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Abstract  
 
In this paper, a mathematical model is proposed to study the impact of toxic metals on plant 
growth dynamics due to transfer of the toxic metal in plant tissues. In the model, it is assumed 
that the plant uptakes the metal from the soil through the roots and then it is transfered in the 
plant tissues and cells by transport mechanisms. It is observed experimently that when toxic 
(heavy) metals combines with the nutrient they form a complex compound due to which nutrient 
loses its inherent properties and the natural charaterstics of the nutrient are damaged. It is noticed 
that due to the presence of toxic (heavy) metal in the plant tissues and loss of inherent properties 
of nutrient due to reaction with the toxic metal, the growth rate of the plant decreases. In order to 
understand the impact on plant growth dynamics, we have studied two models: One model for a 
plant growth with no toxic effect and the other model for plant growth with toxic effect. From 
the analysis of the models the criteria for plant growth with and without toxic effects are derived. 
The numerical simulation to support the analytical results is done using MathLab. 
 
Keywords:  Nutrient Concentration; Root and Shoot Biomass; Toxic Metal; Model; Equilibria 

and Stability 
 
AMS-MSC 2010 No.: 92B05, 92C80 
 
 
1. Introduction 

The soil is a source of nutrients for plant growth, but it also acts as a sink for contaminants from 
industrial and agricultural waste materials [Basta et al. (2005); Bolan et al. (2003); Nwachukwu 
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and Agbede (2009)]. Over the last few years, the level of heavy metals in the agricultural fields 
are increasing as a consequence of increasing environmental pollution from industrial, 
agricultural and municipal wastes. Plants take heavy metals from soils through different 
reactions such as: absorption, ionic exchange, redox reactions, precipitation–dissolution, etc. 
Heavy metals, through their action, disturb plant metabolism, affecting respiration, 
photosynthesis, stomata opening and plant growth. Heavy metals such as lead, copper, zinc, in 
high concentrations, are toxic to plants, preventing their proper development. Plants uptake 
metals from soil through their roots and then transport within the plant and plant cells [Smical et 
al. (2008)]. Plants accumulate heavy metals in their tissue and their high concentrations are toxic 
to them. In an experiment with maize it has been shown that the presence of Aluminum 
concentration in plant tissue has reduced the growth rate of the plant [Lindon and Barreiro 
(1998)]. It is observed experimently that the heavy (toxic) metals (when they combine with 
nutrients) form a complex compound thereby destroying the inherrent properties of the nutrinets 
[Violante et al. (2010)]. 
 
Agricultural research almost completely rely upon experimental and empirical works, combined 
with statistical analysis so very few mathematical modelling analysis has been carried out in this 
direction [Leo et al. (1993); Verma et al. (2007); Gross (1990); Thornley (1976); Benjamin and 
Hardwick (1986); Pugliese (1988); Somma et al. (1988); Ittersum et al. (2002); Dercole et al. 
(2005); Ioslovich and Gautam (2005); Vance and Nevai (2007); DeAngelis and Gross (1992)]. 
Many of the models that have been used by agronomists and foresters to predict harvests and 
schedule fertilization, irrigation and pesticide application are of empirical form. A major 
limitation in all these approaches is the unpredictability of the environmental inputs [Gross 
(1990)]. Thornley initiated some work related to the mathematical modelling of individual plant 
growth processes in which the mathematical models were applied to a wide variety of topics in 
plant physiology [Thornley (1976)]. In the paper of [Verma (2007)], a study was conducted 
through mathematical models to understand the cadmium uptake by radish, carrot, spinach and 
cabbage. In this paper a dynamic macroscopic numerical model for heavy metal transport and its 
uptake by vegetables in the root zone is considered and analysed numerically. Some 
mathematical models to study the effects of toxic metal on plant growth do now exist [Verma et 
al. (2007); Gross (1990); Brune and Dietz (1985); Pishchik et al. (2002); Guala (2010); Thomas 
et al. (2005); Misra and Kalra (2012); Misra and Kalra (2013)]. 
 
