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Abstract: 

 In this paper, we discuss the steady state analysis of a batch arrival feedback retrial queue with 

two types of services and negative customers. Any arriving batch of positive customers finds the 

server is free, one of the customers from the batch enters into the service area and the rest of 

them get into the orbit. The negative customer, is arriving during the service time of a positive 

customer, will remove the positive customer in-service and the interrupted positive customer 

either enters the orbit or leaves the system. If the orbit is empty at the service completion of each 

type of service, the server takes at most J vacations until at least one customer is received in the 

orbit when the server returns from a vacation. While the busy server may breakdown at any 

instant and the service channel may fail for a short interval of time. The steady state probability 

generating function for the system size is obtained by using the supplementary variable method. 

Numerical illustrations are discussed to see the effect of the system parameters.  

Keywords:  Bulking; Feedback; Balking; G –queue; Breakdown; Starting failures;  

   Steady-state solution 

 

MSC 2010 No.: 60K25, 68M20, 90B22 

 

1. Introduction 

 

Queueing system is a powerful tool for modeling communication networks, transportation 

networks, production lines and operating systems. In recent years, computer networks and data 

communication systems are the fastest growing technologies, which have led to significant 
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development in applications such as swift advance in the internet, audio data traffic, video data 

traffic, etc. In the retrial literature many of the researchers discussed a retrial queueing models 

from various viewpoints. Recently, retrial queues have been investigated extensively due to their 

applications in various fields, such as telephone switching systems, call centers and 

telecommunication networks with retransmission and computers. The characteristic of retrial 

queueing systems is that customers who find the server busy upon arrival is obliged to leave the 

service area and repeat his demand after some time (retrial time). Between trials, a blocked 

customer who remains in a retrial group is said to be in orbit. For detailed overviews of the 

related literatures on retrial queues, readers are referred to the books of Falin and Templeton 

(1997), Artalejo and Gomez-Corral (2008) and the survey papers of Artalejo (2010). 

 

Many queueing situations have the feature that the customers may be served repeatedly for a 

certain reason. When the service of a customer is unsatisfied, it may be retried again and again 

until a successful service completion. These queueing models arise in the stochastic modeling of 

many real-life situations. For example, in data transmission, a packet transmitted from the source 

to the destination may be returned and it may go on like that until the packet is finally 

transmitted. Krishnakumar et al. (2013) studied a model with the concept of M/G/1 feedback 

retrial queueing system with negative customers. Ke and Chang (2009a) have discussed 

Modified vacation policy for M/G/1 retrial queue with balking and feedback.  

 

The concept of balking (customers decide not to join the line at all if he finds the server is 

unavailable upon arrival) was first studied by Haight in 1957. There are many situations where 

the customers may be impatient, such as impatient telephone switchboard customers and the 

hospital emergency rooms handling critical patients, web access, including call centers and 

computer systems, etc. Ke (2007) studied the M
[X]

/G/1 queue with variant vacations and balking. 

Some of the authors like Wang and Li (2009) and Gao and Wang (2014) discussed about the 

concept balking.   

 

Recently, many researchers have studied queueing networks with concept of positive and 

negative customers. Queues with negative customers (also called G–queues) have attracted 

considerable interests due to their extensive applications, such as computer, communication 

networks and manufacturing system. The positive customers arrive at the system and get their 

service in normal manner. The negative customers arrive into the system only at the service time 

of a positive customer. These customers do not join in the queue and do not get any service. The 

negative customers will vanish and reduce one positive customer in service, then the positive 

customer may join into the queue for another regular service or may leave the system. Negative 

customers have been regarded as virus, inhibitor signals, operation mistakes or system and server 

disaster in neural and computer communication networks. Some of the authors like, Wang and 

Zhang (2009), Wang et al. (2011), Yang et al. (2013), Wu and Lian (2013), Krishnakumar et al. 

(2013), Gao and Wang (2014) discussed different types of queueing models operating with the 

simultaneous presence of G-queues.  

 

In a vacation queueing system, the server may not be available for a period of time due to many 

reasons such as, being checked for maintenance, working at other queues, scanning for new work 

(a typical aspect of many communication systems) or simply taking a break. This period of time, 

when the server is unavailable for primary customers is referred to as a vacation. Krishnakumar 
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and Arivudainambi (2002) have investigated a single server retrial queue with Bernoulli 

schedule, where the random decision whether to take  a vacation or not allowed only at instances 

when the system is not empty (and a service or  vacation has just been completed). If the system 

is empty, the server must take a vacation that is the assumption for their model. Chang and Ke 

(2009) examined a batch retrial model with J vacations in which, if the orbit becomes empty, the 

server takes at most J vacations repeatedly until at least one customer appears in the orbit upon 

returning from a vacation. By applying the supplementary variable technique, system 

characteristics are derived. Later, Ke and Chang (2009a) and Chen et al. (2010), Rajadurai et al. 

(2014) discussed the different types of queueing model with J vacation queueing models. 

 

The service interruptions are an unavoidable phenomenon in many real life situations. In most of 

the studies, it is assumed that the server is available in the service station on a permanent basis 

and the service station never fails. However, these assumptions are practically unrealistic. In 

practice we often meet the case where service stations may fail and can be repaired. Applications 

of these models found in the area of computer communication networks and flexible 

manufacturing system etc. Ke and Chang (2009b) have studied a batch arrival retrial queueing 

system with two phases of service under the concept of Bernoulli vacation schedules, where the 

server may meet an unpredictable breakdown subject to starting a failure when a customer 

requires his service initially. Ke and Choudhury (2012) discussed a batch arrival retrial queueing 

system with two phases of service under the concept of breakdown and delaying repair. While 

the busy server may breakdown at any instant and the service channel will fail for a short period 

of time. The repair process does not start immediately after a breakdown and there is a delay 

time for repair to start. Choudhury and Deka (2012) have discussed a single server queueing 

model with two phases of service, where the server is subject to breakdown. Some of the authors 

like Wang and Li (2009), Chen et al. (2010), Choudhury et al. (2010) and Rajadurai et al. (2015) 

are discussed about the retrial queueing systems with the concept of breakdown and repair. 

Recently, Haghighi and Mishev (2013) discussed three possible stages for the handling of job 

applications in a hiring process as a network queuing model.  

 

However, no work has been published in the queueing literature with the combination batch 

arrival retrial queue, two types of service, G-queues, balking, feedback, modified vacation (at 

most J vacations) and breakdowns. The mathematical results and theory of queues of this model 

seems to provide a specific and convincing application in the transfer model of an email system. 

In a Simple Mail Transfer Protocol (SMTP) the mail system is used to deliver the messages 

between mail servers.  

 

The rest of this work is organized as follows. In Section 2, the detailed description and practical 

justification of this model are given. In Section 3, we consider the governing equations of the 

model and also obtain the steady state solutions. Some performance measures are derived in 

Section 4. In Section 5, some special cases are discussed. In Section 6 the effects of various 

parameters on the system performance are analyzed numerically. Summary of the work is 

presented in Section 7.  
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2. Model Description 

 

In this paper, we consider a batch arrival feedback retrial queueing system with two types of 

service, negative customers under modified vacation policy where the server is subject to starting 

failure, breakdown and repair. The detailed description of the model is given as follows: 

 

Arrival Process:  Positive customers arrive in batches according to a compound Poisson process 

with rate λ. Let Xk denote the number of customers belonging to the k
th

 arrival batch, where Xk,   

k = 1, 2, 3…are with a common distribution Pr[Xk = n] = χn, n = 1, 2, 3… and X(z) denotes the 

probability generating function of X. We denote X
[k]

 as the k
th

 factorial moment of X(z) for         

(k =1,2). 

