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Abstract

In this paper, we study a boundary stabilization of the torsional vibrations of a solar panel. The

panel is held by a rigid hub at one end and is totally free at the other. The dynamics of the overall

system leads to hybrid system of equations. It is set to a certain initial vibrations with a control

torque as a stabilizer at the hub end only. Taking a non-linear damping as boundary stabilizer,

a uniform exponential energy decay rate is obtained directly. Thus an explicit form of uniform

stabilization of the system is achieved by means of the exponential energy decay estimate.

Keywords: Solar panel; hybrid system; torsional vibrations; exponential energy decay estimate.

MSC 2010: 35L35; 37L15; 74H55; 93D15.

1. Introduction

Research in the area of stabilization problems for distributed parameter systems have been

developing in a significant manner.The most common classes of vibration control mechanisms are

of passive, active and of hybrid type. Passive vibration control uses resistance devices that absorbs
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vibration energy. Active vibration control is also like that but involves the use of force actuators

linked with external energy. Hybrid vibration control is a combination of passive approach with

active control. The associated type of stability most commonly studied in the mathematical

literature are strong stability and uniform stability. A system is called strongly stable, if the

energy E(t) of each solution of the system converges to zero as time t → +∞. If the convergence

is uniform for t > 0 with respect to all initial data in the energy space for which E(0) < ∞, the

system is called uniformly stable. If the stability property can be achieved due to incorporation

of a stabilizer or a damping device applied on the boundary, the system is then called boundary

stabilization. The most important fact for studying the stability of such system is to suppress the

vibrations to assure a good performance of the overall system.

During the last few decades, the use of flexible structures is on the rise. The vibrations of

flexible structures are usually non-linear in practice. The analytical study of non-linear problems

are cumbersome and the results so obtained are usually not in precise form. The linearized

mathematical model are considered here just for simplicity and concise results. The vibrations

of flexible structures are the problem of dynamical system mathematically governed by partial

differential equations, in particular, the second order wave equation and the fourth-order Euler-

Bernoulli beam equation. Stabilization for the wave equation in a bounded domain have been

investigated by several authors (cf. Chen (1979), (1981), Lagnese (1983), (1988); Lions (1988),

Komornik (1991)). Similarly, those governed by the fourth-order Euler-Bernoulli beam equation

have been treated by Chen and Zhou (1990), Morgül (1992) and Krall (1989). The term ‘hybrid

systems’ are those consists of coupled elastic and rigid parts. Hybrid systems in the category,

when a lumped mass is present at one end, have been treated by Chen et. al. (1987), Littman

and Markus (1988), Rao (1995) and Bose and Gorain (2003). In such systems, it is found that

under very relaxed initials conditions no such uniform exponential decay of energy is possible.

In many practical problems, it is very common to apply control force on the free end of the

elastic part relative to rigid part to get a good result in the system.

The energy decay rate for the solutions of second order wave equations in a bounded domain

has been established by several authors (Chen (1979), (1981); Lagnese (1983), (1988); Lions

(1988), Komornik (1991 )). Gorain (1997) treated the case of internally damped wave equations

for the so called Voigt model of viscoelasticity together with undamped boundary conditions

(without considering boundary feedback) to obtain a uniform exponential energy decay estimate.

Such estimate is also found in Gorain (2009) for the case of n -dimensional vibrating equation

modeling ’standard Linear model’ of viscoelasticity. The approach adopted below is to formulate

a distributed hybrid model of the dynamics of torsional vibrations of a flexible structure hoisted

by a rigid hub at one end (cf. Fukuda et. al. (1985), (1986), (1988)). To establish the stability

of the system by means of uniform exponential energy decay estimate for the solutions of such

problem, a control torque is applied on the hub end. Finally we obtain explicitly the exponential

energy decay estimate for the solution of this problem.

2. Mathematical Formulation of the problem

Here we study the exponential stabilization of a hybrid solar panel consisting of a long uniform

2
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rectangular panel and a rigid hub fixed at one end. The panel is of length L, which is held at one

end by the rigid hub and it is totally free at the other end. Our objective is to study the uniform

exponential stability of the total system by applying a suitable boundary control torque Q(t) at

the hub end only. Referring to the fig. 1, if φh(t) is the rotation of the hub and φp(x, t) that of

the panel at the position x along the span of the panel relative to the hub at time t, then the total

rotational angle φ(x, t) of the panel obviously satisfies the relation

φ(x, t) = φh(t) + φp(x, t), 0 ≤ x ≤ L, t > 0. (1)
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Figure 1. Schematic of the rigid hub and the panel for torsional vibrations.