Inspired by the above, therefore in this paper, a mathematical model is proposed in this paper to 
study the impact of toxic metals on plant growth dynamics due to the transfer of toxic metal in 
plant tissues. 
 

2. Mathematical Model 
 
For the purpose of modelling, the plant is divided into root and shoot compartments in which the 
state variables considered are nutrient concentration and biomass. In the model, it is assumed that 
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the plant uptake the metal from the soil through the roots and then  transfered it through the  
plant tissues and cells by transport mechanisms. It is further assumed in the model that the root 
and shoot biomass decrease due to damage of tissues and cells on account of the metal present in 
the components of the plant. It is also assumed in the model that the nutrient concentration in the 
root and shoot compartments decrease due to the formation of complex compounds with toxic 
metal. 
 
Model 1 (Model with no toxic effect) 
 
In the formulation of model, the plant is divided into two compartments, viz., the root and shoot 
compartments. The state variables associated with the each compartment are the root biomaas, 
shoot biomass and nutrient concentration. rW  and sW  denote the root biomass and shoot biomass, 

respectively. 0S  and 1S  denote the nutrient concentration in the root and shoot compartments 

respectively. Thus, to study the plant growth dynamics, the following model is proposed. 
 

,)()()(= 01102001100
0 SSSDSSDWSrK

dt

dS
rN 
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 (4) 

 
with the initial conditions as: 

 
0>(0)0S , 0>(0)1S , 0>(0)rW , 0>(0)sW , 

 
where, NK  is the nutrient uptake by the plant root and considerd independent of the amount of 

root-mycorrhizal surface and its uptake characterstics. rWSr )( 0 and sWSr )( 1  represent the use of 

the nutrient by the root and shoot compartments of the plant respectively (Thronley (1976) ). In 
the present analysis we assume the following forms for function )( 0Sr  and )( 1Sr [Thronley 

(1976); DeAngelis and Gross (1992)]: 
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where,   is the utilization coefficient. rm  and sm  are the proportion of total biomass allocated 

to root and shoot biomass respectively, r  and s  are the resource-saturated rates of resource 

uptake per unit of root and shoot biomass respectively, S  is senescence constant, rK  and sK  are 

half saturation constants. In the absence of nutrient concentration the plant will not grow and 
eventually will die out. u  is the fraction of shoot in the form of leaf tissue. ),( 1CIfg  is the 

specific gross photosynthetic rate (Thornley, 1976) given.  
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where, 1  is the maximum age of the shoot of plant. l  is the specific leaf area of the whole plant. 

I  is the light flux density incident on the leaves in the shoot compartment, 1C  is the 2CO  

density and in plant. pS  is the rate of senescence of the photosynthesis. β is the photochemical 

efficency and  γ is the conductance to CO2. In plant growth, it is considered that during the initial 
stage, i.e., during the lag phase, the rate of plant growth is slow. Rate of growth then increases 
rapidly during the exponential phase. After some time the growth rate slowly decreases due to 
limitation of nutrient. This phase constitutes the stationary phase. The terms  
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are taken as the diminishing growth phase and stationary phase in the plant growth dynamics. 
Where, 0rk  is the maximum root biomass, 0sk  is the maximum shoot biomass, r  and s  are 

nutrient limiting coefficients, 10 1 0 20 0 1( ) and ( )D S S D S S  represent the flux of nutrient from 

shoot to root and root to shoot, respectively. 10D  and 20D  are transfer rates. 01S  represents the 

loss of nutreint due to leaching. 12S  represent the loss of nutrient due to shedding of leaves, 

where, 1  and 2  are rate constants.  
 