 

Retrial process: We assume that there is no waiting space and therefore if an arriving batch finds 

the server free, one of the customers from the batch begins his service and the rest of them get 

into the orbit. If an arriving batch of customers find the server busy, vacation or breakdown, the 

arrivals either leave the service area with probability 1 - b or join the pool of blocked customers 

called an orbit with probability b. Inter retrial times have an arbitrary distribution R(t) with 

corresponding Laplace-Stieltjes Transform (LST) ( ).R   

Service process: A single server provides the two types of service. If any batch of arriving 

positive customers finds the server free, then one of the customers from the batch is allowed to 

start the First Type Service (FTS) with probability p1 or Second Type Service (STS) with 

probability p2 (p1+p2=1) while the others join the orbit. It is assumed that the i
th 

(i = 1, 2) type 

service times follows a general random variable Si with distribution function ( )S ti and LST ( ).Si   

 

Starting failure repair process: If any batch of arriving positive customers find a server free, 

only the customer at the head of batch arriving is allowed to start (turn on) the server and the 

others leave the service area and join the orbit. On the other hand, the service discipline for the 

customers in the orbit is first retry success first service (FRSFS). If a returning customer finds a 

server free (retry successfully), the customer must start (turn on) the server. The startup time of 

server could be negligible. Moreover, the server may be a starting failure with a 

probability 1   . If the server is started successfully, the customer gets service immediately. 

Otherwise, the server is repaired immediately and the customer must leave the service area and 

make a retrial at later time. That is, the probability of successful commencement of service is  

for a new and returning customer. Note that the repair time of the failure server is of random 

length H with distribution function ( )H t , LST *( )H  and finite k
th

 moment ( )kh (k = 1, 2). 

 

Feedback rule: After completion of a type1 service (type 2 service) for each positive customer, 

the unsatisfied positive customers may rejoin the orbit as a feedback customer for receiving 

another regular service with probability p (0 ≤ p ≤ 1) or may leave the system with probability q 

(p+q=1). 

 

Negative arrival process: The negative customers arrive from outside the system according to a 

Poisson arrival rate δ. These negative customers arrive only at the service time of the positive 

customers. Once the negative customer comes into the system it will remove the positive 
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customer in-service and the interrupted positive customer either enters into the orbit with 

probability θ (0 ≤ θ ≤ 1) or leaves the system forever with probability 1-θ. 

 

Vacation process: Whenever the orbit is empty, the server leaves for a vacation of random 

length V. If no customer appears in the orbit when the server returns from a vacation, it leaves 

again for another vacation with the same length. This pattern continues until it returns from a 

vacation to find at least one customer in the orbit or it has already taken J vacations. If the orbit 

is empty at the end of the J
th

 vacation, the server remains idle for new arrivals in the system. At a 

vacation completion epoch the orbit is nonempty, the server waits for the customers in the orbit 

or for a new arrival. The vacation time V has a distribution function ( )V t , LST ( )V  and finite k
th

 

moment ( )k (k = 1, 2). 

 

Breakdown process: While the server is working with any type of service, it may breakdown at 

any time and the service channel will fail for a short interval of time, i.e., the server is down for a 

short interval of time. The breakdowns, i.e., the server’s life times are generated by exogenous 

Poisson processes with rates 𝛼1 for FTS and 𝛼2 for STS, which we may call some sort of disaster 

during FTS and STS periods respectively. 

 

Repair process: As soon as a breakdown occurs the server is sent for repair, during that time it 

stops providing service to the primary customers till the service channel is repaired. The 

customer who was just being served before server breakdown waits for the remaining service to 

be completed. The repair time (denoted by G1 for FTS and G2 for STS) distributions of the server 

for both types of service are assumed to be arbitrarily with distribution function ( ),iG t  Laplace-

Stieltjes Transform ( )iG  and finite k
th

 moment ( )k
ig (for i = 1, 2 and k = 1, 2). The various 

stochastic processes involved in the system are assumed to be independent of each other. 

 

2.1. Practical justification of the suggested model 

  

The suggested model has potential application in the transfer model of an email system. In a 

Simple Mail Transfer Protocol (SMTP) the mail system is used  to deliver the messages between 

mail servers. When a mail transfer program contacts a server on a remote machine, it forms a 

Transmission Control Protocol (TCP) connection over which it communicates. Once the 

connection is in place, the two programs follow SMTP that allows the sender to identify it, 

specify a recipient and transfer an e-mail message. For receiving a group of messages, client 

applications usually use either the Post Office Protocol (POP) or the Internet Message Access 

Protocol (IMAP) to access their mail box accounts on a mail server. Typically, contacting a group 

of messages arrive at the mail server following the Poisson stream.  

 

When messages arrive at the mail server, it will be free and one of the messages from the group 

is selected to access successfully (in POP or IMAP) and the rests will join the buffer. In the 

buffer, each message waits and requires its service again after some time. If the server is initially 

a failure, all the arriving group of messages will join into the buffer and try his service after some 

time. The target server is the same as sender’s mail server and the sending message will be 

possibly retransmitted to the server to request the receiving service once again from the buffer. 

The mail server may be subject to electronic failure during the service period and receive repair 

immediately. Meanwhile, the working server may receive additional tasks like the flow of  
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triggers/viruses. Upon arrival at the e-mail servers system, the trigger instantaneously displaces 

the message being served at the receiver mail server from the receiver mail to the buffer or is 

forced to leave the system.  

 

To keep the mail server functioning well, virus scanning is an important maintenance activity for 

the mail server. It can be performed when the mail server is idle. This type of maintenance can be 

programmed to perform on a regular basis. However, these maintenance activities do not repeat 

continuously. When these activities are finished, the mail server will enter the idle state again and 

wait for the contact messages to arrive. Because there is no mechanism to record how many 

contacting messages from various senders currently, it is appropriate to design a program for 

collecting information of contacting messages for the reason of efficiency. In this queueing 

scenario, the buffer in the sender mail server, the receiver mail server, the POP and IMAP, the 

initial failure, the retransmission policy, flow of triggers/viruses and the maintenance activities 

correspond to the orbit, the server, the Type1 and Type2 service, the starting failure repair 

process, the feedback policy, the arrival of negative customers and the vacation policy 

respectively.  

 

This model finds other practical applications in Verteiler Ensprintz Pumps manufacturing, in 

computer networking systems, manufacturing systems and communication systems etc., For 

example, in the process of cell transfer, if the interference of a virus causes an information 

element transmission failure, then some kinds of virus can be seen as negative customers. In 

computer networking systems, if the virus enters a node, one or more files may be infected. A 

virus may originate from outside the network, e.g., through a floppy disk, or by an electronic 

mail, production lines, in the operational model of WWW server for HTTP requests, call centers, 

inventory and production, maintenance and quality control in industrial organizations etc. 