This total rotation φ(x, t) then satisfies the governing differential equation (cf. Gorain and Bose

(1998))
∂2φ

∂t2
= c2

∂2φ

∂x2
(2)

under the assumption

∣

∣

∣

∂φ

∂x
(x, t)

∣

∣

∣
<< 1, where c2 =

Dp

ρpJp

, Dp, ρp and Jp being the torsional

rigidity, density and moment of inertia of the area of cross section about the central axis of the

panel. Initially at time t=0, the panel is set to vibrations with initial values

φ(x, 0) = φ0(x),
∂φ

∂t
(x, 0) = φ1(x), 0 ≤ x ≤ L. (3)

When control torque Q(t) is applied at the hub end, its equation of motion is (cf. Gorain and

Bose (1998))

Ih

∂2φh

∂t2
(0, t) = Dp

∂φp

∂x
(0, t) − Q(t), (4)

where Ih is the total moment of inertia of the hub about its axis of rotation. At the hub end

x = 0, we have φp(0, t) = 0, that yields φh(t) = φ(0, t), then equation (4) becomes

Ih

∂2φ

∂t2
(0, t) = Dp

∂φp

∂x
(0, t) − Q(t) (5)

Again,
∂φ

∂x
(x, t) =

∂φp

∂x
(x, t) so that,

∂φ

∂x
(0, t) =

∂φp

∂x
(0, t). (6)

Hence, equation (5) reduces to

Ih

∂2φ

∂t2
(0, t) = Dp

∂φ

∂x
(0, t) −Q(t). (7)
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Writing α =
Ih

Dp

and λ =
1

Dp

, we have from (7)

∂φ

∂x
(0, t) = α

∂2φ

∂t2
(0, t) + λQ(t). (8)

The free end of the panel satisfies the equation

∂φ

∂x
(L, t) = 0. (9)

Thus, we are concerned about uniform stabilization for the vibrations of a solar panel governed

by the following initial-boundary value problem.

∂2φ

∂t2
= c2

∂2φ

∂x2
, 0 ≤ x ≤ L, t > 0, (10)

φ(x, 0) = φ0(x),
∂φ

∂t
(x, 0) = φ1(x), 0 ≤ x ≤ L, (11)

∂φ

∂x
(0, t) = α

∂2φ

∂t2
(0, t) + λQ(t),

∂φ

∂x
(L, t) = 0, t > 0. (12)

We now introduce a suitable stabilizer that is observable to the velocity the panel at the free end.

In other words, we assume here that the control torque Q(t) is comparable with
∂φ

∂t
(L, t) in the

sense

|Q(t)| ≥ k

∣

∣

∣

∂φ

∂t
(L, t)

∣

∣

∣
, (13)

where k > 0 is a dimensionality constant. Again due to the damping character of the control

torque Q(t), it must be an odd function of velocity at the hub end, that means,

Q(t) = f
(∂φ

∂t
(0, t)

)

, (14)

where f is an odd function of its argument such that f(0) = 0 and u.f(u) > 0 for every

u ∈ R − {0}. For example, if f(u) = u, we have a simple viscous damper. The others types of

dampers can be found in the literature (cf. Chen (1979), (1981), Lagnese (1983), (1988); Lions

(1988), Komornik (1991), Gorain (1997), Bose and Gorain (2003), Gorain (2009)). Under the

assumption (13), a restriction on the controller f
(∂φ

∂t
(0, t)

)

is given by

∣

∣

∣
f
(∂φ

∂t
(0, t)

)
∣

∣

∣
≥ k

∣

∣

∣

∂φ

∂t
(L, t)

∣

∣

∣
. (15)

3. Energy of the system

As defined by Lagnese (1988), the total energy of the system is given by the functional

E(t) =
1

2

∫ L

0

[(∂φ

∂t

)2

+ c2

(∂φ

∂x

)2]

dx +
1

2
c2α

[∂φ

∂t
(0, t)