Model 2 (Model with toxic effect) 
 
Now, we consider the effect of toxic metal on plant growth dynamics by assuming that the 
growth of plant biomass is inhibitted and reduced due to the presence of the toxic metal in the 
soil. Let )(tC  be the concentration of toxic metal in soil and )(tc  be the concentration of toxic 
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metal in plant root. After incorporating the effect of toxic metal in Model 1, the resulting model 
is given as follows:  
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with the initial conditions as: 

 
0>(0)0S , 0>(0)1S , 0>(0)rW , 0>(0)sW , 0>(0)C , 0>(0)C . 

 
Here, 0Q  is the constant input rate of toxic metal which is considered independent of the amount 

of the root-mycorrhizal surface and its uptake characterstics. The term KC represents the 
uptake of toxic metal by root from soil. where,   is the first order rate constant.   is the soil 

bulk density. K  is the linear absorption coefficient. The term Cf  represents the transfer of 

toxic metal in the plant tissue (shoot tissue) and where f is the transfer rate of the toxic metal in 

the plant tissue. The terms rW13 and sW24 represent the decrease in the growth of the plant 

due to the presence of toxic metal in root and shoot, respectively;  where, 1  and 2  represent 
the bioconcentration factors or bioavailability factors and are taken as follows [Nwachukwu and 
Agbede (2009); Smical et al. (2008)]: 
 

KC

f

C
CC


  21 , .

 
 (13) 

 
The terms cS  01  and cS  12  represent the decrease in the nutrient concentration in the root and 

shoot respectively due to the formation of complex compounds with toxic metal. 1  and 2  are 

reaction rates of 0S  and 1S  with C respectively. h  is the natural decay rate of C  due to soil 
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depletion on account of the natural process of leaching.   is the natural decay rate of C on 
account of leaching and other natural process.  Here, all the parameters NK , 10D , 20D , 1 , 2 , 

r , s ,  , rK , sK , S , 1 , u , l , I , 1C ,  ,  pS , 0rk , 0sk , r , s , 1 , 2 , 0Q ,  ,  , k ,  , 

f , 1 , 2 , 3 , 4  and h  are taken as positive constants. 

 
3. Boundedness and Dynamical Behavior 

 
3.1. Analysis of Model 1 

 
Now, we show that the solutions of the model given by (1) to (4) are bounded in a positive 
orthant in 

4R . The boundedness of the solutions is given by the following lemma. 
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Then, by the usual comparison theorem we get, as ,t   : 
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Similarly from equation (4), we get  
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This completes the proof of lemma. 
 
Now we show the existence of the interior equilibrium *E  of Model 1. The system of equations 

(1) - (4) has one feasible equilibria ),,,( ***
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From equations (20) and (21), we have: 
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The two equations (20) and (21) intersect each other in the positive phase plane satisfying 

0>/ 01 dSdS , for equation (20) and 0</ 01 dSdS , for equation (21), showing the existence of the 

unique interior equilibrium *E . 
 
From  equation (15) as 1 :   
 

22010

*
02010*

1

)(
=



DD

SDD
S .  (22) 

 
Now, we discuss the dynamical behaviour of the interior equilibrium point *E of the model given 
by (1)-(4) and for this local and global stability analysis have been carried out subsequently. 
 
The characteristic equation associated with the variational matrix about equilibrium *E is given 
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From the nature of the roots of the characteristic equation (23) we derive that the equilibrium 
point *E is always locally asymptotically stable. 

 
Now, we discuss the global stability of the interior equilibrium point *E of the system (1)-(4). 
The non-linear stability of the interior positive equilibrium is determined by the following 
theorem. 
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*E  is globally asymptotically stable with respect to solutions initiating in the interior of the 

positive orthant.   
 
Proof:  
 
Since 1B  is an attracting region, and does not contain any invariant sets on the part of its 

boundary which intersect in the interior of 4
R , we restrict our attention to the interior of 1B . We 

consider a positive definite function about *E  
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Then, the derivatives along solutions, 1V  is given by  
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After some algebraic manipulations, this can be written as 
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 Note from (24) and the mean value theorem that  
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Hence, 1V  can be written as the sum of three quadratic forms, 
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By Sylvester’s criteria, we find that 1V  is negative definite if 
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2
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and 
 

2
24 22 44< 2a a a   (30) 

 
hold. However, (25) implies (28), (26) implies (29) and (27) implies (30). Hence, 1V  is negative 

definite and so 1V  is a Liapunov function with respect to *E , whose domain contains 1B , 
proving the theorem. 
 