 

3. System Analysis 

  

In this section, we first develop the steady state difference-differential equations for the retrial 

system by treating the elapsed retrial times, the elapsed service times, the elapsed vacation times 

and the elapsed repair times as supplementary variables. Then we derive the probability 

generating function (PGF) for the server states, the PGF for the number of customers in the 

system and orbit by using the supplementary variable method. 

  

In steady state, we assume that R(0) = 0, R() = 1, Si(0) = 0, Si()= 1, Vj(0) = 0, Vj() = 1, 

H(0)=0, H() = 1 (for i =1, 2 and  j = 1, 2, …, J ) are continuous at x = 0 and Gi(0) = 0, Gi() = 

1 (for i =1, 2) are continuous at x = 0 and  y = 0. So that the function ( ),a x ( ),i x  ( ),x ( )x and ( )i y  

are the conditional completion rates for retrial, service on both types, on vacation and repair on 

both types respectively (for i = 1, 2).  

 
( )( )

( ) ,  ( ) ,  
1 ( ) 1 ( )

( )( ) ( )
( ) , ( )  and ( ) .

1 ( ) 1 ( ) 1 ( )

dS xdR x ia x dx x dx
iR x S x

i

dG ydV x dH x ix dx x dx y dy
iV x H x G y

i



  

 
 

  
  
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In addition, let 0 0 0 0 0( ),  ( ),  ( ),  ( ) and ( )i j iR t S t V t H t G t  be the elapsed retrial times, service times on both types, 

vacation times, repair times on starting failure server or repair times on both types (for i=1,2 and 

j = 1, 2, 3, 4, …, J+3) respectively at time t. We also note that the states of the system at time t 

can be described by the bivariate Markov process ( ), ( );  0C t N t t   where C(t) denotes the server 

state (0,1, 2, 3, 4, …, J+3) depending on the server is idle, busy on FTS or STS, repair on 

starting failure server, repair on FTS or STS and 1
st
 vacation, 2

nd
 vacation, …, J

th
 vacation. N(t) 

denotes the number of customers in the orbit. If C(t) = 0 and N(t) > 0, then 0( )R t represent the 

elapsed retrial time, if C(t) = 1 and ( ) 0N t   then 0( )iS t corresponding to the elapsed time of the 

customer being served on FTS (STS) (for i = 1, 2). If C(t) = 2 and ( ) 0N t  , then 
0( )H t corresponding to the elapsed time of the failure server being repaired. If C(t)=3 and ( ) 0N t  , 

then 0 ( )iG t corresponding to the elapsed time of the server being repaired on FTS (STS) (for i = 1, 

2). If C(t) = 4 and ( ) 0N t  , then 0
1 ( )V t corresponding to the elapsed 1

st
 vacation time. If C(t) = j+4 

and ( ) 0N t  , then 0( )jV t corresponding to the elapsed j
st
 vacation time.  

 

Let {tn; n = 1, 2, ...} be the sequence of epochs at which either a type 1 or type 2 service 

completion occurs, a vacation period ends or a repair period ends. The sequence of random 

vectors      ,  n n nZ C t N t    forms a Markov chain which is embedded in the retrial queueing 

system. It follows from Appendix that  ;  nZ n N  is ergodic if and only if 1  , then the system 

will be stable, where [1](1 ( ))X R     and  

 

    

      

[1] (1)
1 1 2 2

[1]
(1) (1)

1 1 1 2 2 21 2

( ) ( ) ( ) 1  

.

+ 1 1 ( ) 1 1 ( )

p p S p S bX h

bX
p g S p g S

      




   


 

 

     
  

  
     
  

 

 

For the process  ( ),  0N t t   we define the probabilities  0 ( ) ( ) 0,  ( ) 0P t P C t N t    and the probability 

densities for ( (1,2),  0,  ( , ) 0 and 0)i t x y n     

 

 

 

 

 

0

0

,

0

0 0

,

,

( , )   ( ) 0, ( ) ,  ( ) ; 

( , ) ( ) 1, ( ) ,  ( ) ;

( , )  ( ) 2,  ( ) ,  ( ) ;

( , , ) ( ) 3,  ( ) ,  y ( ) ( ) ;

 ( , ) ( ) 3

n

i n i

n

i n i i

j n

P x t dx P C t N t n x R t x dx

x t dx P C t N t n x S t x dx

Q x t dx P C t N t n x H t x dx

R x y t dy P C t N t n G t y dy S t x

x t dx P C t j

     

      

     

      

    0,  ( ) ,  ( ) , for (1 ).jN t n x V t x dx j J     

 

 

The following probabilities are used in subsequent sections: 

 

0( )P t  is the probability that the system is empty at time t. ( , )nP x t  is the probability that at time t 

there are exactly n customers in the orbit and the elapsed retrial time of the test customer 

undergoing retrial lying in between x and x+dx. , ( , ),i 1,2,i n x t  , is the probability that at time t 

there are exactly n customers in the orbit and the elapsed service time of the test customer 

undergoing service lying in between x and x+dx in their respective types. ( , )nQ x t  is the probability 
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that at time t there are exactly n customers in the orbit and the elapsed repair time of server lying 

in between x and x+dx on the failure server. , ( , , ),i 1,2,i nR x y t   is the probability that at time t there 

are exactly n customers in the orbit, the elapsed service time of the test customer undergoing 

service is x and the elapsed repair time of server lying in between y and y+dy in their respective 

types. , ( , ), 1,2, , ,j n x t j J   is the probability that at time t there are exactly n customers in the orbit 

and the elapsed vacation time of the vacation lying in between x and x+dx. 

We assume that the stability condition is fulfilled so that we can set for t ≥ 0, x ≥ 0, n ≥1 and (i = 

1, 2 and  j = 1,2, …, J) 

0 0 , ,

, , , ,

lim ( ),  ( ) lim ( , ),  ( ) lim ( , ),  ( ) lim ( , ),

( ) lim ( , ) and ( , ) lim ( , , ).

n n i n i n n n
t t t t

j n j n i n i n
t t

P P t P x P x t x x t Q x Q x t

x x t R x y R x y t

   

 

     

   
 

 

3.1. The steady-state equations 

 

By the method of supplementary variable technique, we obtain the following system of equations 

that govern the dynamics of the system behavior. 

0 ,0

0

( ) ( )JbP x x dx 



  ,        (3.1) 

( )
[ ( )] ( ) 0,  1 n

n

dP x
a x P x n

dx
    ,     (3.2) 

,0
,0 ,0 ,0

0

( )
[ ( )] ( ) (1 ) ( ) ( ) ( , ) ,  0,  for( 1,2)

i
i i i i i i

d x
x x b x y R x y dy n i

dx
     




           , (3.3) 

,
, , ,

1

,

0

( )
[ ( )] ( ) (1 ) ( ) ( )

                                                                                       ( ) ( , ) ,  1,  for ( 1,2)

n
i n

i i i n i n k i n k

k

i i n

d x
x x b x b x

dx

y R x y dy n i

      










         

  





, (3.4) 

0
0 ,0

( )
[ ( )] ( ) (1 ) ( ),  0,i

dQ x
x Q x b Q x n

dx
            (3.5) 

, ,

1

( )
[ ( )] ( ) (1 ) ( ) ( ),  1

n
n

n i n k i n k

k

dQ x
x Q x b Q x b Q x n

dx
     



      ,   (3.6) 