]2

for t ≥ 0. (16)
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Differentiating this with respect to t and using the governing equation (10), we obtain

dE

dt
= c2

∫ L

0

[∂φ

∂t

∂2φ

∂x2
+

∂φ

∂x

∂2φ

∂x∂t

]

dx + c2α
∂φ

∂t
(0, t)

∂2φ

∂t2
(0, t)

= c2

[∂φ

∂t
(L, t)

∂φ

∂x
(L, t)− ∂φ

∂t
(0, t)

∂φ

∂x
(0, t)

]

+ c2α
∂φ

∂t
(0, t)

∂2φ

∂t2
(0, t)

= −c2λ
∂φ

∂t
(0, t)Q(t), (17)

where the integration is performed by parts and the boundary conditions (12) are used. By the

help of the equation (14), the above expression can be reduced to

dE

dt
= −c2λ

∂φ

∂t
(0, t)f

(∂φ

∂t
(0, t)

)

= −c2λuf(u) ≤ 0 (18)

where u =
∂φ

∂t
(0, t) is the velocity at the hub end. The negativity of (18) shows that some

amount of energy of the system (10)-(14) is dissipating due to incorporation of the feedback

controller f
(

∂φ

∂t
(0, t)

)

at the hub end x = 0. Thus the energy functional E is a non-creasing

function of time t. Hence, the solution of the system satisfies the energy estimate E(t) ≤ E(0),

where

E(0) =
1

2

∫ L

0

[

φ2

1
+ c2φ′2

0

]

dx +
1

2
c2α

[

φ1(0)
]2

. (19)

The above estimate (16) suggests that, if φ0 ∈ H1(0, L) and φ1 ∈ L2

0
(0, L), where

H1(0, L) =
{

F
∣

∣

∣
F ∈ L2(0, L), F ′ ∈ L2(0, L)

}

(20)

is the classical Sobolev space of real valued functions of order one and

L2

0
(0, L) :=

{

F
∣

∣

∣
F ∈ L2(0, L) and F (0) = 0

}

, (21)

then E(0) < ∞. Hence, it follows that E(t) < ∞ for every t ≥ 0 and the system (10)-(14) has

a unique solution for (φ0, φ1) ∈ H1(0, L) × L2

0
(0, L).

As the energy decays, our main interest is to establish whether this decay is uniformly exponential

or not. An affirmative answer can be found in the next section.

4. Uniform Stability Result

The main result of this paper can be stated in the following theorem.

Theorem 1.: Let φ(x, t) be a solution of the system (10)-(14) with the initial values {φ0, φ1} ∈
H1(0, L)×L2

0
(0, L), then the energy E of the system decays uniformly exponentially with time,

that means

E(t) < Me−µtE(0) for t > 0,

and for some finite reals M > 1 and µ > 0.

5
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The theorem will be proved after some preliminary steps. First, we require a trivial inequality

(u.v) ≤ 1

2s
(u2 + s2v2), (22)

for any two real functions u and v with a real number s > 0.

Next we consider the following lemma:

Lemma 1.: For every solution φ(x, t) be a solution of the system (10)-(14), the time derivative

of the functional G (cf. Bose and Gorain (1998), Gorain (2006) and Nandi et. al. (2011)) defined

by

G(t) =

∫ L

0

x
∂φ

∂t

∂φ

∂x
dx for t ≥ 0 (23)

satisfies
dG

dt
=

1

2
L
[∂φ

∂t
(L, t)

]

2

+
1

2
c2α

[∂φ

∂t
(0, t)

]

2

− E(t). (24)

Proof:

If we differentiate (23) with respect to t and using the governing equation (10), we obtain

dG

dt
=

∫ L

0

x
[

c2
∂2φ

∂x2

∂φ

∂x
+

∂φ

∂t

∂2φ

∂x∂t

]

dx

=
1

2
L
[∂φ

∂t
(L, t)

]2

− E(t) +
1

2
c2α

[∂φ

∂t
(0, t)

]2

, (25)

where the integration is done by parts and the boundary conditions (12) are used.

