBU and in case 2, LBPLFU produced the least RMSE.

5. Application to real data

Here, we apply MLE, MMLE 1, MMLE 2, MMLE 3 and Bayse estimators to a real data set. Data
set is corresponding to remission times (in months) of a random sample of 128 bladder cancer

patients. These data were previously studied by Lee and Wang (2003), Lemonte and Cordeiro
(2011) and Zea et al. (2012).

The scaled empirical TTT transform (Aarset, 1987) can be used to identify the shape of the hazard
rate function. The scaled empirical TTT transform is convex (concave) if the hazard rate function is

Published by Digital Commons @PVAMU, 2018
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Figure 3. TTT plot for remis<$in times of bladder cancer

decreasing (increasing) and for bathtub (unimodal) hazard rate functions, the scaled empirical TTT
transform is first convex (concave) and then concave (convex). The TTT plot for this data in Figure
3 shows an unimodal hazard rate function and Therefore, indicates that the Burr XII-exponential
distribution with ¢ > 1 is suitable for fitting this data set.

The MLE, MMLE 1, MMLE 2, MMLE 3 and Bayes estimations, the value of Kolomogor-ov-
Smirnov (K — S) statistic with its respective p-value are listed in table 7. Note, the K — S statistic
quantities a distance between the emprical distribution function of data set and the cdf of the
fitted distribution, i.e. K — S = /nsup, | F,(z) — F(z) |, where F,(z) = 13", T ooz () 18
the emprical distribution function of data set and F'(x) is fitted cdf. So if data set comes from
distribution F'(z), then K — S converges to 0 almost surely in the limit when n goes to infinity.
Also, note that when n goes to infinity, distribution of K — S converges to Kolomogrov-Smirnov
distribution with cdf H(t) =1 — 2300 (—1)"le=2",

Also, p-value=P(K — S > (K — S) | distribution of data set is F'(x)), where (K — S)g 1s value of
test statistic for data set. The p-value simply indicates the degree to which the data set conform to
the fitted cdf. On the other hand, p-value denotes the threshold value of the significance level in the
sense that the null hypothesis (distribution of data set is F'(x)) will be accepted for all values of «
less than the p-value. For example, p-value for Burr XII-exponential distribution fitted by MMLE1
is 0.7077, so the null hypothesis will be accepted at all significance levels less than p-value (i.e.
0.5 and 0.7), and rejected at higher levels, including 0.8 and 0.9. The p-value can be useful, in
particular, when the null hypothesis is rejected at all predefined significance levels, and you need
to know at which level it could be accepted. For further reading on p-value, refer to Greenland et
al. (2016).

From values in Table 7, we conclude that the estimation method MMLE?2 is better than the other
estimation methods since K — S = 0.0420 and p-value=0.9705 and has less K — .S and more p-value.
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Table 7. Estimation of parameters of the Burr XII-exponential distribution for remission times of bladder cancer

method c P 0 K-S p-value
MLE 1.3414 0.3416 0.2436 0.0584 0.7528
MMLE 1 1.3126 0.4082 0.21 0.0608 0.7077
MMLE 2 1.3508 0.3183 0.2690 0.0420 0.9705
MMLE 3 1.0246 0.6695 0.1615 0.0834 0.3178
BELFU 1.3426 0.3417 0.2414 0.0617 0.6910
BPLFU 1.5951 0.3430 0.2452 0.0567 0.7827
BELFT 1.3424 0.3422 0.2444 0.0561 0.7935
BPLFT 1.5960 0.3436 0.2452 0.0574 0.7704
BELFBU 1.3353 0.3313 0.2365 0.0830 0.3226
BPLFBU 1.5852 0.3541 0.2351 0.0474 0.9224
LBELFU 1.5149 0.3337 0.22 0.0688 0.5571
LBPLFU 1.3425 0.3379 0.2420 0.0648 0.6322
LBELFBU 1.4821 0.3125 0.2478 0.0502 0.8873
LBPLFBU 1.5750 0.3448 0.2433 0.0511 0.8751

6. Conclusion

In this article, we introduced the new Burr XII-G family of distributions. A special model in the
new family called Burr XII-exponential distribution that has constant, decreasing and unimodal
hazard rate functions, was investigated. This distribution would be applied in Survival analysis and
insurance.

In this article, we suggested estimate the parameters of Burr XII-exponential distribution by maxi-
mum likelihood, the three modifications of maximum likelihood and Bayesian methods. The three
modifications of maximum likelihood were subject to constraints, respectively, (1) change-point
equality of distribution and sample (MMLE 1), (2) median equality of distribution and sample
(MMLE 2) and (3) F(x(,) equality and E(F(z(-))) (MMLE 3). Also Bayesian method was under
Entropy and Precautionary loss functions and uniform, triangular and Burr XII-uniform priors.

We used Monte Carlo simulated data to compare these methods. We concluded, for all sample
sizes, of all methods, in cases unimodal and decreasing hazard rates, the MMLE 2 and in case
constant hazard rate, MLE produced the least bias in ¢ parameter estimate. In p parameter estimate,
MMLE 3, MMLE 1 and MLE produced the least bias in cases decreasing, unimodal and constant
hazard rates, respectively. In three cases, MLE produced the least bias in the § parameter.
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