The above theorem shows, the system settles down to a steady state solution provided 
inequalities (25) to (27) hold. 
 
3.2.  Analysis of Model 2 

 
Now, in the following we show that the solutions of model given by (7) to (12) are bounded in a 
positive orthant in 

6R . The boundedness of solutions is given by the following lemma. 
 
Lemma 3.3.  
 
All the solutions of model will lie in the region 
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as t , for all positive initial values 6

0 1( (0), (0), (0), (0), (0), (0)) ,r s CS S W W C R  where 

1 1 2= min ( , )   . 
 
Proof:   
 
By adding equations (7) and (8), we get   

 

,)(),(
)(

1011
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where 1 1 2= min ( , )    and then by the usual comparison theorem we get, as :t  
 

1

1
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
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From equation (9), we get  
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Then, by the usual comparison theorem we get, as :t  
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Similarly from equation (10), we get  
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From equation (11), we get  
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dt
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Then, by the usual comparison theorem we get, as :t  
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From equation (12), we get,  
 

C
C h

KQ

dt

d 



 0 . 

 
Then, by the usual comparison theorem we get, as :t  
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This complete the proof of the Lemma. 
 
Now, we find the interior equilibrium E

~
 of Model 2. The system of equations (7) - (12) has one 

feasible equilibria )
~

,
~

,
~

,
~

,
~

,
~

(
~

10 Csr CWWSSE  . The equilibrium E
~

 of the system is obtained by 

solving the following equations, 
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From equations (41) and (42), we have 
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The two equations (41) and (42) intersect each other in the positive phase plane satisfying 

0>/ 01 dSdS , for equation (41) and 0</ 01 dSdS , for equation (42), showing the existence of the 
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Now, we discuss the dynamical behaviour of the interior equilibrium point E

~
 of the model given 

by (7)-(12) and for this local and global stability analysis have been carried out subsequently. 
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Now, we discuss the global stability of the interior equilibrium point E

~
 of the system (7)-(12). 

The non-linear stability of the interior positive equilibrium state is determined by the following 
theorem. 
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 is globally asymptotically stable with respect to solutions intiating in the interior of the 
positive orthant.   
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where, 1,=(iAi 2 , 3, 4 , 5) are arbitrary positive constants. 
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By Sylvester’s criteria we find that 2V  is negative definite if   
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hold. We note that inequalities in Equation (51), i.e., 6611
2
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< aaa  are satisfied due to arbitrary choice of 1A , 2A ,

3A , 4A  and 5A , respectively, and above conditions reduces to the following conditions:  
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However, (47) implies (53), (48) implies (54), (49) implies (55), (50) implies (56) and (51) 
implies (57). Hence, 2V  is negative definite and so 2V  is a Liapunov function with respect to E

~
, 

whose domain contains 2B , proving the theorem. 
 
The above theorem shows, the system settles down to a steady state solution provided 
inequalities (47) to (51) hold. 

 

4.  Numerical Example 
 

For the model 1, consider the following values of parameters- 
 

10 20

1 0 0
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1 2

= 10, = 1, = 1, = 1.5, = 1.2,

= 4, = 0.1, = 0.1, = 3, = 5,

= 0.01, = 90, = 20, = 20, = 0.5,

= 30, = 0.1, = 1, = 0.374, = 5,

= 0.014, = 1.2, = 1.4, = 0.1, = 0.2.