,0
,0 ,0

( , )
[ ( )] ( , ) (1 ) ( , ),  0,  for ( 1,2)

i
i i i

dR x y
y R x y b R x y n i

dy
        ,  (3.7) 

,
, , ,

1

( , )
[ ( )] ( , ) (1 ) ( , ) ( , ),   1,  for ( 1,2),

n
i n

i i n i n k i n k

k

dR x y
y R x y b R x y R x y n i

dy
     



        (3.8) 

,0

,0 ,0

( )
[ ( )] ( ) (1 ) ( ),  0,  for ( 1,2,..., ),

j

j j

d x
x x b x n j J

dx
  


          (3.9) 

,

, , ,

1

( )
[ ( )] ( ) (1 ) ( ) ( ),   1,  for ( 1,2,..., ) 

n
j n

j n j n k j n k

k

d x
x x b x b x n j J

dx
     




          . (3.10) 
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The steady-state boundary conditions at x = 0 and y = 0 are 

 

            

, 1, 1 2, 1

1 0 0 0 0

1, 2, 1, 1 2, 2

0 0 0 0

1, 1

(0) ( ) ( ) ( ) ( ) ( ) ( )

           (1 ) ( ) ( ) ( ) ( ) ( ) ( )

           ( )

J

n j n n n n

j

n n n n

n

P x x dx Q x x dx x dx x dx

x dx x dx q x x dx x x dx

p x

  

   

   

 



   



 
       
 
 

   
           
   
   

 

   

   

1 2, 1 2

0 0

( ) ( ) ( ) , 1,nx dx x x dx n 

 



 
   
 
 
 

      (3.11) 

  ,0 1 1 0

0

(0) ( ) ( ) ,  0,  for ( =1,2),i ip P x a x dx b P n i  

 
 

    
  
     (3.12) 

, 1 1 1 0

10 0

(0) ( ) ( ) ( ) ,  1,   for ( =1,2),

n

i n i n k n k n

k

p P x a x dx P x dx b P n i    

 

   



 
 

     
  

   (3.13) 

 0

10 0

(0) ( ) ( ) ( ) ,  2,

n

n n k n k n

k

Q P x a x dx P x dx b P n    

 





 
 

    
  

     (3.14)  

1, 1,0 1 2,0 2 1,0 2,0

0 0 0 0

(0) ( ) ( ) ( ) ( ) (1 ) ( ) ( ) ,  0n q x x dx x x dx x dx x dx n   

      
             
   
   
    , (3.15) 

1,
,

0

( ) ( ) ,  0,  2,3..., ,
(0)  

0,                          1,

j n
j n

x x dx n j J

n








   

  




     (3.16) 

                    , ,( ,0) ( ),   1,  for ( 1,2)i n i i nR x x n i    .        (3.17) 

 

The normalizing condition is 

 

          

0 ,

1 0 10 0 0

2

, ,

0 1 0 0 0

( ) ( ) ( )

( ) ( , ) 1.

J

n n j n

n n j

i n i n

n i

P P x dx Q x dx x dx

x dx R x y dxdy

   

  

  

 

 
    
 
 

 
    
 
 

   

  

   (3.18) 

 

 

3.2. The steady-state solution 

  

The probability generating function technique is used here to obtain the steady state solution of 

the retrial queueing model. To solve the above equations, we define the generating functions for 

|z|  1, for (i =1, 2) as follows:  
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, ,

1 1 0 0 1

, , ,

1 0 0

( , ) ( ) ;  (0, ) (0) ;  ( , ) ( ) ; (0, ) (0) ; ( , ) ( ) ;

(0, ) (0) ;  ( , ) = ( ) ;  (0, ) (0) ; ( , , ) ( , )

n n n n n
n n i i n i i n n

n n n n n

n n n
n j j n j j n i i n

n n n

P x z P x z P z P z x z x z z z Q x z Q x z

Q z Q z x z x z z z R x y z R x y z

    

    

  

  

        

      

    

  
0

,

0 1

;

( ,0, ) ( ,0)  and ( ) .

n

n

n n
i i n n

n n

R x z R x z X z z





 

 

 



 

 

 

Multiplying the steady-state equation and steady-state boundary conditions (3.1) - (3.17) by z
n
 

and summing over n, n = 0,1, 2..., for i = 1,2 and j = 1,2,…J, we will have: 

 

( , )
[ ( )] ( , ) 0 

P x z
a x P x z

x



  


,       (3.19) 

                         
0

( , )
[ (1 ( )) ( )] ( , ) ( ) ( , , ) ,  i

i i i i i

x z
b X z x x z y R x y z dy

x
    




      
                        (3.20)        

                         
( , )

[ (1 ( )) ( )] ( , ) 0
Q x z

b X z x Q x z
x

 


   


,                             (3.21) 

( , , )
[ (1 ( )) ( )] ( , , ) 0i

i i

R x y z
b X z y R x y z

y
 


   


,     (3.22) 

( , )
[ (1 ( )) ( )] ( , ) 0

j

j

x z
b X z x x z

x
 


    


,     (3.23) 

 

 

1 2

1 0 0 0 0

1 1 2 2 ,0 0

10 0

(0, ) ( , ) ( ) 1 ( , ) ( , ) ( , ) ( )

                              ( , ) ( ) ( , ) ( ) (0) , 1,

J

j

j

J

j

j

P z x z x dx z x z dx x z dx Q x z x dx

pz q x z x dx x z x dx bP n

    

  

   



 



 
         
 
 

 
         
 
 

   

 

 (3.24) 

0

0 0

( )1 ( )
(0, ) ( , ) ( ) ( , ) ,  for ( =1,2),i i

bX z PX z
z p P x z a x dx P x z dx i

z z z




  
 

    
  
   (3.25) 

0

0 0

(0, ) ( , ) ( ) ( ) ( , ) ( ) ,Q z P x z a x dx X z P x z dx bX z P  

  
 

   
  
    (3.26) 

( ,0, ) ( , )i i iR x z x z  .       (3.27) 

 

Solving the partial differential equations (3.19)-(3.23), it follows that: 

 

 ( , ) (0, )[1 ( )]expP x z P z R x x   ,     (3.28) 

 ( , ) (0, )[1 ( )]exp ( ) ,  for ( =1,2),i i i ix z z S x A z x i       (3.29) 

 ( , ) (0, )[1 ( )]exp ( ) ,Q x z Q z H x b z x        (3.30)  

 ( , ) (0, )[1 ( )]exp ( ) ,for ( 1,2,..., ),j jx z z V x b z x j J        (3.31) 

and 

  ( , , ) ( ,0, )[1 ( )]exp ( ) ,  for ( =1,2),i i iR x y z R x z G y b z y i      (3.32) 

where 
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    ( ) (1 ( )) 1 ( )   and  ( ) 1 ( ) .i i iA z b X z G b z b z b X z           

 

From (3.9) we obtain, 

 

 ,0 ,0( ) (0)[1 ( )] ,  1,2,..., .bx
j jx V x e j J       (3.33) 

 

Multiplying with equation (3.33) by (x) on both sides for j = J and integrating with respect to x 

from 0 to , then from (3.1) we have:  

0
,0 (0)

( )
J

bP

V b




  .      (3.34) 

From equation (3.34) and solving (3.16), (3.33) over the range j = J-1, J-2,…,1, after some 

simplifications, we will have:  

0
,0 1

(0) ,  1,2,..., 1.
[ ( )]

j J j

bP
j J

V b



  
        (3.35) 

From (3.16), (3.34) and (3.35), we obtain  

0

1
(0, ) ,  1,2,..., .