Proof of Theorem 1:

Proceeding as in Gorain (2006) and Bose and Gorain (1998), we define energy like Lyapunov

functional V by

V (t) = E(t) + εG(t) for t ≥ 0 (26)

Differentiating (26) with respect to t, and using (18) and (24) we obtain

dV

dt
≤ 1

2
ε
[

c2α
(∂φ

∂t
(0, t)

)2

+ L
(∂φ

∂t
(L, t)

)2]

−c2λ
∂φ

∂t
(0, t)f

(∂φ

∂t
(0, t)

)

− εE(t). (27)

In view of (15), the relation (27) becomes

dV

dt
≤ εc2α

2

[(∂φ

∂t
(0, t)

)2

+
L

c2k2α
f2

(∂φ

∂t
(0, t)

)]

−c2λ
∂φ

∂t
(0, t)f

(∂φ

∂t
(0, t)

)

− εE(t). (28)

Since ε > 0 is small and
∂φ

∂t
(0, t)f

(∂φ

∂t
(0, t)

)

> 0 for every t > 0, we assume that

0 < ε < ε0, (29)

6
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where

ε0 =
λ∂φ

∂t
(0, t)f

(

∂φ

∂t
(0, t)

)

α
2

[(

∂φ

∂t
(0, t)

)2

+ L
c2k2α

f2

(

∂φ

∂t
(0, t)

)]

. (30)

By the inequality (22), an upper bound of ε0 can be obtained as

ε0 ≤
ckλ
2

√

α
L

[(

∂φ

∂t
(0, t)

)2

+ L
c2k2α

f2

(

∂φ

∂t
(0, t)

)]

α
2

[(

∂φ

∂t
(0, t)

)

2

+ L
c2k2α

f2

(

∂φ

∂t
(0, t)

)]
=

ckλ√
αL

, (31)

a positive constant independent of time t. In particular, if we take k =

√
αL

cλ
, then ε0 ≤ 1.

According to our assumption (29), the lower bound of ε0 is a real number > 0 that may be

sufficiently small.

For the choice of ε, as defined in (29), where ε0 is given by (30), the differential relation (28)

reduces to
dV

dt
+ εE(t) ≤ 0 for t > 0. (32)

Now applying the inequality (22), we have from (23),

∣

∣G(t)
∣

∣ ≤ L

c

∫ L

0

∣

∣

∣

∂φ

∂t

∣

∣

∣

∣

∣

∣
c
∂φ

∂x
dx

∣

∣

∣
≤ L

c
E(t), (33)

that means,

−L

c
E(t) ≤ G(t) ≤ L

c
E(t) for t > 0. (34)

So the functional V defined by (26) can be estimated as
(

1 − ε
L

c

)

E(t) ≤ V (t) ≤
(

1 + ε
L

c

)

E(t) for t ≥ 0. (35)

Since ε > 0 is small, we may further assume that

0 < ε <
c

L
. (36)

Then it follows from (35) that V (t) > 0 for every t ≥ 0. Invoking the inequality (35), the relation

(32) leads to the differential inequality

dV

dt
+ µV (t) < 0, (37)

where

µ =
ε

1 + εL
c

> 0. (38)

Multiplying (37) by eµt and integrating from 0 to t, we obtain

V (t) < e−µtV (0) for t > 0. (39)

Applying again the inequality (35) in (39), we get

E(t) < Me−µtE(0) for t > 0, (40)

7
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where

M =
1 + εL

c

1 − εL
c

> 1. (41)

Hence the theorem is complete.

5. Conclusion

This study deals with uniform stability of the torsional vibrations of a prototype hybrid flexible

structure – solar cell array. The significant result in this paper is that the solution of the system

governed by (10)-(14) converges uniformly to zero as time t → ∞. At the same time, we have

estimated the exponential energy decay rate µ explicitly by a direct method. The result shows

that the vibration energy of the system decays rapidly for larger values of µ. Again,

dµ

dε
=

(

1 +
εL

c

)

−2

>
1

2
, (42)

as εL < c followed from (36). Hence the exponential decay rate as a function of ε will be

maximum for largest admissible value ε, the least upper bound of which can be determined in

view of the restrictions (29) and (36) simultaneously. Study of this type of vibrations assumes

significance in treating the similar vibrations of flexible beams, plates, etc. capable of withstanding

finite deformation.
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