N s r s r

r s

s r

p r s

K K K

m m D D

S k k u

l C I

S

 



 
   

 

 
For the above set of parametric values, we obtain the following values of interior equilibrium *E  
 

4.92=*
0S , 56.4=*

1S , 16.67=*
rW , ,14.29=*

sW  

 
which is asymptotically stable (see Figure 1). 
 
Further, to illustrate the global stability of interior equilibrium *E  of model 1 graphically, 
numerical simulation is performed for different initial conditions (see Table 1 and 2) and results 
are shown in Figures 2 and 3 for rWS 0  phase plane and sWS 1  phase plane respectively. All 

the trajectories are starting from different initial conditions and reach to interior equilibrium *E . 
 

 Table 1. Different initial conditions for 0S  and rW  of Model 1 

(0)0S  0.1 12 25 8 

(0)rW  2 0.1 25 30 
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Table 2. Different initial conditions for 1S  and sW  of Model 1 

(0)1S  0.1 4 25 10 

(0)sW  5 0.1 25 30 

 
For the Model 2, with above set of parametric values and with the additional values of 
parameters given by 
 

1 2

0 3

4

= 1.8, = 2, = 1, = 2.5, = 2.5,

= 0.75, 0.8, = 12, = 1, 0.1,

0.1,

h

K f Q

   
 


 


 

we obtain the following values of interior equilibrium E
~

 as 
 

0.95=
~

0S , 0.58=
~

1S , 12.61=
~

rW ,  10.43=
~

sW , 4.17=
~
C , 2.37. =

~
C  

 
For these set of parametric values, the stability conditions given in Equations (47)-(51) are 
satisfied. Hence, E

~
 is asymptotically stable (see Figure 4). 

 
Further, to illustrate the global stability of interior equilibrium E

~
 of model 2 graphically, 

numerical simulation is performed for different initial conditions (see Table 3 and 4) and results 
are shown in Figures 5 and 6 for rWS 0  phase plane and sWS 1  phase plane respectively. All 

the trajectories are starting from different initial conditions and reach to interior equilibrium E
~

. 
 
 

Table 3. Different initial conditions for 0S  and rW  of Model 2 

(0)0S  0.1 2 2 0.6 

(0)rW  6 0.1 16 20 

 
 

Table 4. Different initial conditions for 1S  and sW  of model 2 

(0)1S  0.1 1 1.3 0.2 

(0)sW  6 0.1 14 16 

 
 
Tolerance indices (T.I.) are determined through the use of following formula [Kabir et al. 
(2008)]: 
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Mean root massin presenceof toxicant

. .( ) = 100
Mean root massin absenceof toxicant

T I root   

 

 
Meanshoot massin presenceof toxicant

. .( ) = 100
Meanshoot massin absenceof toxicant

T I shoot 
 

  
Table 5. Tolerance indices of root mass and shoot mass at different toxic input rate 0Q  
               

when f = 0.8  

S.No. Q0 Wr Ws T.I (Wr)% T.I(Ws)% 

1 0 16.6667 14.2857 100 100 

2 1 14.1207 12.3998 84.76 86.79 

3 5 13.4270 11.6459 80.56 81.52 

4 10 12.8228 10.7818 76.93 75.47 

5 15 12.3166    9.9020 73.89 69.31 

6 20 11.8603 8.9253 71.15 62.48 

7 25 11.4345 7.8006 68.60 54.60 

8 30 11.0295 6.4758 66.17 45.30 

9 35 10.6385 5.0461 63.82 35.32 

10 40 10.2569 3.7212 61.49 26.05 

11 45 9.8819 2.6627 59.27 18.64 

12 50 9.5123 1.8989 57.07 13.29 

13 60 8.7856 1.0211 52.71 7.15 

14 70 8.0691 0.6121 48.41 4.28 

15 100 5.8564 0.2245 35.13 1.57 

 
 