[ ( )]
j J j

bP
z j J

V b



  
       (3.36) 

Integrating the equation (3.33) from 0 to  and using (3.34) and (3.35) again, we finally obtain 

 0

,0 1

1 ( )
(0, ) ,  1,2,..., .

[ ( )]
j J j

P V b
z j J

V b







  


       (3.37) 

Note that ,0j  represents the steady-state probability that no customer appears while the server is 

on the j
th

 vacation.  

 

Let us define 0  as the probability that no customer appears in the system while the server is on 

vacation. Then, 

 0

0

1 [ ( )]
.

[ ( )]

J

J

P V

b V










          (3.38) 

Inserting equations (3.29)-(3.31) and (3.36) in (3.37), we will have 

        
 

      

*

0 1 1 1 2 1 1

2 1 1 1 1 2 2 2

1 2

(0, ) ( ) 1 (0, ) ( ) ( ) (0, ) ( ) (0, ) ( )

1
              ( ) (0, ) 1 ( ) ( ) (0, ) 1 ( ) ,

( ) ( )

P z bP N z Q z H b z pz q z S A z z S A z

z
A z z S A z A z z S A z

A z A z



  

 

 

      

 
     

 (3.39) 

where  
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 
 

1 [ ( )]
( ) (1 ( )) 1 .

[ ( )] 1 ( )

J

J

V b
N z V b X z

V b V b




 




 


   
 


 

Inserting equation (3.28), (3.29) in (3.25) and make some manipulation, finally we will have, 

0

(0, ) ( )
(0, ) ( ) ( )(1 ( )) ,  for ( =1,2)i i

P z bX z
z p R X z R P i

z z


            

.  (3.40) 

Inserting equation (3.28), (3.29) in (3.26) and simplifying, we get, 

 0(0, ) (0, ) ( ) ( )(1 ( )) ( ) ,  Q z P z R X z R bX z P        
     (3.41) 

Using the equation (3.29) in (3.27), gives 

  ( ,0, ) (0, ) 1 ( ) exp ( ) , for ( =1,2)i i i i iR x z z S x A z x i      .   (3.42) 

Using (3.40)-(3.41) in (3.39), yeilds 

( )
(0, ) ,

( )

Nr z
P z

Dr z
         (3.43) 

          
    

*
1 1 1 2 2 2 1 2

0

1 2 1 1 2 1 2 2

( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ,

           ( ) (1 ) ( ) 1 ( ) ( ) 1 ( )

z N z X z pz q p S A z p S A z zH b z A z A z

Nr z bP

X z z p A z S A z p A z S A z

 



  

 

 

 
    

 
  

                

 

and 

         
      

*
1 1 1 2 2 2 1 2

1 2 1 1 2 1 2 2

( ) ( ) ( ) ( ) ( ) ( )(1 ( )) ( ) ( )

( ) .

   ( ) ( )(1 ( )) (1 ) ( ) 1 ( ) ( ) 1 ( )

z pz q p S A z p S A z zH b z R X z R A z A z

Dr z

R X z R z p A z S A z p A z S A z

   

    

   

   

 
     

  
  

                  

 

Also: Using (3.43) in (3.40), gives 

   0 1 2(0, ) ( ) 1 ( ) ( )(1 ( )) ( ) ( ) ( ) ( ),for ( =1,2).i iz bP p N z R X z R X z A z A z Dr z i         
 

 (3.44) 

Using (3.43) in (3.41), gives 

   0 1 2(0, ) ( ) 1 ( ) ( )(1 ( )) ( ) ( ) ( ) ( ).Q z z bP N z R X z R X z A z A z Dr z         
 

  (3.45) 

Using (3.44) in (3.42), gives 

  

 

1 2

0
( )

( ) 1 ( ) ( )(1 ( )) ( ) ( ) ( )
( ,0, ) ( ),for ( =1,2).

                                                       1 ( ) i

i i i
A z x

i

N z R X z R X z A z A z
R x z bP p Dr z i

S x e

 
 

 



         
   

 (3.46) 

Finally Using (3.43)-(3.46) in (3.28)-(3.32), then we will have the probability generating 

functions 
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1( , ), ( , ),P x z x z  2 1 2( , ), ( , ), ( , , ) and ( , , ).x z H x z R x y z R x y z . 

Next we are interested in investigating the marginal orbit size distributions due to system state of 

the server. 

Theorem 3.1.  

Under the stability condition ρ < 1, the joint distributions of the number of customers in the 

system when server being idle, busy on both types, on vacation, under repair on starting failure 

server and under repair on both types (for i =1, 2) are given by 

      
( )

( )
( )

,
Nr z

P z
Dr z

         (3.47) 

 
          

      

*

1 1 1 2 2 2 1 2

0

1 2 1 1 2 1 2 2

( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) 1 ( ) ,

           ( ) (1 ) ( ) 1 ( ) ( ) 1 ( )

z N z X z pz q p S A z p S A z zH b z A z A z

Nr z b R P

X z z p A z S A z p A z S A z

 



  

 



 

     
 

   
       
  

 

 

         
        

*

1 1 1 2 2 2 1 2

1 2 1 1 2 1 2 2

( ) ( ) ( ) ( ) ( ) ( )(1 ( )) ( ) ( )

( ) ,

   ( ) ( )(1 ( )) (1 ) ( ) 1 ( ) ( ) 1 ( )

z pz q p S A z p S A z zH b z R X z R A z A z

Dr z

R X z R z p A z S A z p A z S A z

   

    

   

   

      
 

  
         
  

 

 

      *
1 0 1 1 1 2( ) 1 ( ) ( ) 1 ( ) ( )(1 ( )) ( ) ( ) ( ),z bP p S A z N z R X z R X z A z Dr z          

 
 (3.48) 

 

      *
2 0 2 2 2 1( ) 1 ( ) ( ) 1 ( ) ( )(1 ( )) ( ) ( ) ( ),z bP p S A z N z R X z R X z A z Dr z          

 
 (3.49) 

 

      0 1 2( ) 1 ( ) ( ) 1 ( ) ( )(1 ( )) ( ) ( ) ( ) ( ) ( ),Q z z bP H b z N z R X z R X z A z A z b z Dr z           
 

 (3.50) 

 

  

     

2

1 1 0 1
* *
1 1 1

( ) 1 ( ) ( )(1 ( )) ( ) ( )
( ) ( ) ( ),

                               1 ( ) 1 ( )

N z R X z R X z A z
R z bP p b z Dr z

S A z G b z

 
 

      
  

  
   
 

  (3.51) 

 

  

     

1

2 2 0 2
* *
2 2 2

( ) 1 ( ) ( )(1 ( )) ( ) ( )
( ) ( ) ( ),

                               1 ( ) 1 ( )

N z R X z R X z A z
R z bP p b z Dr z

S A z G b z

 
 

      
  

  
   
 

  (3.52) 

 

  
 

0

1

(1 ( )) 1
( ) ,  1,2,..., ,

( ) 1 [ ( )]
j J j

P V b X z
z j J

X z V b







  

  
 

  


     (3.53) 

where   
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              [1]
0

1
1 (1 ( )) ,P X R  



         (3.54) 

      

  

[1] (1) (1) (1)
1 1 1 1 2 2 2 2[1]

1 1 2 2 [1]

(1)
(1 ( ))( 1) 1 1 ( ) 1 1 ( ) 1

,
(1)

1 ( ) ( ) ( ) (1 ( )) 1

N b
X R b bh p g S p g S

X

N
p p S p S b R

X


     




     

  

  

  
           

  
  

             

 

and 

 
 

   

[1] (1)1 ( )

(1) , ( ) ( ) 1 ( )   and  ( ) 1 ( ) .

( ) 1 ( )

J

i i iJ

V b bX

N A z b z G b z b z b X z

V b V b

  

  
 





 

 
 

        
 

  
 

 

Proof:  

 

Integrating the above equations (3.28) - (3.31) with respect to x and define the partial probability 

generating functions as,  

 

0 0 0 0

( ) ( , ) , ( ) ( , ) , ( ) ( , ) ,  ( ) ( , )    for ( 1,2)i i j jP z P x z dx z x z dx Q z Q x z dx z x z dx i

   

            . 

 

Integrating the above equations (3.32) with respect to x and y define the partial probability 

generating functions as,  

 

0 0

( , ) ( , , ) , ( ) ( , )   for ( 1,2).i i i iR x z R x y z dy R z R x z dx i

 

     

 

Since, the only unknown is P0 the probability that the server is idle when no customer in the orbit 

and it can be determined using the normalizing condition (j = 1, 2, …, J). Thus, by setting z = 1 

in (3.47) – (3.53) and applying the L ’Hospitals’ rule whenever necessary and we get 

  

0 1 2 1 2

1

(1) (1) (1) (1) (1) (1) (1) 1.

J

j

j

P P Q R R



          

 

Theorem 3.2.  

 

Under the stability condition ρ < 1, probability generating function of number of customers in the 

system and orbit size distribution at stationary point of time is 

 

0

1( ) 2( ) 3( )
( )

1( ) 1( ) 1( )
s

Nr z Nr z Nr z
K z P

Dr z Dr z Dr z

 
   

 
,     (3.55) 
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        
    

   

*
1 1 1 2 2 2 1 2

1 2 1 1 2 1 2 2

1 ( ) ( ) 1 ( ) ( ) ( )

1( )

( ) 1 ( ) ( ) 1 ( )

               ( ) 1 ( ) ( )(1 ( )) ( ) ,

p S A z p S A z z H b z A z A z

Nr z z

p A z S A z p A z S A z

N z R X z R X z

 



 

 

 

 

     
   

  
              

    

 

 

       
 

 
 

 

*
1 2 1 1 1 2 2 2

1 2 1 1

2 1 2 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )(1 ( ))

2( ) ( )

( ) 1 ( )
 ( ) ( )(1 ( )) (1 )

( ) 1 ( )

zA z A z pz q p S A z p S A z zH b z

R X z R

Nr z N z

p A z S A z
R X z R z

p A z S A z

 

 

    

 

 



 



       
  
   
 

   
                        









, 

 

 

   

       
    

1 2

*
1 1 1 2 2 2 1 2

1 2 1 1 2 1 2 2

( ) ( ) 1 (1 ( ))( ( ) 1) ( ) ( )(1 )(1 ( ))

3( ) 1 ( )   ( ) ( ) ( ) ( ) ( ) ( )

     + (1 ) ( ) 1 ( ) ( ) 1 ( )

zA z A z b R N z R X z b R

Nr z X z pz q p S A z p S A z zH b z A z A z

z p A z S A z p A z S A z

  

 

  

  

 

 

 
       

 
 

      

                 





, 

 

 

       
 

 
 

 

*
1 2 1 1 1 2 2 2

1 2

1 2 1 1

2 1 2 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )(1 ( )) ( ) ( )

1( ) 1 ( )

( ) 1 ( )
 ( ) ( )(1 ( )) (1 )

( ) 1 ( )

zA z A z pz q p S A z p S A z zH b z

R X z R A z A z

Dr z X z

p A z S A z
R X z R z

p A z S A z

 

 

    

 

 



 



     
 
   
 

  
             

       





 
 


 
 
 
  

, 

 

0

4( ) 2( ) 3( )
( )

1( ) 1( ) 1( )
o

Nr z Nr z Nr z
K z P

Dr z Dr z Dr z

 
   

 
,     (3.56) 

 

and 

        
    

   

*
1 1 1 2 2 2 1 2

1 2 1 1 2 1 2 2

1 ( ) ( ) 1 ( ) ( ) ( )

4( )

( ) 1 ( ) ( ) 1 ( )

  ( ) 1 ( ) ( )(1 ( )) ( ) ,

p S A z p S A z z H b z A z A z

Nr z

p A z S A z p A z S A z

N z R X z R X z

 



 

 

 

 

     
   

  
              

    

 

 

where P0 is given in equation (3.54). 

 

Proof:  

 

The probability generating function of the number of customer in the system Ks(z) and the 

probability generating function of the number of customer in the orbit Ko(z) are obtained by 

using  

 

15

Rajadurai et al.: Analysis of repairable M[X]/(G1,G2)/1 - feedback retrial G-queue

Published by Digital Commons @PVAMU, 2015



28                                                                                                                                           P. Rajadurai et al.                                                         

 

 

 

2

0

1 1

2

0

1 1

( ) ( ) ( ) ( ) ( ) ( ) and ( )

( ) ( ) ( ) ( ) ( ).

J

s i i j o

i j

J

i i j

i j

K z P P z z Q z z R z z K z

P P z Q z z R z z

 

 

 
        
 
 

       

 

 

 

 

Substituting (3.47) – (3.54) in the above results, the equations (3.55) and (3.56) can then be 

obtained by direct calculation.  

 

4. Performance Measures 

  

In this section, we obtain some interesting probabilities, when the system is in different states. 

We also derive the system performance measures. Since our results are numerically validated; 

Note that (3.54) gives the steady-state probability that the server is idle but available in the 

system. It follows from (3.47)-(3.53) that the probabilities of the server state are as follows in 

Theorem 4.1. 

 

Theorem 4.1.  

If the system satisfies the stability condition ρ < 1, then we will have the following probabilities: 

(i) Let P denotes the steady-state probability that the server is idle during the retrial time, then 

 

   [1]1
(1) 1 ( ) (1) 1P P b R N X 



       . 

 

(ii) Let Π1 denote the steady-state probability that the server is busy on first type service with 

positive customer, then 

 [1]1
1 1 1

1 ( )1
(1) (1) ( ))

S
bp N X R


 

 




 
         

 

. 

 

(iii) Let Π2 denote the steady-state probability that the server is busy on second type service 

with positive customer, then 

 

 [1]2
2 2 2

1 ( )1
(1) (1) ( ))

S
bp N X R


 

 




 
         

 

. 

 

(iv) Let FLoss denote the frequency of the customer loss due to arrival of negative customers, 

then  

        [1]
1 2 1 1 2 2

1
(1 ) (1 ) (1) ( ) 1 ( ) 1 ( )LossF b N X R p S p S      



            
 

. 