Table 6. Bioavailability factors or bioconcentration factors 1 and 2 at different value of f  

               when Q0 = 15  

F Wr Ws C θc 
 

β1 β2 

0.1 10.72 13.44 5.22 3.76 0.72 0.04 
0.2 11.00 12.72 5.22 3.62 0.69 0.07 
0.3 11.27 12.09 5.22 3.49 0.67 0.11 
0.4 11.51 11.53 5.22 3.37 0.65 0.14 
0.5 11.74 11.05 5.22 3.26 0.63 0.17 
0.6 11.94 10.62 5.22 3.15 0.60 0.19 
0.7 12.14 10.23 5.22 3.05 0.59 0.22 
0.8 12.31 09.89 5.22 2.96 0.57 0.24 
0.9 12.48 09.58 5.22 2.87 0.55 0.26 
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5.  Conclusion 

 
From Figures 7(a) and 7(b), is observed that the equilibrium levels of nutrient concentrations in 
each compartmentwith no toxic effect are more than that of the equilibrium levels of nutrient 
concentrations in respective compartments when toxiceffect is considered. Further, from 
Figures8(a) and 8(b), it is observed that the equilibrium levels of root biomass and shoot 
biomasswith no toxic effect are more than those of the root biomass and shoot biomass when 
toxic effect isbeing considered. From the non-trivial positive equilibrium E

~
 (Table 5), it is 

concluded that theroot biomass and shoot biomass decrease as the input rateof toxic metal 0Q  

increases and this phenomena will continue till 0Q  reaches 60thQ because upto this value  of 

0Q , the stability criteria continue to hold. From table 6, it is observed that as the transfer rate of 

toxic metal from root to shoot increases, toxicant concentration factor in root tissues decreases 
and consequentely root biomass increases. On the contrary, toxicant concentration factor in shoot 
tissues increases as the transfer rate increases causing a decline of the shoot biomass. Figures 9(a) 
and 9(b) represent the dynamical behaviour of the nutrient concentration of root and shoot with 
respect to C . From these figures, it is observed that nutrient concentration in root and shoot 

decrease as the level of the toxic metal concentration in root increases.  
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Figure 1. Trajectories of the Model 1 with respect to time (with no toxic effect) showing 

the stability behaviour 
 

 
Figure27.  Phase plane graph for nutrient concentration in root S0 and root biomass Wr at 

different initial conditions given in Table 1 for Model 1 (with no toxic effect) 
showing the global stability behaviour. 
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Figure 3. Phase plane graph for nutrient concentration in shoot S1 and shoot biomass Ws 
at different initial conditions given in Table 1 for Model 1 (with no toxic effect) 
showing the global stability behaviour. 

 
 
 

 
Figure 4. Trajectories of the model 2 with respect to time (with toxic effect) showing the 

stability behaviour. 
 
 

 
Figure 5.   Phase plane graph for nutrient concentration in root S0 and root biomass Wr at 

different initial conditions given in Table 3 for Model 2 (with toxic effect) 
showing the global stability behavior. 
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Figure 6. Phase plane graph for nutrient concentration in shoot S1 and shoot biomass Ws 

at different initial conditions given in Table 4 for Model 2 (with toxic effect) 
showing the global stability behaviour. 

 
 

 
Figure 7(a).   Graph between nutrient concentration of root S0 and time t for Model 1 

(with no toxic effect) and for Model 2 (with toxic effect) 
 

 
 

Figure 7(b).      Graph between nutrient concentration in shoot S1 and time t for Model 1 
(with no toxic effect) and for Model 2 (with toxic effect) 
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Figure 8(a).  Graph between root biomass Wr and time t for Model 1 (with no toxic 
effect) and for Model 2 (with toxic effect) 

 

 
Figure 8(b).  Graph between shoot biomass Ws and time t for Model 1(with no toxic 

effect) and for Model  2 (with toxic effect). 

 
Figure 9(a).     Phase Plane Graph of nutrient concentration in root S0 and θC for Model 2 

when Q0 = 12.  
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Figure 9(b).   Phase Plane Graph of nutrient concentration in shoot S1 and θC for Model 

2 when Q0 = 12. 
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