 

(v) Let Q denote the steady-state probability that the server is on starting failure, then 
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 (1) [1]
1

1
(1) (1) ( ))Q Q bp h N X R 



   
 

. 

 

(vi) Let Ω denote the steady-state probability that the server is on vacation, then 

 

 [1]

[1]
1

1 (1)
(1) 1 1 ( )

J

j

j

N
X R

X
 







           
 . 

 

(vii) Let R1 denote the steady-state probability that the server is under repair time on first type 

service, then 

 

 (1) [1]1
1 1 1 1 1

1 ( )1
(1) (1) ( ))

S
R R bp g N X R


  

 




 
       

 

. 

 

(viii) Let R2 denote the steady-state probability that the server is under repair time on second 

type service, then 

 

 (1) [1]2
2 2 2 2 2

1 ( )1
(1) (1) ( ))

S
R R bp g N X R


  

 




 
       

 

. 

 

Proof: 

 

The stated properties follow by direct calculation. 

 

Theorem 4.2.  

Let Ls, Lq, Ws and Wq be the mean number of customers in the system, the mean number of 
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Proof:  

 

The mean number of customers in the orbit (Lq) under steady state condition is obtained by 

differentiating (3.56) with respect to z and evaluating at z = 1, to get   
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The mean number of customers in the system (Ls) under steady state condition is obtained by 

differentiating (3.55) with respect to z and evaluating at z = 1, giving 
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The average time a customer spends in the system (Ws) and the average time a customer spends 

in the queue (Wq) are found by using the Little’s formula.  

 
 and  .s s q qL W L W    

 

5. Special Cases 

  

In this section, we analyze briefly some special cases of our model, which are consistent with the 

existing literature. 

 

5.1. Case 1  
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Exponential retrial. 

Let Pr[Xk = n] = 1; Pr [S2 = 0] = 1; b =  = 1; Pr [V = 0] = 1;  p1 = 0 and 1 = 2 = 0. Our model 

can be reduced to a single server feedback retrial queueing system with negative customers. The 

following expression coinsides with the result of Krishnakumar et al. (2013). 

 
 

 

1

0

1 1

1 ( (1 ) ) ( )( )
( ) 1 exp ,

( ) ( )

( ) (1 ) ( (1 ) ) (1 ) ( ) ( (1 ) ) ,

o

S z Dr zA u
K z du

B u Dr z

Dr z z r rz S z r S z

  




        

 

 

        
    

    

                

  

 

where 

 

 
 

 
1

1 1

( ) 1

1 (1 ( )) ( )

S

S rS

  


  



 




  
 . 

 

5.2. Case 2  

 

Single type; No batch arrival; No retrial; No feedback; No negative customer; No balking and 

No breakdown.  

 

Let p2 = 0, Pr[S2 = 0] = 1, p = δ = 0; b = 1, R
*
() 1 and 1 = 2 = 0. Then, we get a batch 

arrival queueing system with balking and modified vacations. 
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The above result coincides with the result of Ke (2007). 

 

5.3. Case 3  

 

Single type; No batch arrival; No negative arrival and No breakdown. 

 

Let Pr[Xk = n] = 1; p1 = 1, Pr [S2 = 0] = 1, δ = 0 and 1 = 2 = 0. Our model can be reduced to a 
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the following expression agrees with the result in Ke and Chang (2009a). 
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5.4. Case 4  

 

Single type; No batch arrival; No Vacation; No feedback; No balking; No negative customers 

and No breakdown.  

 

Let Pr[Xk = n] = 1; Pr [S2 = 0] = 1; p = 0; r = 0; δ = 0; b = 1; Pr[V = 0] = 1 and 1 = 2 = 0. Then, 

we get a single server retrial queueing system with general retrial times. The following result 

coincides with the result of Gomez-Corral (1999).  
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6. Numerical illustration 

  

In this section, we present some numerical examples using MATLAB in order to illustrate the 

effect of various parameters in the system performance measures. We consider distributions of 

retrial times, service times, vacation times and repair times as exponential, Erlangian and hyper-

exponential. Further we assume that customers are arriving one by one, so X
[1]

 = 1, X
[2]

 = 0. The 

arbitrary values to the parameters are chosen as follows µ1= 8; µ2 = 10; ξ1 = 6; ξ2 = 8; 1=2; 2 = 

1;  =5; c = 0.8 so that they satisfy the stability condition. The following tables give the 

computed values of various characteristics of our model such as: probability that the server is 

idle, denoted by P0, the mean orbit size, denoted by Lq, probability that server is idle during 

retrial time, denoted by P; busy on both types phases, denoted by Π1, and Π2, on vacation, 

denoted by Ω, repair on failure server, denoted by Q, FLoss probability and under repair on both 

types, denoted by R1 and R2, respectively. Probability density functions for the exponential, 

Erlang-2stage and hyper-exponential are respectively. 

 

( ) , 0,xf x e x    2( ) , 0xf x xe x    and 
22( ) (1 ) , 0x xf x c e c e x       , 

 

Table 1 shows that when negative arrival rate (δ) increases, then the probability that the server is 

idle P0 increases, the mean orbit size Lq increases and the probability that frequency of customer 

loss due to arrival of negative customer server (FLoss) also increase. Table 2 shows that when the 

service loss probability (θ) increases, then the probability that server is idle P0 decreases, the 

mean orbit size Lq increases and the probability that server is idle during retrial time P also 

increases. Table 3 shows that when the successful arrival probability (α) increases, the 

probability that the server is idle P0 increases, then the mean orbit size Lq decreases and 

probability that server is idle during retrial time P also decrease. Table 4 shows that when the 

number of vacations (J) increases, the probability that server is idle P0 decreases, then the 

probability that server is idle during retrial time P increases and probability that server is on 

vacation Ω also increases. Table 5 shows that when repair rate on FTS (ξ1) increases, the 

probability that server is idle P0 increases, then the mean orbit size Lq decreases and the 

probability that the server is under repair on FTS R1 also decreases.  

 

For the effect of the parameters, δ, p, α, a, θ, p1, and ξ1 on the system performance measures in 

two dimensional graphs are drawn in Figure 1 and 2. Figure 1 shows that the mean orbit size Lq 

increases with increasing value of the negative arrival rate (δ). Figure 2 shows that the idle 

probability P0 decreases by increasing the value of the service loss probability (θ). Three 

dimensional graphs are illustrated in Figure 3 – Figure 6. In figure 3, the surface displays an 

upward trend as expected for increasing the value of the arrival rate () and the negative arrival 

rate (δ) against the mean orbit size Lq. The mean orbit size Lq decreases increasing value of the 

feedback probability (p) and balking probability (b) in figure 4. The surface displays an upward 

trend as expected for the increasing the value of the successful service probability (α) and 

vacation rate (γ) against the idle probability P0 in figure 5. In figure 6, the mean orbit size Lq 

decreases with for increasing value of the first type probability (p1) and repair rate on FTS (ξ1). 
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Table 1. The effect of negative arrival probability (δ) on P0, Lq and FLoss. 

Retrial distribution Exponential  Erlang-2 stage  Hyper-Exponential 

δ P0 Lq FLoss  P0 Lq FLoss  P0 Lq FLoss 

Negative arrival 

rate    
 

   
 

   

4.00 0.7988 1.2789 0.0591  0.6885 1.4015 0.0891  0.7908 1.2158 0.0657 

5.00 0.8161 1.6095 0.0670  0.7084 1.8551 0.0974  0.8080 1.6184 0.0737 

6.00 0.8278 2.0110 0.0736  0.7219 2.5200 0.1038  0.8197 2.2086 0.0802 

7.00 0.8363 2.5341 0.0791  0.7317 3.5330 0.1088  0.8281 3.0987 0.0856 

8.00 0.8427 3.2411 0.0838  0.7391 5.0698 0.1127  0.8344 4.4235 0.0902 

 

 

Table 2. The effect of service loss probability (θ) on P0, Lq and P 

Retrial distribution Exponential  Erlang-2 stage  Hyper-Exponential 

θ P0 Lq P  P0 Lq P  P0 Lq P 

Service loss 

probability    
 

   
 

   

0.10 0.7261 0.6403 0.0401  0.6202 0.6584 0.0701  0.7204 0.5891 0.0460 

0.20 0.7184 0.6667 0.0425  0.6030 0.7149 0.0776  0.7112 0.6209 0.0492 

0.30 0.7101 0.6949 0.0450  0.5834 0.7782 0.0861  0.7013 0.6551 0.0526 

0.40 0.7012 0.7249 0.0477  0.5611 0.8494 0.0958  0.6905 0.6919 0.0564 

0.50 0.6916 0.7570 0.0507  0.5353 0.9298 0.1070  0.6787 0.7316 0.0605 

 

 

 

Table 3. The effect of failure probability ( ) on P0, Lq and P 

Repair distribution Exponential  Erlang-2 stage  Hyper-Exponential 

α P0 Lq P  P0 Lq P  P0 Lq P 

Successful  

probability    
 

   
 

   

0.30 0.6470 1.0183 0.1365  0.4467 4.2181 0.2511  0.6358 1.3797 0.1604 

0.40 0.7158 0.6791 0.0963  0.5816 1.6358 0.1711  0.7091 0.8181 0.1123 

0.50 0.7549 0.6032 0.0735  0.6550 1.0030 0.1278  0.7502 0.6611 0.0854 

0.60 0.7800 0.5913 0.0589  0.7008 0.7807 0.1007  0.776 0.6095 0.0681 

0.70 0.7975 0.5984 0.0487  0.7322 0.6900 0.0821  0.7949 0.5937 0.0561 

 

 

 

Table 4. The effect of number of vacations (J) on P0, P and Ω. 
 Vacation 

distribution 
Exponential  Erlang-2 stage  Hyper-Exponential 

J P0 P Ω  P0 P Ω  P0 P Ω 

Number of vacations 
   

 
   

 
   

2.00 0.3961 0.1383 0.0126  0.2095 0.2465 0.0275  0.3851 0.1600 0.0103 

3.00 0.3845 0.1390 0.0248  0.1975 0.2494 0.0401  0.3754 0.1608 0.0205 

4.00 0.3732 0.1396 0.0367  0.1862 0.2522 0.0519  0.3658 0.1615 0.0305 

5.00 0.3622 0.1402 0.0482  0.1755 0.2548 0.0631  0.3564 0.1622 0.0403 

6.00 0.3516 0.1409 0.0594  0.1654 0.2572 0.0736  0.3471 0.1630 0.0500 
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Table 5. The effect of repair rate on FTS (ξ1) on P0, Lq and R1. 

Repair distribution Exponential  Erlang-2 stage  Hyper-Exponential 

ξ1 P0 Lq R1  P0 Lq R1  P0 Lq R1 

Repair rate on FTS 
   

 
   

 
   

6.00 0.4081 1.9758 0.0105  0.2222 2.9702 0.0335  0.3950 2.0571 0.0099 

7.00 0.4151 1.9615 0.0090  0.2342 2.9775 0.0287  0.4011 2.0492 0.0085 

8.00 0.4204 1.9509 0.0079  0.2432 2.9828 0.0251  0.4056 2.0434 0.0074 

9.00 0.4245 1.9427 0.0070  0.2502 2.9869 0.0223  0.4091 2.0389 0.0065 

 

   
Figure 1. Lq versus δ      Figure 2.  P0 versus θ 

              
  

 Figure 3. Lq versus λ and δ     Figure 4.  Lq versus p and b 

   
Figure 5. P0 versus α and γ     Figure 6.  Lq versus p1 and ξ1 
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From the above numerical examples, we can find the influence of the parameters on the 

performance measures in the system and confirm that the results are coincident with the practical 

situations. 

 

7. Conclusion  
 

In this paper, we have studied a batch arrival feedback retrial G-queueing system with balking 

under a modified vacation policy and starting failures, where the server provides two types of 

service. The probability generating functions of the number of customers in the system and orbit 

are found by using the supplementary variable technique. The explicit expressions for the 

average queue length of orbit/system and the average waiting time of customer in the 

system/orbit were obtained, which provided an insight into the system design and management 

for reducing the waiting time and the queue size of concerned organization under unavoidable 

techno-economic constraints. The analytical results are validated with the help of numerical 

illustrations. This model finds potential application in packet switched network to forward the 

packets within a network for transmission and Simple Mail Transfer Protocol (SMTP) to deliver 

the messages between mail servers. The novelty of this investigation is the introduction of  a 

feedback retrial queueing system with negative customers, balking and modified vacation where 

the server is subject to breakdown. Moreover, our model can be considered as generalized 

version of many existing queueing models equipped with many features. Hopefully, this 

investigation will be of great help for system managers for making decisions regarding the size 

of the system and other factors in a well-to-do manner. 
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APPENDIX 
 

The embedded Markov chain ;  nZ n N  is ergodic if and only if 1   for our system to be stable, 

where  

 

[1](1 ( ))X R      

 

and  

 

           [1](1) (1) (1)
1 1 2 2 [1] 1 1 1 1 2 2 2 2( ) ( ) ( ) 1  + 1 1 ( ) 1 1 ( )

bX
p p S p S bX h p g S p g S


           



     
           
  

. 

 

Proof:  

 

From Gomez-Corral (1999), it is not difficult to see that  ;  nZ n N is an irreducible and an 

aperiodic Markov chain. To prove Ergodicity, we shall use the following Foster’s criterion: an 

irreducible and an aperiodic Markov chain is ergodic if there exists a nonnegative function f(j), 

j N and ε > 0, such that mean drift 1( ) ( ) /j n n nE f z f z z j       is finite for all j N and j   for 

all j N, except perhaps for a finite number j’s. In our case, we consider the function f(j) = j. 

Then, we have   
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Clearly the inequality   
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is a sufficient condition for ergodicity. The same inequality is also necessary for ergodicity. As 

noted in Sennot et al. (1983), we can guarantee non-ergodicity, if the Markov chain  ;  1nZ n   

satisfies Kaplan’s condition, namely, j <  for all j ≥ 0 and there exits j0  N such that j ≥ 0 

for j ≥ j0. Notice that, in our case, Kaplan’s condition is satisfied because there is a k such that  

mij = 0 for j < i - k and i > 0, where  = (mij) is the one step transition matrix of  ;  .nZ n N Then, 
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implies the non-ergodicity of the Markov chain. 
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